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Supplemental 

Table S1. Recognition-Transduction-Acquisition (RTA) triad. 

Examples of Components Reference 
Mobile phone sensing hardware - 

Optical sensing [47,56,57] 
electrochemical sensing [48,58] 

Mobile phone sensing software - 
cloud-based analytics [69–71] 

Drag and drop analytics [72–78,81−83] 

 

Figure S1. Overview of Review. 

 

Figure S2. Recognition-Transduction-Acquisition (RTA) triad. 
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Figure S3. Design of SNAPS must use a retrosynthetic approach, beginning with the intended 
application in mind. This allows proper selection of materials, transduction techniques, and analytics 
for ensuring quality of service. (A) Correct matching of engineered transduction with heuristic 
analytics. (B) Incorrect matching of engineered transduction with algorithmic analytics leads to 
overdesign of the tool, consuming unnecessary energy and computational power. (C) Incorrect 
matching of inherent transduction with heuristic analytics leads to excessive data collection, which 
causes systematic negative effects unless the data. This approach is valid for long term monitoring 
programs, but is not relevant for rapid, point of need SNAPS. (D) Correct matching of engineered 
transduction with algorithmic analytics. 

 
Figure S4. Traditional autonomy may not be the dogma for development of SNAPS. 
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Figure S5. (A) Information hierarchy depicting the evolution of sensor data towards knowledge. 
Higher levels (wisdom, understanding) may be beyond the scope of sensor data, but here we describe 
a platform for evolution of sensor data to information (SNAPS-ART and SNAPS-DIDA’S) and suggest 
a path forward for evolution to knowledge via the KIDS platform. (B) When KIDS is applied to the 
agro-ecosystem, the convergence of performance metrics, environment, actuators, and sensors (PEAS) 
encompass the platform through agent-based systems. 

SNAPS-Listeria Monocytogenes 

The program below reads raw impedance data files, converts the data to the necessary form for 
machine learning classification, and predicts whether the tested sample “may be contaminated” or is 
“safe”. When run via R-Studio, the program prompts the user to attach an impedance data file and 
classifies the results using training data as described in previous publications. This program can be 
utilized directly (without the app shown in the manuscript) using R Programming Compiler app by 
Kappsmart. 

In the bagged random forest analysis, the number of variables for each split was equal to one 
third of the total available features (150 in this dataset). The random forest model was generated 
using the randomForest() function in R. The predict() function from the stats package was utilized to 
predict the binary response of the “unknown” test sample based on the generated model. The 
program below may be altered to utilize other classification machine learning techniques such as 
neural networks and support vector machines for rapid pathogenic contamination determination. 

R Code for Mobile Phone Using Compiler App: 

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
set.seed(0) 
#IMPORT TRAINING DATA 
RawData = 
read.csv("https://www.dropbox.com/s/b52smaqt618qq4t/TrainingDataSet.csv?raw=1", header = 
T) 
#Remove Name Column 
TrainDataForest = RawData[,c(2:152)] 
#Converting binary classification label to a factor 
TrainDataForest[["Label"]] = factor(TrainDataForest[["Label"]]) 
#RANDOM FOREST (Bagged) 
library(randomForest) 
bagged = randomForest(Label~., data=TrainDataForest, mtry=150, importance=TRUE) 
#Open Impedance Data File for the "Unknown" Food Test Sample 
library(tcltk) 
RawTestSampleData = read.csv(file="stdin",header=T) 
#Separates Out Real and Imaginary Impedance 
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SampleRealZ = data.frame(RawTestSampleData[,(1:1)]) ; colnames(SampleRealZ) = "Z" 
SampleImaginaryZ = data.frame(RawTestSampleData[,c(2:2)]) ; colnames(SampleImaginaryZ) = 
"Z" 
#Combines Impedances into One Column then Transposes The Dataset into the Same Format as 
the Training Data 
SampleTestColumn = rbind(SampleRealZ, SampleImaginaryZ) 
SampleTest = data.frame(t(SampleTestColumn)) 
#Classifies Test Sample Dataset Based on Training Data 
SamplePred= predict(bagged, SampleTest, type = "class") 
SamplePredValue=as.numeric(paste(SamplePred)) 
#Displays Results of Classification as Possible Contaminated or Safe 
if(SamplePredValue > 0) 
{print("Based on data anlysis, the sample is may be CONTAMINATED, please hold for further 
validation")} else {print("Based on data anlysis, the sample is SAFE!")} 

R Code for Windows Surface/PC using R-Studio: 

#Choose Working Directory via Dialogue Box 
setwd(choose.dir(default = "", caption = "Select Your Working Directory")) 
set.seed(0) 
#IMPORT TRAINING DATA 
RawData = read.csv("TrainingDataSet.csv", header = T) 
#Remove Name Column 
TrainDataForest = RawData[,c(2:152)] 
#Converting binary classification label to a factor 
TrainDataForest[["Label"]] = factor(TrainDataForest[["Label"]]) 
#RANDOM FOREST (Bagged) 
library(randomForest) 
bagged = randomForest(Label~., data=TrainDataForest, mtry=150, importance=TRUE) 
#Open Impedance Data File for the "Unknown" Food Test Sample 
library(tcltk) 
RawTestSampleData = read.csv(tk_choose.files(caption = "Select Test Sample Dataset")) 
#Separates Out Real and Imaginary Impedance 
SampleRealZ = data.frame(RawTestSampleData[,(1:1)]) ; colnames(SampleRealZ) = "Z" 
SampleImaginaryZ = data.frame(RawTestSampleData[,c(2:2)]) ; colnames(SampleImaginaryZ) = 
"Z" 
#Combines Impedances into One Column then Transposes The Dataset into the Same Format as 
the Training Data 
SampleTestColumn = rbind(SampleRealZ, SampleImaginaryZ) 
SampleTest = data.frame(t(SampleTestColumn)) 
#Classifies Test Sample Dataset Based on Training Data 
SamplePred= predict(bagged, SampleTest, type = "class") 
SamplePredValue=as.numeric(paste(SamplePred)) 
#Displays Results of Classification as Possible Contaminated or Safe 
if(SamplePredValue > 0){msgBox <- tkmessageBox(title = "Is this sample safe?",  

message = "Based on data anlysis, the sample may be CONTAMINATED, please hold for 
further validation.",  
   icon = "warning", type = "ok")} else { 
      msgBox <- tkmessageBox(title = "Is this sample safe?", message = "Based on data anlysis, 
the sample is SAFE!",  
      icon = "info", type = "ok")} 


