The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Data
2.3. GaoFen-1 Data and Pre-Processing
2.4. Methods
2.4.1. Prediction of Leaf Area Index by the PROSAIL Model
2.4.2. Selection and Computation of Spectral Vegetation Indices
2.4.3. Determining and Validating the Optimal Image Date for Cultivated Land Quality Evaluation
3. Results
3.1. Estimation of Leaf Area Index
3.2. The Optimal Image Date of Cultivated Land Quality Evaluation
4. Discussion
5. Conclusions and Future Prospect
5.1. Conclusions
5.2. Prospect for Future Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wang, D.; Ren, Y.; Wang, Z.; Zhou, Y. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 2019, 107, 105251. [Google Scholar] [CrossRef]
- Xie, H.; Zou, J.; Jiang, H.; Zhang, N.; Choi, Y. Spatiotemporal pattern and driving forces of arable land-use Intensity in China: Toward sustainable land management using energy analysis. Sustainability 2014, 6, 3504–3520. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, L. Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Appl. Geogr. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Machin, J.; Navas, A. Land evaluation and conservation of semiarid agrosystems in Zaragoza (NE Spain) using an expert evaluation system and GIS. Land Degrad. Dev. 1995, 6, 203–214. [Google Scholar] [CrossRef]
- Bojorquez-Tapia, L.A.; Diaz-Moadragon, S.; Ezcurra, E. GIS-based approach for participatory decision making and land suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 40, 477–492. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban Syst. 2002, 26, 89–112. [Google Scholar] [CrossRef]
- Qi, L.; Liu, L.; Zhao, C.; Wang, J.; Wang, J. Selection of optimum periods for extracting winter wheat based on multi-temporal remote sensing images. Remote Sens. Technol. Appl. 2008, 23, 154–160. [Google Scholar]
- Meng, J.; Xu, J.; You, X. Optimizing soybean harvest date using HJ-1 satellite imagery. Precis. Agric. 2015, 16, 164–179. [Google Scholar] [CrossRef]
- Guindin-Garcia, N. Estimating Maize Grain Yield from Crop Biophysical Parameters Using Remote Sensing. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2010. [Google Scholar]
- Idso, S.B.; Reginato, R.J.; Jackson, R.D. Albedo measurement for remote sensing of crop yields. Nature 1977, 266, 625–628. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Wang, F.; Wen, Y.; Cai, Y.; Cheng, C. Selected optimum temporal and deviloped the ground model for the discrimination of cotton. Henan Sci. 1990, 152–159. [Google Scholar]
- Li, M.; Li, C.; Ju, H.; Hu, H.; Shi, H.; Bin, Q. The best phase selection for monitoring winter wheat sowing time using remote sensing data based on simulated spectral data. J. Wheat Crop. 2015, 35, 1148–1154. [Google Scholar]
- Zude, M.; Herold, B. Optimum harvest date determination for apples using spectral analysis/bestimmung des optimalen erntetermins bei äpfeln mittels spektralanalyse. Gartenbauwissenschaft 2002, 67, 199–204. [Google Scholar]
- Meng, J.H.; Dong, T.; Zhang, M.; You, X.; Wu, B. Predicting optimal soybean harvesting dates with satellite data. In Precision Agriculture’13; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013. [Google Scholar]
- Xu, J.; Meng, J.; Quackenbush, L.J. Use of remote sensing to predict the optimal harvest date of corn. Field Crop. Res. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Domenikiotis, C.; Spiliotopoulos, M.; Tsiros, E.; Dalezios, N.R. Early cotton yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition Index (VCI) in Greece. Int. J. Remote Sens. 2004, 25, 2807–2819. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Penuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Wardlow, B.D.; Arkebauer, T.J.; Verma, S.B.; Suyker, A.E.; Shibayama, M. Application of day and night digital photographs for estimating maize biophysical characteristics. Precis. Agric. 2012, 13, 285–301. [Google Scholar] [CrossRef]
- Huang, J.; Wang, R.; Jiang, H.; Yang, Z. Selection of optimum periods for rice estimation using remote sensing data based on GIS. J. Appl. Ecol. 2002, 13, 290–294. [Google Scholar]
- Song, W.; Liu, M. Farmland conversion decreases regional and national land quality in China. Land Degrad. Dev. 2017, 28, 459–471. [Google Scholar] [CrossRef]
- German, R.N.; Thompson, C.E.; Benton, T.G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: A meta-analysis to guide sustainable agriculture. Biol. Rev. 2017, 92, 716–738. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gregory, P.J. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.J.; Lv, H.Q. Responses of heading to flowering to maturity of early rice to climate change and different transplant periods. Sci. Agric. Sin. 2018, 51, 55–65. [Google Scholar]
- Yang, W.T.; Wang, Y.J.; Zhou, H.; Yi, K.X.; Zeng, M.; Peng, P.Q.; Liao, B.H. Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice. Environ. Sci. 2015, 36, 694–699. [Google Scholar]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, A.; Schmuck, G. Leaf Optical Properties Experiment 93 (LOPEX93); Joint Research Centre: Brussels, Belgium, 1995. [Google Scholar]
- Pathak, V.N.; Pandya, M.R.; Shah, D.B. Inter comparison of atmospheric correction models—SACRS2, FLAASH and 6SV using resourcesat-2 AWiFS data. ISPRS—International archives of the photogrammetry. Remote Sens. Spat. Inf. Sci. 2014, 40, 881–884. [Google Scholar]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Liu, Q.; Chen, Z.; Huang, C. Retrieval of winter wheat leaf area index from chinese GF-1 satellite data using the PROSAIL model. Sensors 2018, 18, 1120. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Gu, C.; Du, H.; Mao, F.; Han, N.; Zhou, G.; Xu, X.; Sun, S.; Gao, G. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. Int. J. Remote Sens. 2016, 37, 5270–5286. [Google Scholar] [CrossRef]
- Li, H.; Fan, W.; Yu, Y.; Yang, X. Leaf area index retrieval based on prospect, liberty and geosail models. Sci. Silvae Sin. 2011, 47, 75–81. [Google Scholar]
- Eberly, L.E. Multiple linear regression. Methods Mol. Biol. 2007, 404, 165–187. [Google Scholar]
- Wang, Z.; Wang, L.; Xu, R.; Huang, H.; Wu, F. GIS and RS based assessment of cultivated land quality of Shandong Province. Procedia Environ. Sci. 2012, 12, 823–830. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Lei, Y. Evaluation of cropland productivity in the Hebei Plain via graded multi-year MODIS-NDVI data. Chin. J. Eco-Agric. 2011, 19, 1175–1181. [Google Scholar] [CrossRef]
- Xiao, B. The Cultivated Land Quality Monitoring and Evaluation Technology Based on independent High Resolution of Remote Sensing Research. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, H.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biopyhsical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of soil heavy metal content using hyperspectral data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS Int. J. Geo Inf. 2019, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Xiaoqiao, W.; Fang, W.; Guiping, L.; Chunyun, G. Multifractal analysis of rapeseed spectrum for chlorophyll diagnosis modeling. Spectrosc. Spectr. Anal. 2016, 36, 3657–3663. [Google Scholar]
- Peirs, A.; Schenk, A.; Nicolaï, B.M. Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions. Postharvest Biol. Technol. 2005, 35, 1–13. [Google Scholar] [CrossRef]
- Xiongjie, L.; Jianjun, B.; Jiabao, Z.; Gongyan, L. Study on relationship between rice canopy spectra and LAI. Remote Sens. Technol. Appl. 2011, 19, 24–29. [Google Scholar]
- Li, Y.; Gao, J.; Zha, Y. Impact of rice canopy structure on canopy reflectance spectra. In Remote Sensing and Space Technology for Multidisciplinary Research and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2006. [Google Scholar]
- Zawadzki, J.; Cieszewski, C.J.; Zasada, M.; Lowe, R.C. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fenn. 2005, 39, 599–617. [Google Scholar] [CrossRef] [Green Version]
Growth Stage | Tilling Stage | Jointing to Booting Stage | Heading to Flowering Stage | Milk Ripe and Maturity Stage | |
---|---|---|---|---|---|
Jointing | Booting | ||||
Acquisition date (y/m/d) | 8/3/2015 | 9/17/2015 | 9/26/2015 | 10/15/2015 | 10/24/2015 |
Satellite | Parameter Value | Bands | |||
---|---|---|---|---|---|
Band 1 | Band 2 | Band 3 | Band 4 | ||
GF-1 | Gain | 0.2072 | 0.1776 | 0.177 | 0.1909 |
Bias | 7.5348 | 3.9395 | −1.7445 | −7.2053 |
Model | Parameter | Symbol | Unit | Min | Max |
---|---|---|---|---|---|
PROSPECT | leaf structure index | N | dimensionless | 1.5 | 1.5 |
leaf chlorophyll content a + b | Cab | μg/cm2 | 20 | 80 | |
carotenoid content | Car | μg/cm2 | 8 | 8 | |
brown pigment | Cbrown | μg/cm2 | 0 | 0 | |
water content | Cw | g/cm2 | 0.005 | 0.005 | |
dry matter content | Cm | μg/cm2 | 0.015 | 0.015 | |
SAIL | leaf area index | LAI | m2/m2 | 0.05 | 7 |
hot parameter | Hspot | m2/m2 | 0.2 | 0.2 | |
leaf angle distribution | LAD | ° | 20 | 50 | |
diffuse reflection coefficient | Diff | fraction | 0.1 | 0.1 | |
soil coefficient | ρsoil | dimensionless | 0.1 | 0.1 | |
Sun zenith angle | SZA | ° | 30 | 30 | |
view zenith angle | VZA | ° | 0 | 0 | |
relative azimuth angle | RAA | ° | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Peng, Y.; Liu, S.; Liu, Z.; Wang, G.; Zhu, A.-X.; Hu, Y. The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images. Sensors 2019, 19, 4937. https://doi.org/10.3390/s19224937
Xia Z, Peng Y, Liu S, Liu Z, Wang G, Zhu A-X, Hu Y. The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images. Sensors. 2019; 19(22):4937. https://doi.org/10.3390/s19224937
Chicago/Turabian StyleXia, Ziqing, Yiping Peng, Shanshan Liu, Zhenhua Liu, Guangxing Wang, A-Xing Zhu, and Yueming Hu. 2019. "The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images" Sensors 19, no. 22: 4937. https://doi.org/10.3390/s19224937
APA StyleXia, Z., Peng, Y., Liu, S., Liu, Z., Wang, G., Zhu, A. -X., & Hu, Y. (2019). The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images. Sensors, 19(22), 4937. https://doi.org/10.3390/s19224937