An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes
Abstract
:1. Introduction
2. Device Design and Processing
3. Device Characterization
4. Module Design and Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sang, L.; Liao, M.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors from thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Genicom Co. Available online: http://www.geni-uv.com/ (accessed on 3 May 2019).
- Zhang, Y.; Shen, S.-C.; Kim, H.J.; Choi, S.; Ryou, J.-H.; Dupuis, R.D.; Narayan, B. Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett. 2009, 94, 221109. [Google Scholar] [CrossRef]
- Pereiro, J.; Rivera, C.; Navarro, A.; Munoz, E.; Czernecki, R.; Grzanka, S.; Leszczynski, M. Optimization of InGaN–GaN MQW Photodetector Structures for High-Responsivity Performance. IEEE J. Quantum Electron. 2009, 45, 617–622. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Yeh, P.S.; Huang, Y.-H.; Chen, Y.-T.; Huang, C.-W.; Lin, C.J.; Yeh, W. High Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing. IEEE Photon. Technol. Lett. 2016, 28, 605–608. [Google Scholar] [CrossRef]
- Mouillet, R.; Hirano, A.; Iwaya, M.; Detchprohm, T.; Amano, H.; Akasaki, I. Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Jpn. J. Appl. Phys. 2001, 40, L498–L501. [Google Scholar] [CrossRef]
- Lee, M.L.; Sheu, J.K.; Shu, Y.-R. Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett. 2008, 92, 053506. [Google Scholar] [CrossRef]
- Yang, W.; Nohava, T.; Krishnankutty, S.; Torreano, R.; McPherson, S.; Marsh, H. High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 1998, 73, 978–980. [Google Scholar] [CrossRef]
- Chang, S.J.; Lee, M.L.; Sheu, J.K.; Lai, W.C.; Su, Y.K.; Chang, C.S.; Kao, C.J.; Chi, G.C.; Tsai, J.M. GaN metal–semiconductor–metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts. IEEE Electron. Device Lett. 2003, 24, 212–214. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Weng, W.-Y.; Chang, S.-J.; Hua, Y.-F.; Chiu, C.-J.; Hsueh, T.-J.; Wu, S.-L. InGaN/GaN Multiquantum-Well Metal-Semiconductor-Metal Photodetectors With Beta-Ga2O3 Cap Layers. IEEE Sens. J. 2013, 13, 1187–1191. [Google Scholar] [CrossRef]
- Shen, S.-C.; Zhang, Y.; Yoo, D.; Limb, J.-B.; Ryou, J.-H.; Yoder, P.D.; Dupuis, R.D. Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD. IEEE Photon. Technol. Lett. 2007, 19, 1744–1746. [Google Scholar] [CrossRef]
- Shen, S.-C.; Kao, T.-T.; Kim, H.-J.; Lee, Y.-C.; Kim, J.; Ji, M.-H.; Ryou, J.-H.; Detchprohm, T.; Dupuis, R.D. GaN/InGaN avalanche phototransistors. Appl. Phys. Express 2015, 8, 032101. [Google Scholar] [CrossRef]
- Chang, S.J.; Ko, T.K.; Su, Y.K.; Chiou, Y.Z.; Chang, C.S.; Shei, S.C.; Sheu, J.K.; Lai, W.C.; Lin, Y.C.; Chen, W.S.; et al. GaN-Based p-i-n Sensors with ITO Contacts. IEEE Sens. J. 2006, 6, 406–411. [Google Scholar] [CrossRef]
- Lin, J.C.; Su, Y.K.; Chang, S.J.; Lan, W.H.; Chen, W.R.; Huang, K.C.; Cheng, Y.C.; Lin, W.J. Low Dark Current GaN p–i–n Photodetectors With a Low-Temperature AlN Interlayer. IEEE Photon. Technol. Lett. 2008, 20, 1255–1257. [Google Scholar] [CrossRef]
- Butun, B.; Tut, T.; Ulker, E.; Yelboga, T.; Ozbay, E. High-performance visible-blind GaN-based p-i-n photodetectors. Appl. Phys. Lett. 2008, 92, 033507. [Google Scholar] [CrossRef]
- Su, Y.K.; Lee, H.C.; Lin, J.C.; Huang, K.C.; Lin, W.J.; Li, T.C.; Chang, K.J. In0.11Ga0.89N-based p-i-n photodetector. Phys. Stat. Sol. C 2009, 6, S811–S813. [Google Scholar] [CrossRef]
- Hou, J.-L.; Chang, S.-J.; Chen, M.-C.; Liu, C.H.; Hsueh, T.-J.; Sheu, J.-K.; Li, S. GaN-Based Planar p-i-n Photodetectors With the Be-Implanted Isolation Ring. IEEE Trans. Electron. Dev. 2013, 60, 1178–1182. [Google Scholar] [CrossRef]
- Wang, G.; Lu, H.; Chen, D.; Ren, F.; Zhang, R.; Zheng, Y. High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates. IEEE Photon. Technol. Lett. 2013, 25, 652–654. [Google Scholar] [CrossRef]
- Rivera, C.; Pau, J.L.; Naranjo, F.B.; Muñoz, E. Novel photodetectors based on InGaN/GaN multiple quantum wells. Phys. Stat. Sol. (A) 2004, 201, 2658–2662. [Google Scholar] [CrossRef]
- Limb, J.B.; Yoo, D.; Ryou, J.H.; Lee, W.; Shen, S.C.; Dupuis, R.D.; Reed, M.L.; Collins, C.J.; Wraback, M.; Hanser, D.; et al. GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2006, 89, 011112. [Google Scholar] [CrossRef]
- McIntosh, K.A.; Molnar, R.J.; Mahoney, L.J.; Lightfoot, A.; Geis, M.W.; Molvar, K.M.; Melngailis, I.; Aggarwal, R.L.; Goodhue, W.D.; Choi, S.S.; et al. GaN avalanche photodiodes grown by hydride vapor-phase epitaxy. Appl. Phys. Lett. 1999, 75, 3485–3487. [Google Scholar] [CrossRef]
- Yang, B.; Li, T.; Collins, C.J.; Wang, S.; Carrano, J.C.; Dupuis, R.D.; Campbell, J.C.; Schurman, M.J.; Ferguson, I.A. Low Dark Current GaN Avalanche Photodiodes. IEEE J. Quantum Electron. 2000, 36, 1389–1391. [Google Scholar] [CrossRef]
- Verghese, S.; McIntosh, K.A.; Molnar, R.J.; Mahoney, L.J.; Aggarwal, R.L.; Geis, M.W.; Molvar, K.M.; Duerr, E.K.; Melngailis, I. GaN Avalanche Photodiodes Operating in Linear-Gain Mode and Geiger Mode. IEEE Trans. Electron. Devices 2001, 48, 502–511. [Google Scholar] [CrossRef]
- Carrano, J.C.; Lambert, D.J.H.; Eiting, C.J.; Collins, C.J.; Li, T.; Wang, S.; Yang, B.; Beck, A.L.; Dupuis, R.D.; Campbell, J.C. GaN avalanche photodiodes. Appl. Phys. Lett. 2000, 76, 924–926. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, L.; Wu, X.; Hao, Z.; Sun, C.; Xiong, B.; Luo, Y.; Han, Y.; Wang, J.; Li, H.; et al. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl. Phys. Lett. 2016, 109, 241105. [Google Scholar] [CrossRef]
- Kao, T.-T.; Kim, J.; Detchprohm, T.; Dupuis, R.D.; Shen, S.-C. High-responsivity GaN/InGaN heterojunction phototransistors. IEEE Photon. Technol. Lett. 2016, 28, 2035–2038. [Google Scholar] [CrossRef]
- Yeh, P.S.; Hsu, T.-P.; Chiu, Y.-C.; Yang, S.; Wu, C.-Y.; Liou, J.-S. III-nitride phototransistors fabricated on a light-emitting-diode epitaxial wafer. IEEE Photon. Technol. Lett. 2017, 29, 1679–1682. [Google Scholar] [CrossRef]
- Jiang, Z.; Atalla, M.R.M.; You, G.; Wang, L.; Li, X.; Liu, J.; Elahi, A.M.; Wei, L.; Xu, J. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. Opt. Lett. 2014, 39, 5657–5660. [Google Scholar] [CrossRef]
- Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Wong, K.K.Y.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [Google Scholar] [CrossRef]
- Li, K.H.; Cheung, Y.F.; Fu, W.Y.; Wong, K.K.Y.; Choi, H.W. Monolithic integration of GaN-on-sapphire light-emitting diodes, photodetectors, and waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 3801706. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Cai, W.; Gao, X.; Yang, Y.; Yuan, J.; Shi, Z.; Zhu, H. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett. 2016, 108, 162102. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, X.; Yuan, J.; Zhang, S.; Jiang, Y.; Zhang, F.; Jiang, Y.; Zhu, H.; Wang, Y. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics. Appl. Phys. Lett. 2017, 111, 241104. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Jiang, H.; Lau, K.M. Monolithic integration of III-nitride voltage controlled light emitters with dual-wavelength photodiodes by selective-area epitaxy. Opt. Lett. 2018, 43, 3401–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, M.; Ide-Ektessabi, A.; Nomura, H.; Yasui, N. Characteristics of indium tin oxide thin films prepared using electron beam evaporation. Thin Solid Films 2004, 447–448, 115–118. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-C.; Yeh, P.S.; Wang, T.-H.; Chou, T.-C.; Wu, C.-Y.; Zhang, J.-J. An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors 2019, 19, 4938. https://doi.org/10.3390/s19224938
Chiu Y-C, Yeh PS, Wang T-H, Chou T-C, Wu C-Y, Zhang J-J. An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors. 2019; 19(22):4938. https://doi.org/10.3390/s19224938
Chicago/Turabian StyleChiu, Yu-Chieh, Pinghui Sophia Yeh, Tzu-Hsun Wang, Tzu-Chieh Chou, Cheng-You Wu, and Jia-Jun Zhang. 2019. "An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes" Sensors 19, no. 22: 4938. https://doi.org/10.3390/s19224938
APA StyleChiu, Y. -C., Yeh, P. S., Wang, T. -H., Chou, T. -C., Wu, C. -Y., & Zhang, J. -J. (2019). An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors, 19(22), 4938. https://doi.org/10.3390/s19224938