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Abstract: Human–Robot interaction represents a cornerstone of mobile robotics, especially within
the field of social robots. In this context, user localization becomes of crucial importance for the
interaction. This work investigates the capabilities of wide field-of-view RGB cameras to estimate the
3D position and orientation (i.e., the pose) of a user in the environment. For that, we employ a social
robot endowed with a fish-eye camera hosted in a tilting head and develop two complementary
approaches: (1) a fast method relying on a single image that estimates the user pose from the detection
of their feet and does not require either the robot or the user to remain static during the reconstruction;
and (2) a method that takes some views of the scene while the camera is being tilted and does
not need the feet to be visible. Due to the particular setup of the tilting camera, special equations
for 3D reconstruction have been developed. In both approaches, a CNN-based skeleton detector
(OpenPose) is employed to identify humans within the image. A set of experiments with real data
validate our two proposed methods, yielding similar results than commercial RGB-D cameras while
surpassing them in terms of coverage of the scene (wider FoV and longer range) and robustness to
light conditions.

Keywords: human body pose estimation; 3D computer vision; camera pose calibration; human–robot
interaction; OpenPose; RGB-D cameras

1. Introduction

Human–Robot Interaction (HRI) is a key problem when a mobile robot has to share a common
environment with humans. HRI has been widely investigated and developed during the last decades,
producing several works that have mainly focused on proximate and direct interactions [1]. In this
context, the desirable robot capabilities include recognizing gestures [2], understanding non-verbal
cues during conversations [3] or approaching people in a natural manner [4,5]. Before starting any
of these interaction tasks, the robot needs to locate the human with respect to itself, i.e., the relative
position and orientation between both of them must be determined. This becomes a challenging
chore due to several factors, including the presence of multiple humans, occlusions, person-alike
objects (e.g., photos), and the inherent complexity and diverse nature of the human body. Moreover,
the limited computational and sensing resources on-board, as well as the requirements of operating in
real-time and in motion, aggravate the problem.

It is important to clarify that, following the conventional nomenclature in robotics, we employ
the term pose to refer to the position and orientation of a coordinate system (associated to a person,
for example). Besides, the expression human body pose will denote in this work the estimated 3D
coordinates of the joints belonging to a human body. In turn, the 2D projection onto the images of
these coordinates will be denominated by the human skeleton, while the term posture will specify if the
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user is lying down on the floor (horizontal posture) or standing up (vertical posture). As an example of
these concepts, Figure 1 shows a 2D human skeleton extracted by OpenPose displayed on the robot’s
screen, and a 3D human body pose reconstruction within a representation of the environment in front
of the robot.

2D-Human 
Skeleton provided 

by OpenPose

Figure 1. The people detector model identifies the 2D human joints within an image. The proposed
methods reconstruct the human skeleton in 3D-space (human body pose) and provides a complete human
pose (position and orientation).

Previous works have addressed the human pose and human body pose estimation with different
methods and sensors. A common approach is to rely on RGB-D cameras, which simultaneously
provide depth and visual information [6,7] at a low-cost. However, RGB-D cameras suffer from a set of
issues that limit their applicability in real scenes, namely, a narrow field-of-view (FoV) (usually below
60 degrees), a short range of operation (typically under 3.5 m), and unreliable performance under
adverse lighting conditions (particularly sunlight). Although the FoV limitation can be mitigated by
mounting several cameras on the robot, the infrared patterns they project on the scene may interfere
with each other [8]. To alleviate this, special attention has to be paid to their spatial arrangement, even
setting up special hardware configurations [9]. All these limitations eventually preclude their usage
for human detection in non-controlled situations (as, for instance, mobile robot navigation within
homes), and might confine them to applications that restrict the human presence to a specific, relatively
small area.

In this paper, we investigate the use of a wide FoV RGB camera for determining the 3D position
of the joints of a human body (human body pose), and estimating from them the human 3D position
and orientation (human pose). Due to relying on RGB images, our proposed system overcomes all
the above-mentioned issues presented by RGB-D cameras, and provides a mobile robot with the
ability of, first, robustly detecting a person while moving, and then determining their pose within the
environment (refer to Figure 1). This two-stage pipeline allows the robot to properly generate a suitable
navigation path towards the users as well as to establish a social interaction with them. Furthermore,
our proposal is able to estimate the user location even if they are either standing up or lying on the
floor, which is a crucial situation in certain robotic applications such as robots assisting elders at home.
Specifically, we employed the Giraff mobile robot [10], which is equipped with a controlled tilting
head, as shown in Figure 2. This allowed us to benefit from some of the stereo vision advantages.
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As explained below, employing a moving camera demands a precise estimation of the sequence
of camera poses with respect to the robot. Given the particular motion that the on-board camera
undergoes, dissimilar to the standard configuration of a fixed attachment to the robotic platform,
a specific section for camera extrinsic calibration is included in this paper.

In this work, the human detection task is carried out by a well-known approach based on Deep
Convolutional Neural Network (DCNN) called OpenPose [11], which is able to detect multiple 2D
humans within an image. Please note that OpenPose only provides 2D image coordinates, i.e., the
skeleton of the detected humans, and not the 3D position and orientation of the detected person,
even though the name includes the term pose. Built upon this detection system, we propose two
complementary methods for the reconstruction of the human 3D pose:

• Single-View. The first method requires only a single image of the scene (provided that the human
feet are visible) to reconstruct a simplified, planar version of the detected human’s skeleton. Since
it is fast, this method performs well even if the robot and/or users are moving, allowing its use
during normal robot navigation.

• Multi-View. This second approach is more precise and can be applied with the user in any
arbitrary bodily position. It uses several (at least two) views of the scene taken from different
angles of the tilting robot head so that both the user and the robot must remain reasonably still
during the acquisition time (≈2 s). It is important to highlight that, in this case, and due to
the particular camera setup and motion, common epipolar constraints for stereo vision are not
applicable. Thus, this paper also contributes with an implementation of specific 3D reconstruction
equations, as well as with the exploitation of the body structure to improve the obtained results.

These two methods were validated both in a static configuration and with moving users in
an indoor environment (see Section 5), yielding accurate results comparable to those that can be
directly obtained with RGB-D-based cameras, while significantly extending the applicability, versatility
and robustness of the detection process thanks to the above-mentioned advantages of RGB cameras in
terms of FoV, maximum range and lighting conditions.

Y
Z

X

Camera

Tilting 
motion

Head

Camera 
motion

Figure 2. Giraff service mobile robot endowed with a tilting camera employed during this work. The
maximum, positive tilt angle is depicted: it can be seen how the principal translation occurs along the
z-axis of the camera frame.
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2. Related Work

Many previous works have addressed human pose and human body pose reconstruction based on
different strategies. In this section, we summarize the existing image-based approaches, categorizing
them as: (i) probabilistic approaches; (ii) direct user-supplied information; (iii) non-euclidean
representations; (iv) motion-based approaches; and (v) ConvNet architectures and training methods.
The work in [12] provides a comprehensive collection of methods for human body pose estimation
based on monocular images.

Probabilistic approaches rely on the analysis of a sequence of images. Thus, in [13], a hybrid
Monte Carlo filter is employed to estimate the 3D shape of a moving person from 2D image markers.
A three-stage approach based on previous works and a Bayesian formulation is proposed in [14] for
a robust 3D pose tracking and recovery. However, limited on-board resources and restrictive time
requirements preclude their usage on mobile robots.

Other works employ prior and/or user-supplied information about the person in order to
estimate or initialize the body pose. The work in [15], for example, recovers the 3D human body pose
by considering the foreshortening of the limbs, whose lengths are given as inputs for the algorithm.
In turn, in [16], these limb lengths are predicted based on the known human height and a gender-height
indexed database. The initial pose is created based on user-supplied joints observations and further
optimized with a parametric 3D body model. The proposal in [17] requires the user to manually
label the 2D joint locations, estimating the sparse model for these observations from known limb
proportions. These specifications about physical attributes limit the generalization and unsupervised
utilization of the systems. Furthermore, scenarios with more than one person are not considered,
which is a situation that a mobile robot regularly has to deal with.

Embedded spaces that encode the human skeleton structure have been also proposed to recover
an anatomically feasible human body. The works in [18,19], for instance, model shape deformations as
non-Euclidean representations, adding the latter the viewpoint to the model. Although the obtained
human bodies fulfill kinematic and anatomic constraints, these approaches do not provide the 3D pose
with respect to the camera, but only the body configuration and deformation, which is not the main
scope of our project.

There exists another set of approaches that employs and computes the human motion as part of
body estimation. For instance, Urtasun et al. [20] incorporated a strong motion model to generate a full
3D reconstruction, for both monocular and multi-view tracking, although the number of examples
needed to create the database employed to build the model becomes the main limitation. In turn,
the work in [21] proposes an optical flow approach to recover human motion from monocular images
and a human body model. The motion is estimated by minimizing the error between the computed
flow and an artificial flow renderer. Although the authors obtained appealing results, motion-based
approaches are focused on human bodies that must be estimated through time, rarely providing the
pose with respect to the camera, a major goal in our project. Additionally, temporal information is
avoided in this work in order to endow the system with time-independent properties.

Finally, in recent years, we are witnessing amazing results in the computation of human skeletons
and body 3D reconstructions upon techniques based on Deep Neural Networks (DNN) In [22], for
example, a multi-stage DNN-based regression to Cartesian joints coordinates is formulated and tested,
while, in [23], a hybrid architecture for monocular images that is based on a Convolutional Neural
Network and a Markov Random Field inspired by a Spatial-Model is proposed. However, since these
methods require a large amount of training data, they are usually confined to constrained environments
and situations [24]. On the other hand, the work in [25] combines 2D images and 3D motion data in
order to generate a large training set which allows to train an end-to-end CNN 3D pose classifier.

Following a different strategy, the method of Martinez et al. [26] decouples the 3D pose estimation
into two stages: a 2D pose estimation followed by a 3D pose estimation from the 2D joint detection.
Their work focuses on the second stage and shows that inferring 3D joints from 2D projections can
be solved with a relatively low error rate. A similar approach to our proposal is described in [27],
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where the authors presented a sparse multi-view system where the human body joint detection is
also carried out by OpenPose. For that, several images (at least three) taken from very different points
of views of the scene and a two-stage assembling method that selects the correct 3D human body
pose from thousands of pose seeds combined according to joint semantic restrictions are employed.
Unfortunately, the total running time per estimation is reported to be 14 s. In comparison to our
method, the cameras’ layout for this approach becomes unsuitable for many situations such as, for
example, applications involving mobile robots and/or outdoor environments (at least without any
additional hardware). Besides, the excessive running time precludes its employment in real time
scenarios.

Although previous works have obtained interesting results, the elevated computational cost
(e.g., workstations with up to 12 CPU cores are employed in some of them) excludes a mobile robot
(with usually 1 CPU) or even a simple distributed system as the platform target for the implementation.
Additionally, multi-view systems, such as the one in [27], often require many different and sparse
views, also avoiding their usage with mobile robots, which are usually endowed with only a few
cameras (or even just one) with similar positions on the robot.

In contrast to the works described in this section, our proposed estimation system is a lightweight
method whose major computational cost is the inference of the people detector model, being suitable
for the embedded computer in the robot or a simple distributed system. Besides, no prior knowledge
about the humans (or their motion), or any user-supplied information is required, allowing both the
automation and unsupervised use of the system. Furthermore, the estimation of multiple humans’
poses at once is also possible, even if they are lying on the floor. Finally, our system is endowed with
time-independent properties, reducing the delay for the reconstruction and allowing the robot to start
and finish the estimation at any time.

3. Camera Extrinsic Calibration

This section first briefly describes the employed robotic platform and then introduces the proposed
camera extrinsic calibration method.

3.1. Robotic Platform

The service robot Giraff [10] (Figure 2) has been specifically designed for HRI with elders and
progressively developed within a sequence of the European projects AAL [28], GiraffPlus [29] and
MoveCare [30]. The current robot’s hardware consists of a monitored wheeled platform with two
casters and two independent wheels, an on-board computer and a tilt-adjustable head (providing a pitch
rotation), where a 5 Mpx fish-eye webcam is placed. A 2D laser rangefinder (Hokuyo URG-04LX-UG01)
was added to enhance its localization and autonomous navigation capabilities.

Our work exploits one of the possible applications of the tilting camera, whose driver allows us
to set the inclination angle within a certain range. Feedback from the motor controllers is not available;
hence, there is no guarantee that its final position is reliably known. Therefore, we implement
a refinement and confirmation stage that employs a set of features detected on the robot platform itself,
as will be explained next. Figure 2 also depicts the Giraff robot with the tilting head and the camera,
where their associated reference systems are marked, and the position of the camera for the maximum
positive tilt angle is shown.

3.2. Camera Pose Estimation

To determine the user’s position with respect to the robot, we first need to estimate the pose
(i.e., position and orientation) of the camera with respect to the robotic platform. For that, we compute
the different camera poses (represented as rigid transforms in SE(3), Special Euclidean Group) with
respect to a fixed reference frame (called here floor frame) that lies on the floor or on a parallel plane XZ
with the positive y-axis pointing upwards. Although there are infinite reference systems that fulfill
these constraints, any of them provide us with the needed information:
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• A rotation transformation R that aligns the camera’s y-axis with the y-axis of the floor frame, so
that the camera’s XZ plane becomes parallel to its correspondent in the floor frame.

• The y-coordinate of the camera frame with respect to the floor plane, that is, the distance (or height)
from the floor to the camera center.

From this information, we build a rigid body transformation P that can be expressed as the 4× 4
matrix in Equation (1), where R ∈ SO(3) and t ∈ R3:

P =

(
R −Rt
0 1

)
∈ SE(3) (1)

Thus, to estimate a general ith camera pose P̂i = [Ri|ti], given a set of known 3D points {Xk}
with respect to the floor frame and their correspondent 2D projections {zki} measured on a single
image, we minimize the energy function in Equation (2) with respect to P̂i using the conjugate gradient
optimization method, with the Huber loss function (ρ) in an approximation of the SE(3) as the product
SO(3) × R3, which allows avoiding the singularity related to rotations with Euler angles [31].

φ(P̂i) =
1
2 ∑

k
ρ(||z̃ki − P̂iX̃k||2) (2)

A chessboard pattern with known size lying on a table (or on a parallel plane to the floor), like the
one shown in Figure 3a, is employed to generate the 3D–2D correspondences. We set one of its corners
as the origin of the floor frame and we define the columns and rows of the pattern as the directions of
the x- and z-axes of this reference frame, respectively. The corners of the chessboard are then identified
and employed as features for performing camera calibration. This process is repeated for a discrete set
of tilting angles {ψi} that covers the complete range the motor driver allows, storing the obtained P̂i
matrices so that they can be later retrieved, leading to a map {ψi} −→ {P̂i}.

Nevertheless, this mapping is not enough since the positioning of the camera by the motor driver
is not reliable. Therefore, we also extract a set of visual features Fi from the captured image at each
camera pose that is then employed to retrieve the transformation matrix P̂i, extending in this way the
above-mentioned mapping so that {ψi, Fi} −→ {P̂i}.

Floor

TablePattern

Corners

Head Frame Robot Base

(a)

(b) (c)

Floor
Frame

Figure 3. (a) Chessboard pattern employed for the camera extrinsic calibration and floor frame in which
the camera pose is defined; and (b,c) set of detected features that allows retrieving the camera pose
during normal operation: (b) head and (c) base.
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To extract these visual features, we make use of the robot structure by finding two distinctive sets
of attributes:

• Base: The image coordinates of the robot’s action buttons on the base are stored as the visual
feature vector for each camera pose. This is employed for positive camera rotations, since only
the robot base is visible in the image, as shown in Figure 3c.

• Head Frame: The head frame appearance is highly changeable during the camera movements,
which precludes employing a fixed template as before in order to extract the features. For this
reason, we employ the angles between the head frame and the image borders to build the feature
vector. This is done for negative rotations (see Figure 3b).

During normal operation, we compute Fi in five consecutive images in order to increase their
accuracy. Additionally, the tilt angle corresponding to the recovered camera pose is compared with
the tilt angle that was commanded to the head motor, rejecting the retrieved pose if the error between
these two values is greater than a certain threshold. In this case, the tilt command is re-sent and the
feature detection algorithm is run again. This process is repeated until the camera pose is successfully
retrieved or a fixed, small number of iterations is reached. This way, we are able to detect both incorrect
camera motions and unreliable feature detection.

4. Human Body Pose Estimation

In this work, we propose a human body pose estimation algorithm that follows two consecutive
stages: (1) an image-based human body identification; and (2) a 3D body part pose estimation. For the
first stage, we employ OpenPose [11], an efficient method for multi-person 2D pose estimation. It infers
the human figure in the image and returns a set of keypoints, joints or body parts, which conform to
a simplified 2D human skeleton in the image, along with a confidence value for each part.

The second stage aims to position these keypoints in the space, obtaining a simplified
3D human body representation. Two approaches are presented for this second task, namely
Single-View (Section 4.1) and Multi-View (Section 4.2). As further described below, the former requires
just an image to generate an approximation of the human body in 3D, increasing the speed of the
estimation and allowing both the human and the robot to be in motion during its process. As
a constraint, this approach needs the human’s feet to be visible in the image. The latter, in turn,
requires at least two views of the scene and the human to remain static, but produces results without
any prior restriction on the human’s bodily position. It is important to highlight, however, that the aim
of this work is to obtain an accurate estimation of the human pose but not a precise 3D reconstruction
of the human skeleton.

4.1. Single-View Estimation

This method estimates the whole human body pose in the space employing a single image and
the body parts extracted from it. Our approach is based on the mild assumption that the human feet
(parts identified by OpenPose) are in contact with the floor, projecting and simplifying the human body
as a plane. We must add that this method is valid even when the human is lying on the floor, making
our work extensible to these situations. However, the feet must have been detected to be able to apply
this approach while other, more complex human bodily positions such as sitting or bending generate
worse reconstructions. These situations, however, can be handled with our Multi-View approach.

The proposed algorithm is composed of four stages: (i) feet position estimation; (ii) human posture
identification, which simplifies the estimation of the 3D body pose; (iii) body parts triangulation;
starting from the feet; and (iv) human orientation estimation.

Feet Position Estimation. Assuming that the feet are in contact with the floor, from the
homogeneous coordinates of the feet within the camera sensor q̃i = [qxi : qyi : qzi], and the
perpendicular distance from the floor to the camera frame Hc, we can triangulate their 3D position Qi
with respect to the camera reference system by applying:
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Qi = Hc
1

qyi
q̃i (3)

To obtain the value for Hc, we first retrieve the camera pose P̂i = [Ri|ti], as explained in Section 3.2.
The second component of the translation vector ti provide us the value of Hc, while the rotation matrix
Ri is employed in the following stages.

Human Posture Identification. After computing the feet 3D positions Qi, we infer the human’s
posture (horizontal or vertical) with respect to the camera frame by studying the dispersion of the
detected joints coordinates (except the arms, since they do not provide with useful information about
the human posture) along the xi and y-axes of the camera frame. The value of the maximum dispersion
informs us about the dominant dimension, and thus, the human posture with respect to the camera
frame.

3D Body Parts Triangulation. Now, from this information, we consider two situations: the
person is standing up (vertical posture) or lying down (horizontal posture). For the former, we simplify
the human body by projecting it over the plane Z = Z0, with Z0 being a constant value computed
as the mean of the feet Z-coordinates. The 3D body parts Qi are then computed employing their
correspondent image observations q̃i applying Equation (4). In turn, if the user has a horizontal
orientation, we simplify the human body by projecting it over the floor plane Y = 0. Thus, the 3D
body parts can be computed by applying Equation (3). Note that this reconstruction does not depend
on the feet identification, removing this requirement in such situations.

Qi = Z0
1

qzi
q̃i (4)

Finally, it has to be noted that, to employ the former Equations (3) and (4), the body parts
observations q̃i need to be referred to a coordinate system whose XZ plane is parallel to the floor.
At this point, the rotation matrix Ri from the camera pose (refer to Section 3.2) provides us with the
needed transformation.

Human Orientation Estimation. Finally, to estimate the orientation, we project the human torso
over the floor (Y = 0), computing the angle between the shoulders and the neck projections. The errors
in the detection and projection of the body parts, missing joints, and incoherent results are filtered out
by employing the detected hip joints of the human, the torso appearance within the image and other
physical human constraints. Additionally, these considerations allow us to infer the 3D position of
a missing shoulder, if needed, and to improve the human reconstruction by imposing the computed
orientation to the upper-body joints.

This algorithm is also employed to estimate the human orientation in the Multi-View method,
since it does not depend on either the human feet or their identification.

4.2. Multi-View Estimation

This second method is able to locate the human even when the feet have not been detected
and without any prior information about any body part or simplification about the human body.
The algorithm requires: (i) more than one view of the scene; and (ii) the person to remain static at
the same position while the images are being captured. To obtain the different views with only one
camera, this is moved, as shown in Figure 2.

Due to the inherent noise in the joints identified by OpenPose, we detect them in a set of images
(which are only employed for the human detection, not for the body reconstruction) and weight each
joint position by its associated confidence value provided by the detector. This leads us to a better
estimation of the body parts position in the image. These joints are then matched within another set of
images captured for body reconstruction through the procedure described in this section.

To estimate the correspondences and obtain the 3D associated points, we rely on the cameras’
relative pose through the epipolar geometry. The ideal stereo camera configurations (e.g., [32–34]) have
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baselines where the primary component is in either the x- or y-axis direction. However, the arc-like
movement of our tilting camera generates a translation vector with the z-axis as the predominant
direction, and also with a rotation in the pitch angle, therefore positioning the epipoles inside both image
planes. This configuration impedes the usage of the well-known and optimized algorithms designed
to find stereo correspondences and to estimate their 3D projections from their observations [35,36].
To overcome this issue, we adapt and implement the standard procedure to our scenario following
three stages: (i) image rectification; (ii) correspondence problem; and (iii) triangulation.

Image Rectification. The rotation and perspective change between two images in our system
hinders the correspondence problem. The usual procedure consists of applying a planar rectification
to both images in order to translate the epipoles to the infinity in the X or Y direction, leading to
horizontal epipolar lines. Since this method only works when the original epipoles are further away
from the image planes, it is not suitable for our configuration. Therefore, we implement and employ
a rectification method based on two steps:

1. Initial rotation. Once we have a pair of images taken from two different camera poses, we first
transform the second image by applying the rotation matrix Ri between the cameras, aligning this
way both reference systems. This matrix generates a linear transformation through the expression:
Hi = KRiK−1, where K is the camera’s intrinsic calibration matrix, which can be directly applied
to the image. However, this alignment presents small errors that have to be corrected by finding
a second (residual) rotation that completely matches the axes.

2. Residual rotation. The residual rotation matrix RR aligns both epipoles e and e′, so that RRe′ =
e [32,37], and it is computed based on the homogeneous coordinates of the epipoles as:

RR = I + [e′ × e]x + [e′ × e]2x
1− e′Te
||e′ × e||22

, (5)

where I denotes the square identity matrix of size 3 and [ ]x stands for the skew-symmetric
cross-product matrix equivalent for [32]. Again, a new linear transformation HRR is applied to
the image. Note that Equation (5) is the Rodrigues formula [32] for the non-unit rotation vector
[e′ × e] with rotation angle e′Te.

Figure 4a shows an example of this process (left) before and (right) after the image rectification.
Additionally, based on the epipole coordinates and the principal translation bz (known from the

cameras’ poses), we re-refine the baseline as: b = [bx, by, bz]T = K−1e = K−1e′. This calculation allows
us to obtain a baseline that is coherent with the appearance of the images.

Correspondence Search: Once the images are rectified, the detected joints are matched between
views by employing the Normal Cross-Correlation (NCC) as a measurement of their similarity,
introducing a minimum threshold ξ = 0.9 to ensure correct correspondences, and applying the
epipolar constraints associated to the epilines. Since the epipoles lay within the image planes, epilines
are orientated [38]. Thereby, matching points must be disposed on the same zone of the epiline in
order to avoid 3D-reconstructed points with negative depth. This constraint reduces the number of
possible corresponding candidates as well as the computation time.

However, the corresponding points for the humans’ joints are not easy to localize and the matching
process usually fails, losing track of the joint and, hence, its reconstruction. Therefore, to increase
the number of observable points, we include the limbs in the process. A limb is defined as the solid
rigid part linking two joints, which can be simplified by a 3D line with an associated 2D projected
line in the image. In this sense, a human is depicted as a set of articulated limbs, forming a skeleton in
the image. Given two observations corresponding to two joints belonging to the same limb, all the
points from one observation to the other that follow the connection line between them are considered
as observations of the limb’s points. An example of this can be found in Figure 4b (left), where the
detected skeleton is represented along with a set of points belonging to a certain limb, while the right
image shows their corresponding epipolar lines.
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Furthermore, given two connected limbs, their intersection point corresponds to the joint, both in
3D and in the image. With this approach, not only we increase the number of available observations,
but we also recover a missing joint between two limbs by intersecting them. To decouple possible
errors, we search for each correspondence independently using RANSAC to compute the associated
line equation and to avoid outliers. Additionally, we estimate the 2D intersection point q for a set
L of n limbs projections (li), i.e., for the set L = {l}i=1,...,n in order to constrain the subsequent 3D
reconstruction, as explained next.

Original View 2 Rectified View 2

Human skeleton
(View 1)

Correspondence 
problem (View 2)

(a)

(b)

Figure 4. (a) The original second view is rectified by applying two consecutive rotations. (b) The joints
(circles) belonging to the human skeleton provided by OpenPose in the first view are searched within
the second one applying epipolar constraints (lines).

Due to detection errors, a single intersection point does not exist. Thus, we compute the closest
point following a least-squares approach by applying Equation (6) [32], where each limb projection li
has been expressed as its direction vector v̂i and a point belonging to the limb pi.

q =

 ∑
li=(v̂i ,pi)∈L

(I− v̂iv̂i
T)

−1 ∑
li=(v̂i ,pi)∈L

(I− v̂iv̂i
T)pi

 (6)

Triangulation: Once the corresponding points have been found, the 3D point associated with
these observations can be triangulated. Once again, the standard equations derived for ideal
configurations cannot be employed and they require a modification to deal with a more general
camera configuration where the three baselines are not negligible (i.e., bx 6= 0, by 6= 0 and bz 6= 0),
leading to the following expression for the 3D point Q = [X, Y, Z]T :

[X, Y, Z]T =

[
xZ, yZ,

bx + by− bz(x′ + y′)
(x− x′) + (y− y′)

]T
, (7)

where x = [x : y : 1]T and x′ = [x′ : y′ : 1]T are the corresponding observations referred to the sensor
planes in homogeneous coordinates for the first and second images, respectively.

The 3D points are then filtered out to ensure positive depth and results coherent with the scene as,
for example, the points belonging to the same limb are forced to be aligned in space, following the
associated 3D line. RANSAC is employed again to compute this 3D line. Finally, the 3D position of
a joint is computed as the intersection between: (i) all the limbs that contain it; (ii) the ray associated
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with the corresponding observation identified by OpenPose; and (iii) the ray associated with the 2D
intersection point obtained during the correspondence problem.

I

Reconstructed Limbs

2D Intersection

Identified Joint

Recovered Joint

Figure 5. 3D limbs in red, green and blue recovered based on their associated 3D points (same color).
Their projection onto the image plane I allow us to compute the nearest point to all of them (cyan
circle), which is employed along with the identified joint (purple circle) to retrieve the aforementioned
3D point.

This intersection problem is defined within the bounds imposed by the limbs and the identified
joint coordinates. To illustrate this, refer to Figure 5, which represents three limbs (red, green and blue)
obtained from the points belonging to them (points with the same color code) and their projection onto
the image plane I . The purple circle depicts the identified joint by OpenPose, while the cyan one the
2D intersection of all the limbs projections computed during the correspondence problem. The 3D
recovered joint (in orange) is the nearest point in terms of least square distance to all the lines. Finally,
we impose human feasible dimensions by applying a median filter with a threshold of γ = 0.7 m to
the recovered joints.

To increase the correct identification rate, more than two views are employed, since typical camera
movements can leave out of view certain sections of the human body. The final results are merged into
one single body estimation.

5. Experimental Validation

This section presents the validation tests that were carried out to assess the performance of our
proposal. Please note that all our experiments employed real, unique data recorded with our tilting
camera, as there are no publicly available datasets containing this kind of images. This prevented us
from knowing the ground truth position for each body joint (without the employment of any additional
technology). Therefore, in the presented experiments, we only estimated the human pose and not the
full human body pose, although a qualitative body reconstruction (i.e., a skeleton with orientation) is also
shown in the figures for a better understanding.

First, as presented in Section 5.1, we tested the repetitiveness of the camera pose retrieval
system described in Section 3, while the rest of the sections are devoted to the human pose
estimation algorithms and their performance. In these experiments, for the sake of clearness, we
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decoupled the tests for the position (Section 5.2) and for the orientation (Section 5.3). Concretely, as
presented in Section 5.2, we estimated the position of a human through our two proposed methods,
i.e., Single-View and Multi-View (Sections 5.2.1 and 5.2.2, respectively), and compared their results
against an RGB-D based 3D body tracking system. Besides, we applied our Single-View approach to
the special case of humans lying on the floor, which is of particular interest for social robots operating
in elder’s homes. Finally, as presented in Section 5.3, we validated the accuracy of the computed
orientation in three different positions.

As the baseline for evaluating our proposal, we compared our systems with the results obtained
with the SDK provided by the Orbbec Astra RGB-D camera, one of the state-of-the-art sensors for
capturing depth information, which allows detecting and tracking the whole 3D human body in real
time. This camera presents a FoV of 60◦ horizontally and 49.5◦ vertically, with a theoretical optimal
depth range from 0.6 m to 5.0 m [39], as stated in the specifications provided by the manufacturer. In
practice, however, human body detection is only reliable at a maximum distance of 3.5 m. Our tilting
camera, in turn, is a 5 Mpx fish-eye RGB webcam with almost 180◦ of horizontal FoV. Due to its novelty
(the SDK was released in 2018), just a few practical applications [40] explicitly employ this sensor.
However, recently, the work in [41] proved through extensive experimentation that the Orbbec Astra
camera performs similarly to the well-known and accurate Microsoft Kinect sensor [42] (indeed, they
are reported to be interchangeable). The Microsoft Kinect camera, in contrast, has been widely tested in
recent years in many applications, which have been reported elsewhere (e.g., [43–45]). Interestingly,
and as an example of their accuracy in 3D human body estimation, Microsoft Kinect cameras have even
been employed for physical rehabilitation, as described in MIRA [46,47].

5.1. Camera Retrieval

The correct retrieval of the cameras’ poses based on the own robot platform visual features is
essential for this work. To evaluate the repetitiveness of the algorithm, we positioned the camera in
an arbitrary, unknown orientation and retrieve its pose 100 times. Figure 6 presents the confusion
matrix for the estimated and the calibration poses (Calibration # Pose: 0–8 for positive tilt angles and
9–14 for negative). The tilt angles were chosen to increase gradually, hence the near diagonal aspect of
the confusion matrix, while the high repetitiveness of the estimation is represented by the number of
coincident recovered poses (>95 in most of the cases).

Figure 6. Fourteen gradually increasing and unknown poses were retrieved by our algorithm. The
high number of coincidences reported reinforces the repetitiveness of the method.
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5.2. Position

In this section, we first compare the results in the position estimation of our Single-View method
against the 3D human position estimation provided by an Orbbec Astra RGB-D camera, and test
the performance of the proposed method with moving and lying humans (Section 5.2.1). In turn,
Section 5.2.2 shows examples of 3D body reconstructions estimated with our Multi-View algorithm
under challenging configurations, and the mean error for twenty different positions, as will be further
described. Since the experimental setup is the same for both considered human positions, here we
report the results yielded by the Orbbec Astra camera only in for the Single-View approach.

5.2.1. Single-View Method

Three different tests were carried out to assess the Single-View method results for the position
estimation, for both moving and still humans, keeping the robot static in order to simplify the validation.
In Test #1, we compared the accuracy of the recovered human position with our method and the
application provided by [39] for twenty discrete locations uniformly distributed within the overlapping
cameras’ FoV. Test #2, in turn, was an experiment where a person is following a known, one-dimensional
path. In Test #3, a similar experiment was carried out but with a rectangular path this time.
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Figure 7. Test #1: (a,b) Estimated positions (black) for twenty ground truth points (red), along with the
detected feet (orange). (c,d) The errors measured as L2-distances from the estimated user positions to
their corresponding ground truth value.
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Note that, for these tests, and to compare both methods, we considered only the human position
projected on the ground plane, i.e., without the height.

Test #1: In this experiment, we evaluated the error in twenty different, discrete and uniformly
allocated positions, with the ground truth positions confined in a 1.6 × 1.2 m2 rectangle in front of
the camera. We then compared the performance of our system with that of the Body Tracking SDK,
provided with the Orbbec Astra camera, with its estimated pose referred to the same robot coordinate
frame. The tracking mode of the SDK was employed during the tests to increase its detection rate in
difficult conditions, e.g. when the human was not facing the camera.

Figure 7 depicts the obtained human positions for our method in (a) and the Orbbec system in (b),
showing the corresponding errors in (c,d), measured as L2-norm from each foot to the corresponding
ground truth position. It can be seen that, in our proposal, the error for the X-component increases
outwards and radially, corresponding to the effect of a residual lens distortion, which is challenging to
completely remove in fish-eye cameras [48], like the one placed on the robot. However, since this error
is approximately independent on the depth value Z, we can model it as a quadratic equation on the
X value by fitting the obtained errors, and include it as a bias in the estimation algorithm to correct
it. On the other hand, the narrow FoV of the RGB-D camera is reflected in the right part of Figure 7.
When the human is close to the robot (Z < 1.2 m), the estimation is confined into the center positions.
Furthermore, even when the human is detected, lateral positions such as X ± 0.8 m present larger
errors than their neighbours.

In turn, Figure 8a shows three different body reconstructions obtained with our proposed
Single-View method. Note that the represented 3D bodies have been oriented according to the computed
human orientation (as explained below), depicted as a green arrow in the figure, hence qualitatively
increasing the faithfulness of the reconstruction. The plot in Figure 8b depicts the average error for
the RGB-D method (red), our proposal (blue) and its compensated version by the above-mentioned
parabolic fitting (green). It can be seen that our compensated method is able to rectify the error at the
lateral positions, providing the best results in those locations. Our proposed system is able to estimate
the human position in every established ground truth location, with similar or even lower errors
than the RGB-D-based estimation, proving this way its suitability for human detection. Furthermore,
the maximum depth range for both approaches was empirically estimated yielding that our proposed
system can reconstruct a person 1.6 m tall up to a distance of 5 m, hence increasing the depth range in
1.5 m with respect to the RGB-D-based system.

Test #2: Figure 9a shows the estimated positions of the human while walking following a linear
path (red line) at a distance of Z = 1.2 m from the robot with X ∈ [−0.8, 0.8] m, in both directions.
The estimated path (black lines) diverges from the ground truth along the z-axis by approximately
10 cm. Since the employed detection model identifies the ankles (which are closer to the floor, but not
touching it), this low error is always present but negligible due to its magnitude. This effect is also
shown in Figure 8 as a constant bias in all the considered positions. The maximum error is localized at
the endpoints of the trajectory in the x-axis (approximately 20 cm between the right foot’s real and
estimated positions), as can be seen in the zoomed sections of the figure. This effect is also present in
Tests #1 and #3.

Test #3. Finally, Figure 9b represents the obtained poses for a human following a rectangular path
of dimensions X× Z = 1.6 m × 0.8 m. Similar to Test #2, the main differences between the estimation
and the ground truth paths are concentrated at the lateral sides.
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Figure 8. Test #1: (a) Three human body reconstructions obtained with our Single-View method; and (b)
average errors for the twenty ground truth positions obtained with the RGB-D system (red) and our
Single-View method, both original (blue) and compensated (green).
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Figure 9. (a) Test #2: Linear path test and details of the trajectory endpoints. (b) Test # 3: Rectangular
path test and details of the trajectory laterals. For both tests, we show: (top) the estimated poses for
both feet (cyan and magenta) with respect to the robot position (green) and the followed path (red);
and (bottom) detail of the path endpoints. The estimated path (black) shows the average positions for
the whole sequence.

As a particular variation of the problem of detecting humans, our proposed system has the
advantage of having the ability to detect and reconstruct humans lying on the floor, or any other
horizontal surface. This skill acquires capital importance in fields like social robotics, where performing
tasks such as fall detection of elderly people at home are becoming a prominent objective in research
projects. To illustrate this, Figure 10a–c shows three human skeletons (including their orientation)
reconstructed with the proposed system while the user is lying on the floor in front of the robot. While
the Orbbec Astra camera is not able to detect the user in that posture, our proposal successfully locates
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them and estimates their 3D position in the environment. Considering the position of the torso joint as
the center of the body, our system is capable of estimating their location. As explained in Section 4.1,
the 3D position of the joints of a lying human are computed with the same formula employed for the
triangulation of the feet of a standing person (Equation (3)), as employed in Tests #1, #2, and #3 to
compute the human’s position. Similar error values (below 0.2 m) are thus obtained with respect to the
ground truth position, determined by a measuring tape.

To illustrate this scenario, we provide a video [49] recorded in both a laboratory environment and
a house in which our Single-View approach is able to detect and estimate the position of a human body
while lying on the floor. Finally, it has to be highlighted that, since the Orbbec Astra camera does not
provide any result in this situation, a quantitative comparison with our proposal cannot be provided.

2D-Human Detection 3D-Human Reconstruction

a

b

c

Figure 10. 3D human bodies reconstructed with our Single-View approach with the user lying on the
floor, (a) face-up, (b) face-up with extended arm, (c) face-down.

5.2.2. Multi-View Method

Our Multi-View approach is mainly aimed to obtain robust estimations in difficult conditions
regarding the human’s pose in the scene. Concretely, body parts occlusions, lost of joints during
tracking or lack of information in the human orientation are overcome by this approach, proving its
versatility when the Single-View approach finds difficulties to correctly determine the human’s body
position in 3D.

This can be seen in Figure 11a, which shows a person who is detected and correctly located in
3D while sitting in front of the camera. Figure 11b illustrates a scenario where the person is occluded
by some obstacle but our proposal still manages to infer their position Figure 11c,d shows similar
scenarios to Figure 11a but this time with the person sitting quite close to the camera, hence being
detected near the image border. This represents a really challenging situation for RGB-D cameras, as
they present a minimum range of operation, typically above 0.5 m.

Apart from the usability, and regarding the method’s accuracy, Figure 12 shows the estimated
errors for the same ground truth positions described in Test #1 of the Single-View approach. It can be
seen that error values remain below 0.2 m for most of the considered positions, and that they are larger
as the value of the X coordinate increases, similar to the effect in the Single-View method.
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Figure 11. Human body reconstructions recovered with the Multi-View method under challenging
situations: (a) sitting; (b) presence of occlusions; and (c,d) both sitting and near the camera.

5.3. Human Orientation

Finally, to complete our evaluation, we focused on the accuracy of the human orientation estimated
by our proposal and compared it again with that provided by the Orbbec SDK [39]. Figure 13 shows the
results obtained from an experiment where the human adopted eight different orientations in [−π, π]

with a π/4 step in three different positions [X, Z] (coordinates in meters): Position #1, [0.0, 1.2]; Position
#2, [0.0, 1.6]; and Position #3, [−0.4, 1.2].
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Figure 12. Average errors measured as L2-distances from the estimated positions to their corresponding
ground truth with our Multi-View method.
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In our method, the errors committed during the human detection stage are propagated to the
orientation estimation so that body configurations where the torso is not completely or inaccurately
discerned are prone to induce oscillations in the computed angle (e.g., ±π/2). However, even for
challenging body configurations, errors are typically maintained below 0.25 rad.

In turn, for the RGB-D system, we directly extracted the head angle (and hence the user orientation)
with its associated rotation matrix, which is provided by their SDK. No further processing was
implemented. In this case, just four different angles were obtained: {0,−π/2, π/2,−π}, although
some human bodily positions (e.g., with self-occlusions) dropped the detection rate and, consequently,
the orientation estimation. As can be seen in the figure, Position #3 presented the largest errors and the
largest amount of loss of body tracking due to is closeness to its FoV limit. Additionally, we found
that the distinction between the 0 and −π angles could not be distinguished in any of the considered
positions, being impossible to tell if the user was facing towards the camera or not. Although a more
accurate system could be investigated and built upon this 3D human body information provided by
the RGB-D camera software, it goes beyond the scope of this work.
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Figure 13. (a) Distribution of the positions and ground truth angles with respect to the robot frame;
and (b,c) average error obtained for the proposed Single-View method and the RGB-D-based system,
respectively.

6. Conclusions and Future Work

In this study, we investigated the capabilities of wide FoV RGB cameras for 3D human pose
estimation. This research arises with the aim of overcoming the inherent issues presented by RGB-D
cameras, such as their narrow FoV, their short range of operation (under 3.5 m) and the strong influence
of the light conditions (particularly sunlight). For that, we provided a mobile robot with the ability of
first detecting a person while navigating and subsequently determining their poses (both position and
orientation) within the environment, using as only input the images captured by a fish-eye webcam.
Since the camera is attached to the robot’s tilting head and due to the specific characteristics of its
movement, we also proposed a specific camera extrinsic calibration procedure.

This two-stage pipeline (detection and pose estimation) allows the robot to naturally navigate
towards the user and establish an interaction. Additionally, our proposal is able to detect the human
posture, indicating if they are standing up or lying down, hence providing semantic information that
can be used to change the robot’s behavior, for instance, in terms of navigation.

For the first stage, we relied on the CNN-based person detector OpenPose, which provides the
image coordinates of a set of detected joints. Built upon this detection system, we proposed two
reconstruction methods:

• Single-View. It requires only a single view of the scene and allows the robot and the user to move
during the pose estimation. Provided that the feet are detected, a simplified, planar human body
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is then reconstructed based on the camera pose and the feet coordinates, even determining if the
user is standing up or lying down.

• Multi-View. It overcomes the visible-feet limitation by employing several views of the scene taken
from different angles, requiring both the human and the robot to remain still during the process
(≈2 s). Due to the particular camera setup and motion, common epipolar constraints for stereo
vision can not be applied, thus we provided specific 3D reconstruction equations and integrated
the body structure to improve its reconstruction.

The proposed methods were validated with both moving and static users in a laboratory
environment, yielding similar accuracy results than an RGB-D camera-based system, while overcoming
the above-mentioned limitations associated with them. Furthermore, we proved that our approach is
able to both detect and locate the users even if they are lying on the floor, which cannot be accomplished
by the Orbbec Astra SDK through human body tracking. This capability is of particular interest for
social robots operating within elder’s homes for tasks such as fall detection.

We are currently integrating our work into social navigation systems for mobile robots in which
humans and their personal areas are taken into account when planning the path to be followed by the
robot. Face detection and recognition systems will also be combined with our proposal in order to
allow the robot to distinguish between users before and during the interaction.
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