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Abstract: The three-dimensional (3D) path following problem of an underactuated autonomous
underwater vehicle with ocean currents disturbances is addressed in this paper. Firstly, the motion
equation under the ocean currents disturbance is established, and the dynamic model of 3D tracking
error is constructed based on virtual guidance method. Then, a finite-time control scheme based
on super-twisting observer and command filtered backstepping technology is proposed. We adopt
super-twisting observer based on finite-time theory to observe the ocean currents disturbances
for improving the system robust. A command filtered backstepping is proposed to replace the
differential process in the conventional backstepping method for avoiding the differential expansion
problem. The filter compensation loop is designed to ensure the accuracy of the filtered signal,
and the anti-integration saturation link is designed considering the influence of integral saturation.
Lyapunov stability theory is used to prove the stability of the underactuated AUV. Simulation studies
are conducted to show the effectiveness and robustness of the controller.

Keywords: underactuated AUV; 3D path following; backstepping method; super-twisting observer;
ocean currents disturbance

1. Introduction

Autonomous underwater vehicles have become more and more practical in many fields, such
as civil and military, underwater monitoring, deep sea environmental resource exploration and
development, ocean data observation and collection, seabed topographic scanning, submarine pipeline
detection and marine mine clearance, etc. [1–3]. The completion of related tasks generally requires
the AUV to follow an ideal path. Therefore, the path following technology of AUV has attracted
the attention of many scholars and has become a hot research topic. AUVs are often designed to be
under-actuated, such as the REMUS series [4,5], for reasons of energy savings, weight reduction and
increased reliability. Most of underactuated AUVs cannot directly provide lateral and vertical forces,
and can only control surge velocity, yaw angle velocity and pitch angle velocity directly. In addition,
AUV is also affected by external disturbances such as waves, currents and uncertainties of its own
hydrodynamic parameters in the actual environment, which increases the difficulty of controller
design [6,7].

In the past few decades, researchers have tried various control methods for path following control
of underactuated AUVs [8,9]. A cascade structure consisting of an integral LOS guidance and feedback
linearized proportional derivative controller was designed in [9]. A tracking control law based on the
extended state observer and the optimal reference signals were proposed in [10]. The control strategy
based on the input-output feedback linearization method was designed in [11]. The robust adaptive path
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following method based on fuzzy position observer was proposed in [12]. The above path following
controllers have achieved good control effects. However, most of them focus on two-dimensional
path following problems such as horizontal or vertical planes. In the three-dimensional space, due
to the strong nonlinearity and strong coupling characteristics of AUV, the path following control of
under-actuated AUV is more challenging. The underactuated AUV nonlinear controller of 3D path
following was proposed for the first time [13], but there were singularities. For solving the singularity
problem, the literature [14] introduced virtual guidance points in the path and firstly proposed the
line-of-sight (LOS) method. Subsequently, many researchers followed and improved the line-of-sight
method in kinematic and introduced intelligent controller in dynamic. Improved line-of-sight (LOS)
and fuzzy controller were designed in [15]. A 3D trajectory tracking controller for underactuated AUV
was designed by linear stability theory and backstepping method [16]. However, the impacts of ocean
currents were not considered in the above literatures. Designing an observer is one of the common
means of nonlinear system control [17,18]. Sliding mode control is also one of the effective control
methods [19]. For the ocean currents disturbance, the tracking control scheme combined with the
sliding mode control and backstepping method was designed in [20], and adopted the fuzzy logic
theory to estimate the nonlinear term and disturbance. In the literature [21], the tracking error equations
of horizontal and vertical planes were established based on the line-of-sight method, the controller
was designed by cascade theory and backstepping method. The literature [22] improved the LOS
guidance law, introduced an integration strategy to eliminate the effects of currents, and designed a
dynamic controller based on relative velocity. However, the above research can only achieve tracking
of spatial lines and tracking control of curved paths cannot be realized. In addition, the process of
calculating the derivative of a virtual control signal in the backstepping method is very complicated
and the differential expansion problem may occur. The literature [23] present a command-filtering
backstepping controller, by using numerical integration for the derivative of the virtual control signal,
for avoiding the problem of differential expansion. But the integral saturation was not considered in
this method. And the error between the filtered signal and the virtual control signal cannot guarantee
to convergence.

At present, most controllers can only achieve asymptotic convergence, and cannot guarantee
convergence in a limited time. The finite-time control method has gradually gained in-depth
research in recent years because of its advantages of high accuracy, fast convergence speed and strong
robustness [24]. The path following control with finite-time control theory was applied to the horizontal
plane tracking, and achieve good control effects [25,26].

Motivated by the above discussions, the command filtering backstepping method, super-twisting
observer and finite-time control technology were adopted to propose a three-dimensional path following
controller for underactuated AUV in the presence of ocean currents, which has not been proposed in
the published literatures. The main contributions of this article are:

(1) The differential filtering problem caused by the traditional backstepping calculation complexity
is avoided by the command filtering backstepping method, and the part of filtering error
compensation is proposed to ensure the accordance of virtual control signal and the filtered signal.

(2) Since the integral action of the filter part, the anti-integration saturation is considered in the
control loop to deal with the problem of integral saturation in the control signals.

(3) A current disturbance observer is presented to reduce the impact of external ocean currents
disturbances on the system and increase the tracking controller robustness.

(4) The 3D path following controller, based on the finite-time control theory, is designed to improve
the response speed and control accuracy of the controller.

The rest of this paper is organized as follows. Firstly, the 5-DOF motion model and error model for
AUV are established in Section 2. The main results, including the ocean currents disturbance observer
and the 3D path following controller, are presented in Section 3. In Section 4, the mathematical proof
of the control system is presented. Numerical simulation results, carried in MATLAB-Simulink to
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demonstrate the controller tracking performance, are given in Section 5. In the end, short conclusions
are presented in Section 6.

2. Problem Formulation

2.1. Coordinate System and Parameter Definition

As is depicted in Figure 1, {I} is assumed as the inertial reference frame (earth-fixed frame),
its original point can be set at any place in the ocean. {B} is the body-fixed frame, its original point is
set at the AUV’s gravity center. {SF} denotes the Serret-Frenet frame, its original point Q is the any
point of the desired path. ηe = (x, y, z) denotes the position of the AUV’s gravity center within the
frame {I}. (xP, yP, zP) denotes the original center of {SF}within the inertial reference frame. (xe, ye, ze)

denotes the position of the AUV’s gravity center within the Serret-Frenet frame {SF}.
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2.2. AUV Kinematic and Dynamic Equations

According to Reference [27], the nonlinear motion equations of AUV can be described:

.
η = J(η)v, (1)

M
.
v + C(v)v + D(v)v + g(η) = τ+ τd. (2)

where η denotes the position and orientation vector with coordinates in the earth fixed frame, J(η) is
the transform matrix between the body-fixed and inertial coordinates, v denotes the linear and angular
velocity vector with coordinates in the body-fixed frame, M is the inertial and add inertial matrix, C(v)
is the matrix od Coriolis and Centrifugal terms, D(v) is the matrix of hydrodynamics terms, g(η) is the
vector of gravity and buoyant force, τ denotes the forces and moments in the body-fixed frame. It must
be mentioned that the ocean currents were assumed constant in frame {B} in many earlier researches.
A more natural and real assumption are made in this paper: the ocean currents are constant in frame
{I}. The ocean currents in frame {I} are proposed as [27]

vn
c = [un

c , vn
c , wn

c ]
T. (3)

With the Euler angle rotation matrix, it can be transformed to the frame {B}:

vb
c = Rn

b (ψ,θ)·vn
c

=


cθcψ −sψ sθcψ
cθsψ cψ sθsψ
−sθ 0 cθ

·[un
c , vn

c , wn
c ]

T , (4)
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where c∗ and s∗ are abbreviations for cos∗ and sin∗, respectively. Assume the ocean currents change
slowly, the acceleration of the current is negligible such that

.
vb

c ≈ 0. (5)

Usually, the roll motion of AUV can be ignored due to its left–right symmetrical structure [28].
Under the assumption, the motion equations can be given as

.
x = urcθcψ− vrsψ+ wrsθcψ
.
y = urcθsψ+ vrcψ+ wrsθsψ
.
z = −ursθ+ wrcθ.
θ =

.
α+ q

.
ψ =

.
β+ r/cθ

, (6)



.
u = 1

m−X .
u

Fu +
Xuu

m−X .
u

ur
2 + Xvv

m−X .
u

vr
2 + Xww

m−X .
u

wr
2 +

Xqq
m−X .

u
q2

.
v = −m−Yur

m−Y..
v

urr +
Yuv

m−Y..
v
urv +

Yv|v|vr
m−Y..

v
|vr|

.
w = −

m−Zuq
m−Z .

w
urq +

Zuw
m−Z .

w
urwr +

Zw|w|
m−Z .

w
wr|wr|+

1
m−Z .

w
mzgq2

.
q = 1

Iy−M .
q
M +

Mq|q|
Iy−M .

q
q
∣∣∣q∣∣∣− Muq

Iy−M .
q
urq−

Muw
Iy−M .

q
urwr−

1
Iy−M .

q
(zgw− zbB)sθ− 1

Iy−M .
q
mzg(wrq− vrr)

.
r = 1

Iz−N.
r
N + Nuv

Iz−N.
r
urvr +

Nv|v|
Iz−N.

r
vr|vr|+

Nur
Iz−N.

r
urr

, (7)

where m is the AUV mass, Iy and Iz denote the inertia moments about the pitch and yaw rotation. ur,
vr and wr denote the real linear velocities, where ur = u− ub

c , vr = v− vb
c and wr = w−wb

c . q, r are the
velocities of pitch and yaw. r and ψ present the pitch and yaw angle. The corresponding hydrodynamic
derivatives are denoted by X(∗), Y(∗), Z(∗), M(∗) and N(∗). zg and zb are the vertical positions of the
gravity and buoyancy center within body-fixed frame. X denotes the force generated by the stern
thruster. M and N are the moments provided by horizontal and vertical rudders.

2.3. AUV Error Systems

The error formulations can be derived by using the Serret-Frenet frame {SF} according to
Figure 1 [29]. We define point P that is the origin of {SF} as the virtual moving target AUV that describes
the path, and the position in {I} is ηe

d = (xd, yd, zd)
T. The Serret-Frenet frame is rotated with angle θF,

ψF relative to the inertial frame. 
θF = −arctan

 .
zd√

.
x2

d+
.
y2

d


ψF = arctan

( .
yd.
xd

) . (8)

The desired path is described by parameter s. Rotation angles can be also defined as
.
θF = c1(s)

.
s

.
ψF = c2(s)

.
s

, (9)

where c1(s) and c2(s) are the torsion and curvature of the virtual target point in spatial curve.
The AUV’s position is ηe = (x, y, z)T, and represented by point Q. The position of the AUV is

usually obtained by GPS, but GPS is not available when the AUV is underwater. At that time, it can
only be obtained by dead reckoning or long/short baseline instruments [30]. Hence, the error of path
following can be defined in frame {B}.

ε = ReT
b (ηe

− ηe
d), (10)
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.
ε =

.
R

eT
b (ηe

− ηe
d) + ReT

b (
.
η

e
−

.
η

e
d), (11)

where Re
b is the rotation matrix from {B} to {I}.

.
R

e
b = Re

b[$]qr, [$]qr is the vector of angular velocity.
.
η

e
= Re

bvb, vb = (u, v, w)T is the vector of velocities in {B}.
.
η

e
d = Re

FvF, vF = (ur, 0, 0)T is the reference
velocities. Re

F is the rotation matrix from {SF} to {I}.

.
τ = [$]TqrR

eT
b (ηe

− ηe
d) + ReT

b (
.
η

e
−

.
η

e
d)

= [$]Tqrτ+ ReT
b Re

bvb −ReT
b Re

FvF

= [$]Tqrτ+ vb −R(ψe,θe)vF

, (12)

where [$]qr =


0 r −q
−r 0 0
q 0 0

, ReT
b Re

F = R(ψe,θe), ψe = −ψF +ψ+ β and θe = θ+ α−θF. R(ψe,θe) =
cθecψe −sψe sθecψe

cθesψe cψe sθesψe

−sθe 0 cθe

.


.
xe
.
ye.
ze

 =


0 r −q
−r 0 0
q 0 0




xe

ye

ze

+


u
v
w

−R(ψe,θe)


ur

0
0

. (13)

The angular velocities of virtual target are presented as Equation (9). Then we define the AUV
path following error: 

.
xe = rye − qze + u− urcψecθe
.
ye = −rxe + v− ursψecθe
.
ze = qxe + w + ursθe.
ψe = −c1(s)

.
s + r/cθe +

.
β

.
θe = −c2(s)

.
s + q +

.
α

, (14)

Lemma 1. For nonlinear systems
.
ω = g(ω, τ), where ω denotes the state vector, and τ is the control input,

g(·) is continuous and g(0) = 0, if λ > 0, 0 < α < 1 and 0 < η < ∞, and the continuous function V(ω) meets
.

V(ω) ≤ −λVα(ω) + η, then the system converges in finite-time [31].

Lemma 2. For the system in lemma 1, if λ1 > 0, λ2 > 0 and 0 < α < 1, and the continuous function V(ω)
meets

.
V(ω) ≤ −λ1V(ω) − λ2Vα(ω), then the system converges in finite-time. The time of convergence is

T ≤ 1
λ1(1−α)

ln (λ1V1−α(ω0)+λ2)
λ2

, where the V(ω0) is the initial value of V(ω) [32].

3. Design of Path Following Control

This section introduces the nonlinear control law to solve the path following control problem
of underactuated AUV in the presence of the ocean current. The control flow chart is shown in
Figure 2. Controller design is divided into two stages. The first stage handles the design of the ocean
current observer based on super-twisting technology. Observer is used to compensate for the effects of
currents on the system. The second stage addresses the tracking controller based on command filtered
backstepping. Taking the designed virtual control as the input of the command filter, the derivative of
the virtual control is obtained through the integration rather than the differential process.
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Controller of the AUV is developed in this section such that the real AUV can track the virtual
AUV, namely

sup
t∈[t0,∞]

(‖xe‖, ‖ye‖, ‖ze‖, ‖u− ud‖) ≤ (ε1, ε2, ε3, ε4), (15)

where εi(i = 1, 2, 3, 4) denote arbitrary small positive numbers.
Referring to the LOS guidance theory, pitch and heading guidance laws are defined as θLOS = −θa

e2kθze−1
e2kθze+1

ψLOS = −ψa
e2kψye

−1
e2kψye+1

, (16)

where θa ∈
(
0, π2

)
and ψa ∈

(
0, π2

)
are chosen to let θLOS ∈

(
−
π
2 , π2

)
and ψLOS ∈

(
−
π
2 , π2

)
, kθ > 0 and

kψ > 0 are gains. When the vertical error between AUV and desired path becomes larger, θLOS also
increases, and when AUV is in the desired path, the error becomes zero, and θLOS = 0. ψLOS is the
same. AUV will have better endurance and the redundant range can be shortened to save energy by
introducing the approach angle [29].

In an attempt to eliminate effects of differential expansion in the conventional method, a command
filter is considered to add to the backstepping control loop. In this approach, the control signals are
passed via filter to get derivative instead of the differentiation process.

.
z1 = z2
.
z2 = −2ζω f z2 −ω2

f (z1 − xco)
(17)

where xco =
[

xo
ce yo

ce zo
ce ψo

ce θo
ce uo

c ro
c qo

c

]T
is the vector of desired

control, z1 = xc =
[

xce yce zce ψce θce uc rc qc
]T

and z2 =
.
xc =[ .

xce
.
yce

.
zce

.
ψce

.
θce

.
uc

.
rc

.
qc

]T
are the filtered control signals vector. ζ and ωf

are the filter parameters, where 0 < ζ < 1, ωf > 0. The flow chart of command filter is shown as Figure 3.
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signals are passed via filter to get derivative instead of the differentiation process. 

1 2
2

2 2 12 ( )f f co

=
 = − − −
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In this section, an ocean currents observer based on super-twisting technology is designed. Let 

D̂  and x̂  denote the observation of D  and x , we can get 
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where, 1( ( ) ( ))−= − +A M D v C v , 1−=B M , 1 ( )−= −C M g η , 1ˆ ˆd
−=D M τ . Error vector of state 
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ˆ
ˆ
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= −
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D D D
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The observer of disturbance was designed as 

1 2
ˆ sgn( ) sgn( ) , 1, 2,3i i i iD k e e k e dt i= + = , (20) 

where 1k  and 2k  are positive parameters.  

Together with Equations (18) and (19), we have 

 

   cx

cx
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Figure 3. The command filter structure.

3.1. Design of Super-Twisting Disturbance Observer

In this section, an ocean currents observer based on super-twisting technology is designed. Let D̂
and x̂ denote the observation of D and x, we can get

.
x̂ = Ax̂ + Bu + C + D̂, (18)
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where, A = −M−1(D(v) + C(v)), B = M−1, C = −M−1g(η), D̂ = M−1τ̂d. Error vector of state x and
observation error D̃ can be present as

e = x− x̂
D̃ = D− D̂

. (19)

The observer of disturbance was designed as

D̂i = k1
√
|ei|sgn(ei) +

∫
k2sgn(ei)dt, i = 1, 2, 3, (20)

where k1 and k2 are positive parameters.
Together with Equations (18) and (19), we have

.
ei =

.
xi −

.
x̂i = Di − ki

√
|ei|sgn(ei) −

∫
k2sgn(ei)dt, i = 1, 2, 3. (21)

Obviously, when the observation error of x is finite-time converged, the observation error of
disturbance also converges in finite-time. Following is the proof.

Proof. For convenience of proof, select the intermediate quantities M ∈ R3×1 and N ∈ R3×1

Mi = k1
√
|ei|sgn(ei)

Ni = Di −
1
2

∫
k2sgn(ei)

. (22)

Differentiating the above equation, we can get

.
Mi =

1
2|Mi |

.
ei =

1
2|Mi |

(−k1Mi + Ni)
.

Ni =
.

Di −
1
2 k2sgn(ei)

. (23)

Let βi = [MiNi]
T, and differentiate it:

.
βi =

1
2|Mi |

[
−k1 1
−k2 0

][
Mi
Ni

]
+

1
2|Mi |

[
0 0
0 2|Mi|

] 0
.

Di

 . (24)

Di is bounded,
∣∣∣∣ .
Di

∣∣∣∣ < ∆, let 0 < ρ < 2∆. Hence,
.

Di =
ρ
2 sgn(ei) =

ρ
2

Mi
|Mi |

, we choose A =

1
2|Mi |

[
−k1 1
−k2 + ρ 0

]
.
βi = Aβi. (25)

Consider the Lyapunov function as follows

Vi0 = βT
i Pβi, (26)

where P =

[
λ+ τ2

−τ
−τ 1

]
is the symmetric matrix.

Differentiating Vi0 yields
.
Vi0 = βT

i

[
ATP + PA

]
βi. (27)
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Choose Q =

[
2k1λ+ 2τρ −ρ− λ− τ2

−ρ− λ− τ2 2τ

]
, when k1 >

(ρ+λ+τ2)
2λτ + τ

2λ −
τρ
λ and λmin(Q) ≥ τ, we get

.
Vi0 = βT

i

[
ATP + PA

]
βi ≤ −

1
2|Mi|

βT
i Qβi ≤ −

τ
2|Mi|

∣∣∣βi
∣∣∣2. (28)

Equation (26) meets the following conditions

λmin(P)‖βi‖
2
≤ βT

i Pβi ≤ λmax(P)‖βi‖
2. (29)

Then 
|Mi| ≤ ‖βi‖
V1/2

i0

λ1/2
max
≤ ‖βi‖

. (30)

According to Equations (28) and (30), we get
.
Vi0 ≤ −µV1/2

i0
µ = τ

2λ1/2
max(P)

, (31)

where µ > 0, at this moment, Equation (31) meets the lemma 1. Hence, the error of system states and
observation can converge in finite-time. The disturbance error converges in a small neighborhood, and
defined as

∣∣∣D̃∣∣∣ ≤ ζM. �

3.2. Position Control

According to Equation (14), we design the Lyapunov function:

Vp =
1
2
(x2

e + y2
e + z2

e ) (32)

Then, differentiate Vp along with Equation (14), we can get:

.
Vp = xe(u− urcψecθe) + ye(−ursψecθe + v) + ze(ursθe + w) (33)

According to References [8], the virtual control signals are designed as:
ψo

ce = arcsin kv2ze√
1+(kv2ze)

2

θo
ce = −arcsin kv3 ye√

1+(kv3 ye)
2

uo
c = −kv1 + urcψo

cecθo
ce

(34)

where kv1 > 0, kv2 > 0 and kv3 > 0 are constant gains, and substitute Equation (34) into Equation (33),
we get

.
Vp = −kv1x2

e − kv2ur
1√

1+(kv2 y2
e )

1√
1+(kv3z2

e )
y2

e−

k3ur
1√

1+(kv3z2
e )
+ yev + zew

(35)

For avoiding the differential expansion problem, command filtered backstepping method is used
to replace the differential process in the conventional backstepping method.
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We define the tracking error of position:
x̃e

ỹe

z̃e

 =


xe − xce

ye − yce

ze − zce

. (36)

Then, differentiating the above equation alone with Equation (14) yields following error systems.
.
x̃e.
ỹe.
z̃e

 =


rỹe − q̃ze

−rx̃e

qx̃e

+
[

A Bg(ψ̃)ur Cg(θ̃)ur
]

ũ
ψ̃

θ̃


, (37)

where ũ = u− uce, ψ̃ = ψe −ψce, θ̃ = θe − θce are the errors of filter, and

A =


1
0
0

, B =


cψcecθe

sψcecθe

0

−sψcecθe

cψcecθe

0

, C =


cθcecψce

cθcesψe

−sθce

−sθcecψce

−sθcesψe

−cθce


g(ψ̃) =

[
cψ̃−1
ψ̃

sψ̃
ψ̃

]T
, g(θ̃) =

[
cθ̃−1
θ̃

sθ̃
θ̃

]T
,

where lim
ψ̃→0

g(ψ̃) =
[

0 1
]T

, lim
ψ̃→0

g(θ̃) =
[

0 1
]T

.

Then, by differentiating Equation (36) and using
[ .

xo
ce

.
yo

ce
.
zo

ce

]T
, the following equations

are obtained. 
.
xe
.
ye.
ze

 =


.
x̃e.
ỹe.
z̃e

+


.
xec −

.
xo

ce.
yec −

.
yo

ce.
zec −

.
zo

ce

+


.
xo

ce.
yo

ce.
zo

ce

. (38)

The desired signal
[ .

xo
ce

.
yo

ce
.
zo

ce

]T
can be written as:

.
xo

ce.
yo

ce.
zo

ce

 =

−kxx̃e +

.
xce

−ky ỹe +
.
yce

−kz̃ze +
.
zce

. (39)

Substitute Equations (37) and (39) into Equation (38), and the errors of position are yielded as
.
x̃e.
ỹe.
z̃e

 =


rỹe − q̃ze

−rx̃e

qx̃e

+

−kxx̃e

−ky ỹe

−kz̃ze

+


.
xce −

.
xo

ce.
yce −

.
yo

ce.
zce −

.
zo

ce

+
[

A Bg(ψ̃)ur Cg(θ̃)ur
]

ũ
ψ̃

θ̃


. (40)

3.3. Attitude Control

Differentiate ψ̃ = ψe −ψce and θ̃ = θe − θce, we get

.

ψ̃ = (ro
c + (rc − ro

c) + r̃)/cθ+
.
β− rF −

.
ψce, (41)



Sensors 2019, 19, 4987 10 of 20

.

θ̃ = qo
c + (qc − qo

c) + q̃− qF −
.
θce, (42)

where the errors of angular velocities are defined as r̃ = r− rc, q̃ = q− qc.
Based on Equations (41) and (42), qo

c and ro
c represent the desired virtual control signals of angular

velocities q and r, and can be proposed as

ro
c = cθ(rF +

.
ψc +

.
β− kψψ̃) −ψbs

qo
c = qF +

.
θc − kθθ̃− θbs

, (43)

where kψ > 0, kθ > 0 are the controller parameters, ψbs and θbs represent the robust terms. The robust
terms are defined in Section 4.

Substitute Equation (43) into Equations (41) and (42), Equations (41) and (42) can be rewritten as

.

ψ̃ = −kψψ̃+
(rc−ro

c)+r̃
cθ −ψbs.

θ̃ = −kθθ̃+ (qc − qo
c) + q̃− θbs

. (44)

3.4. Velocity and Angular Velocity Control

For improving the robustness of the controller, we design the integral term ε1, ε2 and ε3, where
.
ε1 = ũ,

.
ε2 = q̃,

.
ε3 = r̃. The finite-time control input of AUV 3D path following can be proposed as

Fu = (m−X .
u)(−kuũ− k f usigγ(ũ) +

.
uc − ubs) − fu

M = (Iy −M .
q)(−kqq̃− k f qsigγ(q̃) +

.
qc − qbs) − fq

N = (Iz −N .
r)(−kr̃r− k f rsigγ (̃r) +

.
rc − rbs) − fr

, (45)

where fu = Xuuur
2 + Xvvvr

2 + Xwwwr
2 + Xqqq2, fq = −(zgw − zbB) sinθ + Mq|q|q

∣∣∣q∣∣∣ −Muwurwr −

Muqurq−mzg(wrq− vrr) and fr = Nuvurvr + Nv|v|vr|vr|+ Nururr are nonlinear dynamic terms. sigγ(x)
is given as

sigγ(x) = sgn(x)|x|γ. (46)

where x ∈ R, α ∈ (0, 1), and sigα(·) is continuous and increasing, and sigα(0) = 0.
Considering the observer into the Equation (45), the controller of the underactuated AUV proposed

in this paper can be obtained:
Fu = (m−X .

u)(−kuũ− k f usigγ(ũ) +
.
uc − ubs − F̂u) − fu

M = (Iy −M .
q)(−kqq̃− k f qsigγ(q̃) +

.
qc − qbs − N̂) − fq

N = (Iz −N .
r)(−kr̃r− k f rsigγ(q̃) +

.
rc − rbs − M̂) − fr

, (47)

When the command filter controller is not considered, Equation (47) is changed as follows
Fu = (m−X .

u)(−kuũ− k f usigγ(ũ) +
.
uc − F̂u) − fu

M = (Iy −M .
q)(−kqq̃− k f qsigγ(q̃) +

.
qc − N̂) − fq

N = (Iz −N .
r)(−kr̃r− k f rsigγ(q̃) +

.
rc − M̂) − fr

, (48)

Then we substitute Equation (45) into Equation (7) and get the following error dynamics
.
ũ = −kuũ− k f usigγ(ũ) − ubs.
q̃ = −kqq̃− k f qsigγ(q̃) − qbs.
r̃ = −kr̃r− k f rsigγ (̃r) − rbs

. (49)
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Let σu = ũ, σr = r̃ and σq = q̃, we get the filter error compensation dynamics
.
σu = −kuσu − k f usigγ(σu) − ubs
.
σq = −kqσq − k f qsigγ(σq) − qbs
.
σr = −krσr − k f rsigγ(σr) − rbs

. (50)

The above Equation (50) can be finally rewritten as

.
E = GE + HT + Jsigγ(E), (51)

where G = −KP = diag
{
−ku,−kq,−kr

}
, ku, kq and kr are positive parameters. H = I3×3, J = −KF =

diag
{
−k f u,−k f q,−k f r

}
, k f u, k f q and k f r are positive parameters. T = [−ubs,−qbs,−rbs]

T, E = [σu, σq, σr]
T.

3.5. Design of Compensation Loop

For guaranteeing that the error between the desired signals and the filter signals can be converged,
a compensation of filter error is proposed in the part. The errors of compensation are defined
as following 

σx

σy

σz

 =


x̃e − ζx

ỹe − ζy

z̃e − ζz

, (52)

where ζx, ζy, ζz denote the filter compensation, according Equation (40), they can be defined
.
ζx.
ζy.
ζz

 =


rζy − qζz

−rζx

qζx

+

−kxx̃e

−kyζy

−kzζz

+


.
xo

ce +
.
xce

.
yo

ce +
.
yce.

zo
ce +

.
zce

+
[

A Bg(ψ̃)ur Cg(θ̃)ur
]
ζu

ζψ
ζθ


, (53)

where ζψ and ζθ are designed in section of stability analysis, ζx(0) = ζy(0) = ζz(0) = 0.
We choose the following Lyapunov function

E1 =
1
2
(σ2

x + σ2
y + σ2

z). (54)

By differentiating Equation (54) along with Equations (53) and (40), we get

.
E1 = −kxσ2

x − kyσ2
y − kzσ2

z

+
[
σx σy σz

]
×

[
A Bg(ψ̃)ur Cg(θ̃)ur

]
ζu

ζψ
ζθ


= −kxσ2

x − kyσ2
y − kzσ2

z + AT


σx

σy

σz

σu

+gT(ψ̃)BTur


σx

σy

σz

σψ + gT(θ̃)CTur


σx

σy

σz

σθ

. (55)
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The filter compensation errors of the pitch and yaw angle can be defined as

σψ = ψ̃− ζψ
σθ = θ̃− ζθ

. (56)

According to Equation (44), ζψ and ζθ can be defined as

.
ζψ = −kψζψ +

(rce−ro
ce)+ζr

cosθ.
ζθ = −kθζθ + (qce − qo

ce) + ζq
, (57)

where ζψ(0) = ζθ(0) = ζr(0) = ζq(0) = 0.
Choose the following Lyapunov function as

E2 =
1
2
(σ2
ψ + σ2

θ). (58)

Differentiating Equation (58) alone with Equations (44) and (56), we get

.
E2 = σψ

.
σψ + σθ

.
σθ = (

.

ψ̃−
.
ζψ)σψ + (

.

θ̃−
.
ζθ)σθ

= (
(rce−ro

ce)+r̃
cosθ − kψψ̃−ψbs + kψζψ −

(rce−ro
ce)+ζr

cosθ )σψ
+(−kθθ̃+ (qce − qo

ce) + q̃− θbs + kθζθ − (qce − qo
ce) − ζq)σθ

= −kψσ2
ψ − kθσ2

θ + σqσθ − θbsσθ −ψbsσψ + σr
cosθσψ

, (59)

where σq = q̃ and σr = r̃.

3.6. Design of Anti-Windup

The signal after the anti-windup scheme is present as

uo =


um, u ≥ um

u,−um < u < um

−um, u ≤ −um

, (60)

where um is the upper limited of control output. We design the anti-windup part as

u = uo −Ko

∫
(u− uo)dt, (61)

where Ko denote the anti-windup gain coefficient.
In summary, the main equations of the proposed path following controller are described as:

Fu = (m−X .
u)(−kuũ− k f usigγ(ũ) +

.
uc − ubs − F̂u) − fu

M = (Iy −M .
q)(−kqq̃− k f qsigγ(q̃) +

.
qc − qbs − N̂) − fq

N = (Iz −N .
r)(−kr̃r− k f rsigγ(q̃) +

.
rc − rbs − M̂) − fr

(62)

Figure 4 shows the structure of the path following control system.
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Figure 4. Structure of the present pat following control system.

4. Stability Analysis

The stability of path following control system is proposed in this section. Firstly, we give the
provident of the proposed controller without command filter. Substitute Equation (48) into Equation (7)
and yield the following error equations

.
σu = −kuσu − k f usigγ(σu) − F̂u
.
σq = −kqσq − k f qsigγ(σq) − N̂
.
σr = −krσr − k f rsigγ(σr) − M̂

. (63)

Then Equation (64) can be present by

.
σ = −Kpσ −K f sigγ(σ) − D̃, (64)

where Kp = diag(ku, kq, kr), K f = diag(k f u, k f q, k f r) and D̃ =
[
F̂u, N̂, M̂

]T
.

A Lyapunov function candidate:

V1 =
1
2
σTσ, (65)

where σ =
[
σu, σq, σr

]T
denote the attitude error, and differentiating Equation (66), we get

.
V1 = σT .

σ
= σT(−Kpσ −K f sigγ(σ) − D̃)

= −σTKpσ − σTK f sigγ(σ) − σTD̃
, (66)

where
∣∣∣D̃∣∣∣ ≤ ζM, according to Young’s inequality, it can be changed

σTD̃ ≤
∣∣∣σT

∣∣∣ζM ≤ σ
Tδσ+

1
4
ζT

Mδ
−1ζM, (67)

where δ = diag(δ1, δ2, δ3), δi are arbitrary positive constant.
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Substitute Equation (68) into Equation (67), and we get

.
V1 ≤ −σ

T(Kp + δ)σ − σTK f sigγ(σ) −
1
4
ζT

Mδ
−1ζM. (68)

Furthermore, Equation (69) can be changed

.
V1 ≤ −σT(Kp + δ)σ − σTK f sigγ(σ)

≤ −(Kp + δ)V1 − 2(γ+1)/2K f V(γ+1)/2
1

. (69)

According to the Lemma 2, the finite-time controller without command filter is
finite-time stable. Additionally, convergence time can be expressed as follows: t0 ≤

1
(Kp+δ)(1−γ)/2 ln

(Kp+δ)V
(1−γ)/2
1 (t0)+2(γ+1)/2K f

2(γ+1)/2K f
.

Secondly, the stability of the overall control system is proposed. According to Equations (51), (54)
and (58), we consider the following Lyapunov function

V = E1 + E2 +
1
2

ETKE, (70)

where K = diag{k1, k2, k3} is a positive coefficient matrix. Let GTK + KG = −2Q, and differentiating
Equation (71), we get

.
V =

.
E1 +

.
E2 + ETK

.
E

= −kxσ2
x − kyσ2

y − kzσ2
z − kψσ2

ψ − kθσ2
θ −

1
2 ETQE + AT


σx

σy

σz

σu

+gT(ψ̃)BT


σx

σy

σz

σψ + gT(θ̃)CT


σx

σy

σz

σθ + σr
cosθσψ + σqσθ − θbsσθ −ψbsσψ

−p21σuubs − p22σqqbs − p23σrrbs + ETKJsigγ(E)

. (71)

Then, to meet
.

V < 0, the robust terms ψbs, θbs, ubs, qbs and rbs can be design as

ψbs = gT(ψ̃)BT


σx

σy

σz

,θbs = gT(θ̃)CT


σx

σy

σz

, ubs =
1

p21
AT


σx

σy

σz


qbs =

σθ
p22

, rbs =
σψ

p23 cosθ

. (72)

Substitute Equation (73) into Equation (72), and we get

.
V =

.
E1 +

.
E2 + ETK

.
E

= −kxσ2
x − kyσ2

y − kzσ2
z − kψσ2

ψ − kθσ2
θ −

1
2 ETQE + ETKJsigγ(E)

, (73)

where J is a negative matrix. Hence,
.

V < 0, it indicates that path following errors are convergent.
The entire control close-loop system is global stable. The proof is completed.

5. Numerical Simulations

In this section, to verify and analyze the proposed controller (FTCFPC) base on the super-twisting
observer, finite-time technology and command filtered backstepping methodology of this paper,
numerical simulations on an underactuate AUV WL-4 (Figure 5)., which is developed by Harbin
Engineering University in China, were conduct in MATLAB-Simulink.



Sensors 2019, 19, 4987 15 of 20

Sensors 2019, 19, x FOR PEER REVIEW 17 of 23 

 

1 2

2 2 2 2 2

+
1 ( )
2

T

T T
x x y y z z

V E E

k k k k k sigγ
ψ ψ θ θσ σ σ σ σ

= +

= − − − − − − +

E KE

E QE E KJ E

   
, (73) 

where J  is a negative matrix. Hence, 0V < , it indicates that path following errors are convergent. 
The entire control close-loop system is global stable. The proof is completed. 

5. Numerical Simulations 

In this section, to verify and analyze the proposed controller (FTCFPC) base on the super-
twisting observer, finite-time technology and command filtered backstepping methodology of this 
paper, numerical simulations on an underactuate AUV WL-4 (Figure 5)., which is developed by 
Harbin Engineering University in China, were conduct in MATLAB-Simulink.  

 
Figure 5. WL-4 underactuated AUV. 

In order to simulate a more realistic environment, the environment disturbances are considered 
in simulations. The disturbances can be expressed as 

+ =d Td Kε , (74) 

where [ , , , , ]Tud vd wd qd rdτ τ τ τ τ=d  is the external disturbances vector. ε  is a vector of white 

Gaussian noise with the largest amplitude of 1ε = , and represents the high measurement noise. 
[2,1,1,2,2]T=K  represents the gain parameter matrix. [20,20,20,20,20]T=T  denotes the time 

constant matrix.  
For the underactuated AUV spiral dive operation, the following 3D desired path is design. 

20cos( )
10

20sin( )
10

d

d

d

x s

y s

z s

π

π

 =

 =


=


. (75) 

The initial position of the AUV is 0 0 0( , , ) (30,0,1)mx y z = , the initial attitude angle are 

0 0( , ) (0,0)θ ψ = . The initial velocities of AUV are 0 0m/sv = , 0 0m/su = , and 0 0m/sw = . The 

desired velocity is 1m/sdu = . The constant velocity of ocean currents is (0.2,0.2,0.05)m/s=v . 
The path following control simulations results using FTCFPC control are compared with the results 
of traditional backstepping. 
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In order to simulate a more realistic environment, the environment disturbances are considered in
simulations. The disturbances can be expressed as

d + T
.
d = Kε, (74)

where d = [τud, τvd, τwd, τqd, τrd]
T is the external disturbances vector. ε is a vector of white Gaussian

noise with the largest amplitude of ε = 1, and represents the high measurement noise. K = [2, 1, 1, 2, 2]T

represents the gain parameter matrix. T = [20, 20, 20, 20, 20]T denotes the time constant matrix.
For the underactuated AUV spiral dive operation, the following 3D desired path is design.

xd = 20 cos( π10 s)
yd = 20 sin( π10 s)
zd = s

. (75)

The initial position of the AUV is (x0, y0, z0) = (30, 0, 1)m, the initial attitude angle are (θ0,ψ0) =

(0, 0). The initial velocities of AUV are v0 = 0m/s, u0 = 0m/s, and w0 = 0m/s. The desired velocity is
ud = 1m/s. The constant velocity of ocean currents is v = (0.2, 0.2, 0.05)m/s. The path following control
simulations results using FTCFPC control are compared with the results of traditional backstepping.

In the numerical simulation, we design AUV controllers according to (47) and the parameters
are given by kx = 5, ky = 1, kz = 2, kψ = kθ = 2, ku = 8, kq = kr = 3, k f u = k f q = k f r = 1, p21 = 5,
p22 = p23 = 5. The parameters of the filter are selected as wn = 20rad/s, ζ = 0.9.

Finally, the simulation results by using finite-time command filtered backstepping control and the
traditional backstepping control are shown in Figures 6–12.
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The real and desired paths in the spatial space are shown in Figures 6–8 respectively show the
projection curves of horizontal plane and vertical plane. It can be seen from these figures that the
actual path of the AUV deviates from the desired path due to the influence of the ocean current. As can
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be seen from Figures 6–8. The path under FTCFPC control is closer to the desired path than that
under traditional backstepping control. The FTCFPC controllers has the smaller offset and achieve
significantly higher accuracy than traditional backstepping controllers in the presence of unknown
disturbance and ocean currents. Figure 9 shows the tracking errors of 3D path. It can be seen that the
error of real and desired path with the FTCFPC controller can converge in a short time. The position
error of two controllers has some fluctuations, but the fluctuation of the FTCFPC method is much
smaller. These can be proved that the FTCFPC method present in this paper has good robustness and
effectiveness. Figures 10 and 11 depict the response of velocity and angle respectively, from which we
can see that, FTCFPC method can achieve the desired path more quickly and has good anti-interference
ability. The control signals of different channels are shown Figure 12.

In summary, the FTCFPC method proposed in this paper can make the AUV tracking to the
desired path smoothly and robustly with the ocean currents. Following are the advantages which can
been seen from the above results:

1. The controller has strong robustness under the interference of ocean current.
2. It has faster convergence, and the AUV can follow the desired path in a short time.
3. The control has better following accuracy under current disturbance.

6. Conclusions

This paper proposes a FTCFPC controller to improve an underactuated AUV path following
performance in the presence of ocean currents and unknown disturbances. The designed controller
is based on command filtered backstepping method, finite-time theory and super-twisting observer
techniques. A second-order filter is designed to achieve derivative of virtual control signals such that
the computational complexity can be reduced and the differential expansion can be avoided. A filtered
error compensation loop is developed to ensure the error between the desired signals and the filter
signals converge. A super-twisting observer is proposed to reduce the impact of unknown disturbances
and ocean currents. A finite-time controller is introduced to ensure the system can be stable in a short
time. The system stability is analyzed based on the Lyapunov stability theory. Simulation results
indicates that the 3D path following controller proposed in this paper for underactuated AUVs is more
effective and robust than the conventional backstepping method in the presence of ocean currents and
unknown disturbances.

For the future works, more real external disturbance will be considered such as impermanent
currents and waves near the surface. The cooperative path following of AUVs and the limited
performance of actuators should be developed.
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