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Abstract: Minimally invasive surgery (MIS) techniques are growing in quantity and complexity to
cover a wider range of interventions. More specifically, hand-assisted laparoscopic surgery (HALS)
involves the use of one surgeon’s hand inside the patient whereas the other one manages a single
laparoscopic tool. In this scenario, those surgical procedures performed with an additional tool
require the aid of an assistant. Furthermore, in the case of a human–robot assistant pairing a fluid
communication is mandatory. This human–machine interaction must combine both explicit orders
and implicit information from the surgical gestures. In this context, this paper focuses on the
development of a hand gesture recognition system for HALS. The recognition is based on a hidden
Markov model (HMM) algorithm with an improved automated training step, which can also learn
during the online surgical procedure by means of a reinforcement learning process.

Keywords: surgical robotics; machine learning; gesture recognition

1. Introduction

Minimally invasive surgery (MIS) has become one of the most important surgical techniques,
because of its capability of reducing the postoperative convalescence for patients. However,
MIS imposes several restrictions to the surgeon’s perceptions and freedom of movement, such as
the loss of visual depth perception, limited tactile sensation, and the reversed movement of the
laparoscopic tools.

MIS techniques have been evolving over time to achieve two opposite goals, either for the sake of
the patient or to reduce the surgeon’s restrictions as mentioned above. Single-incision laparoscopic
surgery (SILS) is an example of an MIS variant within the first goal. This technique requires only one
incision into the patient, though the management of the surgical tools is seriously limited. On the
opposite side, hand-assisted laparoscopic surgery (HALS) consists of introducing one of the surgeon’s
hands into the surgical workspace to improve tactile sensation and dexterity, but the incision required
to introduce the hand is longer than the ones for the traditional laparoscopic tools used in other
MIS techniques.

The introduction of robotic assistants as co-workers into MIS techniques [1] aims to improve both
the patient’s outcomes and the surgeon’s movements and perceptions. This kind of robotic system
must have an intuitive human–machine interface (HMI) so it can assist the surgeon properly during the
surgical procedure. Simple buttons or direct commands (i.e., voice) are not fast enough to make a fluid
communication with a surgical robot, and lead to interruptions during the surgery. However, the HMI
proposed in [2] for controlling the endoscope through the surgeon’s eye movement or the one presented
in [3], where surgeons’ multimodal communication cues are analyzed and used to perform turn-taking
prediction with a robotic scrub nurse, are examples of appropriate HMI. One relevant research field of
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robotic assistant HMI systems focuses on the recognition of the surgeon’s tasks. This recognition is
usually based on the detection of tool gestures [4], already studied in our previous works [5], or hand
gestures if HALS is used. From the tool gesture point of view, there is relevant work for benchmarking
purposes that involves both the publication of general datasets with the DaVinci robot system and
the classification of the main recognition methodologies [6]. On the other hand, there are examples of
hand gesture recognition in surgery, such as the ones to command a robotic nurse to assist surgeons
by passing surgical instruments [7–9]. However, the recognition of hand gestures inside the patient
has not been studied in such depth. The main problem of HALS lies in the limited space available
to move the hand inside the abdominal cavity, as opposed to the usual application of hand gesture
recognition methodologies, which consider relevant displacements of the hand [10]. This is one of the
main reasonswhy the surgeon’s hand anatomy must be mapped before the recognition technique itself.
The mapping methodologies can be classified into two main categories: depth-map-based methods
(volumetric features) and skeleton-based methods (joint and angle features) [11]. Although digital
cameras are the most common sources of data extraction, other works prefer the use of three-axis
accelerometers [12].

The hands are the most relevant anatomic area to detect the surgeon’s gestures. The literature
presents several algorithms that are used for hand gesture recognition (HGR) [13] , such as hidden
Markov models (HMMs), conditional random field (CRF), or pure signal comparison with dynamic
time warping (DTW). The first ones are used in some works in applications such as automatic
sign language recognition through an accelerometer glove [14] or electromyographic signal pattern
recognition [15]. Variations of the CRF method like Markov/semi-Markov CRF are obtaining good
results for surgical gesture segmentation and classification with the combination of video and kinematic
data [16]. On the other hand, the latter (DTW) has been used in the real-time recognition of hand
gestures [17] or the detection of behavioral patterns of attention deficit hyperactivity disorder [18].
Each algorithm has its own advantages and drawbacks [19], but their recognition success rates
are very similar. These gesture recognition algorithms require metrics and clustering methods to
compare and classify new measured data with reference patterns. The detection of thresholds for
comparative analysis are commonly based on Euclidean, Hamming [12], or most recently, Mahalanobis
distances [20]. Moreover, the clustering classification is handled by means of techniques like the
k-means [21] or the Gaussian mixture model (GMM) [22].

This paper proposes an enhanced HGR algorithm based on HMM techniques and a reinforcement
learning process to be used in a HALS procedure. The core of this algorithm is the automation of
the HMM training, coupled with an on-line update of the gesture library, considering the confidence
index of the recognized gesture. The main reason for using a generative learning method like the
HMM instead of a discriminative model like CRF is its faster convergence to asymptotic error [23].
Although this method may retain a slightly higher error than discriminative models, this drawback
can be handled by a reinforcement learning (RL) algorithm [24] that updates the HMM gesture
library online.

2. Materials and Methods

2.1. Need for Gesture Recognition in HALS

The HALS technique requires the presence of one surgeon’s hand within the surgical workspace
while the other one manages the laparoscopic surgeon’s tool, as shown in Figure 1. This setup does
not allow the use of an additional tool, which is usually helpful for several standard laparoscopic
procedures. To minimize this restriction, previous work [5] proposes the use of a two-arm surgical
robot assistant. One arm orientates the endoscope towards the region of interest, and the other one
handles an extra robot tool. This second tool allows laparoscopic procedures that require both tools
(e.g., suturing) to be performed by means of automatic collaborative movements.
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Figure 1. The hand-assisted laparoscopic surgery (HALS) workspace is composed of: a tool and an
endoscope handled by a two-arm surgical robot; another tool managed by the surgeon; and finally,
the surgeon’s hand. All these components are inside the abdominal cavity.

The actions of the robot assistant primarily depend on the ongoing task of the surgeon. Movements
made by the surgeon’s hand are different depending on the stage of the surgical procedure. Thus,
the main goal consists of rendering these movements as gestures that are understandable by the robot
assistant. These gestures can be either surgical tasks or direct orders for the robot assistant (e.g., hold
a tissue or point with finger to focus the camera at a specific position). In both situations, there are
several methods to proceed with every surgical task (i.e., suturing, knot tying, etc.), thus each surgeon
performs the intervention in a unique manner [25]. Besides, the morphology of each surgeon’s hand
(i.e., size and length of the phalanges) may lead to different trajectories of the fingers for the same task.
For these reasons, the recognition system must be trained for each surgeon. Each surgeon will have an
associated gesture library where the specific gestures to perform in the surgery will be stored.

2.2. Cognitive Architecture for HALS Protocols

The architecture proposed for HALS protocols follows a cognitive approach (Figure 2). It is
divided into three main systems: perception, cognition, and action. The perception system measures
data from the surgical workspace with the aid of two sensors. Firstly, the image analysis of the
endoscope camera allows tracking of the tools or any other relevant object in the abdominal cavity.
This information is then used by the action system to plan a trajectory for the autonomous tools.
Secondly, a smart glove acquires information about the hand pose and orientation, which describes the
gesture of the current surgical stage. This information is the input of the HGR algorithm proposed in
this paper.

The cognition system is based on production rules to govern the behavior of the architecture.
These production rules are supported by a space where the long-term memory information is
combined with the working memory. The former encodes the knowledge base acquired through
the analysis of long periods of time; the latter includes information about what is currently happening,
introducing perception data and the actions to be performed. The cognition system also includes
learning algorithms—specifically, reinforcement learning algorithms—to enhance the performance of
the architecture.
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Figure 2. Cognitive robotic architecture for HALS protocols. HMI: human–machine interface.

Finally, the action system oversees execution of the decisions made by the cognition system.
These decisions are related to the surgical robot movements to suitably assists the surgeon in each
surgical stage. Although the surgical robot is intended to act autonomously, the surgeon may override
these movements (or even command an emergency stop) by means of an HMI system.

The way a HALS protocol is included into the cognitive architecture is outlined in Figure 3.
This figure shows the general workflow of a protocol for HALS including the hand gesture recognition
and the main interactions between the different systems in the architecture. When the perception
system detects that a new hand gesture has been made, the gesture recognition algorithm tries to
recognize it. The recognition of this gesture makes the HALS protocol evolve from one stage to another.
Then, the dynamic gesture library is modified with the information of the newly recognized gesture.
Finally, depending on the HALS protocol stage, the actions to be performed by the surgical robot to
properly assist the surgeon are communicated to and then executed by the action system.

The different robot actions have been further analyzed and verified in previous works of our group.
The endoscope motion combines a reactive behavior based on instrument tracking with a proactive
behavior based on the surgery workflow [26]. This control makes it possible to accommodate the
camera view to the current state of the task with enough flexibility enable it to adapt its behavior to
unplanned or unforeseen situations.

Regarding the tool movement managed by the robotic assistant, a hybrid force–position controller
is implemented based on [5]. On one hand, the position controller navigates the robot tool, and consists
of an artificial potential fields algorithm modified to adapt the velocity depending on the approach to
an obstacle (i.e., the surgeon’s hand/tool). On the other hand, the force controller is designed to apply
a force with the tool by means of a Proportional-Integrative (PI) controller feedback.

The normal workflow can be altered in case of a bad result of the gesture recognition algorithm.
This result may be because of an intentional gesture that was poorly recognized, or an unintentional
movement of the hand made by the surgeon, which eventually is considered as a gesture by the
recognition algorithm. In both situations, the recognized gesture is labeled as a bad result if the
gesture does not correspond to a valid action in the current stage of the surgical protocol. Moreover,
if the gesture is the one expected but its confidence index is below a threshold, the system also labels
it as bad. When a gesture is labeled as bad, the system will send a voice message to the surgeon.
Otherwise, the surgeon may still use a voice command interface to correct an unexpected detection of
the recognition system, making use of the voice decoder included in the architecture presented in our
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previous work [5]. This command must be explicit enough to avoid confusion when the surgeon talks
with the surgical human staff. This action leads to a correction on the detected gesture, which prevents
an undesired update of the dynamic gesture library.

Figure 3. General system workflow for a HALS protocol showing both the standard path when the
gesture is well detected, and the error path when it is misrecognized.

2.2.1. Semantic Memory

The semantic memory coupled with the procedural memory form part of the long-term memory
of the cognition system. This memory includes concepts, meanings, facts and any other forms of
knowledge needed to understand the environment [27]. More specifically, the knowledge needed to
suitably work in a HALS workspace includes (1) the different surgical protocols that the surgical robot
is able to assist; (2) the sequence of stages for each of those protocols, and (3) the actions executed in
each stage. All the information listed above is modeled as a database with tables or semantic units,
Si (i ∈ 1, 2, 3), that store the knowledge needed to properly assist the surgeon. Each unit entry includes
a set of attributes to suitably define it. The first semantic unit S1 lists all the HALS protocols where the
robotic assistant is going to be used. Each entry of this unit consists of two attributes: the protocol
name (protocolName) and the protocol identifier (protocol Idj). Hence, S1 is defined as:

S1 = {S11, S12, S13 . . . } ,

S1j =< protocol Idj, protocolNamej > .
(1)

The second semantic unit S2 describes the different stages of each protocol and all the trigger
signals (i.e., the events that make the protocol progress from one stage to another). Each stage stored
into S2 is defined by three attributes: the protocol identifier (protocol Idj), the stage (stagej), and the
trigger (triggerj). Hence, each entry of S2 is defined as:

S2j =< protocol Idj, stagej, triggerj > . (2)

For each stage, the semantic unit S3 stores the corresponding actions that the surgical robot
must make to assist the surgeon. Therefore, for each stage there will be as many entries as actions
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to be executed. More specifically, the HALS clipping protocol presents two different autonomous
movements: one for the endoscope, and another for the robot tool. Hence, each entry of S3 is defined as:

S3j =< protocol Idj, stagej, action >, (3)

where action is the action to be performed for each surgical element, endoscope, and/or surgical tool.

2.2.2. Procedural Memory

The procedural memory is the long-term memory that manages the knowledge of when, how,
and what actions have to be executed by connecting internal and external data. The internal data come
from the semantic memory, while the external data are provided by the perception and action systems.
This knowledge is presented as IF–THEN rules, the so-called production rules, where each production
has a set of conditions and a set of actions. The conditions denote the “IF” part of the rule and check
the current state of the task, whereas the “THEN” part defines the actions to be executed.

2.2.3. Working Memory

The working memory is the short-term memory of the architecture where the current environment
situation is codified. It includes not only the current cognition system situation, but also that of the
rest of the architecture (i.e., the perception and action systems). All this information is used by the
decision procedure to infer which production rules in the procedure memory must be applied next.

2.3. Offline Gesture Training Process

The first element of the general system workflow introduced in Figure 3 consists of the gesture
recognition. This algorithm requires the initial training of a dynamic gesture library, which is unique
for each surgeon as previously described in Section 2.1. Thus, this section explains the data acquisition
and processing steps followed in the present paper to obtain the required model for each gesture
within the dynamic gesture library.

The gesture training process has been designed in such a way that only the most relevant
information of a gesture is automatically processed and encoded into sequences of tags, as described
in Section 2.3.1. Such data are then processed by the gesture training algorithm (see Section 2.3.2),
which is implemented by means of an HMM network, to obtain a set of patterns for each of the
proposed gestures.

2.3.1. Data Acquisition and Processing

The gesture training process is performed on a patient simulator before the intervention,
and begins with the data acquisition of the surgeon’s hand movements by means of a smart glove.
This sensor device measures the origin of the coordinate frames Oij for each of the joints of the surgeon’s
fingers relative to the reference frame of the sensor device O0 (Figure 4). On each frame, index i denotes
the finger element (1 = thumb; 2 = forefinger; 3 = middle; 4 = ring; 5 = pinky) and j refers to the joints
between their contiguous bones (1 = metacarpal–proximal; 2 = proximal–middle; 3 = middle–distal;
4 = fingertip). All coordinate frames Oij are oriented in such a way that their zij vectors have the
direction of the j phalanx related to finger i. These frames, defined by their homogeneous transform
matrices T0

ij related to frame O0, can be redefined as a set of geometrical parameters (so-called features)
like the joints’ flexion qij, the distance li, and the orientation βi between contiguous fingertips:

li = ‖ Pi4
(i+1)4 ‖,

βi = atan2(‖ z0
i4z0

(i+1)4 ‖, z0
i4z0

i+14),

qij = atan2(‖ z0
ijz

0
i(j+1) ‖, z0

ijz
0
ij+1),

fg = 〈l1 · · · l4 β1 · · · β4 q12 · · · q53〉 = 〈 fx〉,

(4)
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where P(i+1)4
i4 is the distance vector among two contiguous fingertips.

Figure 4. Coordinate frames related to all finger joints and tips. Green, red and blue arrows represent
the XYZ axis respectively.

In (4), all features for a specific gesture g are gathered as a component fx into a feature vector fg.
This new definition of the full hand pose in terms of features simplifies the training process workflow,
which appears in Figure 5. However, this set of 22 features cannot be used together on the HMM
training process because of the exponential growth of their combinations into possible states of the
hand. Thus, one major contribution of this work consists of an algorithm which selects the features
that best represent each trained hand gesture, discarding the rest of them. The main advantage is its
capability of finding the most representative features automatically, regardless of the trained gesture.

Figure 5. The gesture training process workflow divided into data acquisition processing and
pattern training.
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As a first step of the process workflow, the feature acquisition element records N times a specific
gesture g. Each repetition n stores a feature sequence with the full trajectory of all the feature vectors
fg,n[k] discretized with Kn samples in time intervals of ∆t. Hence, the set of all feature sequences
Fg is (5):

Fg = {fg, n[k], n ∈ 1 · · ·N, k ∈ 0 · · ·Kn}; tk = k∆t. (5)

Both the trajectory and velocity of the hand may change for each repetition n. Thus, the number of
Kn samples acquired can also be different. The segmentation condition to start and finish the recording
of a feature sequence Fg is given in terms of the energy vector Bg,n per second of the feature vector fg,n.
More specifically, let τ be the frequency of fg,n (number of samples per second). The expression of the
energy is (6):

Bg,n = 〈bx〉g,n = 1/τ
τ−1

∑
k=0
〈 f 2

x 〉g,n[k]. (6)

If the energy bx of any feature component exceeds a threshold εx, then the feature acquisition
starts recording a new gesture. Each threshold εx can be automatically determined with a previous
experiment, where the sensor reads the features of the hand without any movement of the fingers.
In case of a very long sequence of gestures, the reliability of the HMM network may drop significantly.
To prevent this issue, a maximum limit for the time frame is imposed.

With the acquisition of Fg, these raw data must be processed in the following steps of the
workflow shown in Figure 5 to eventually obtain the encoded sequence for an HMM Network:

1. Feature Fitting. Each feature sequence fg,n of all N repetitions must be comparable in sampling,
time, and size. The dynamic time warping (DTW) algorithm can be used to find an optimal
alignment between such feature sequences [28]. More specifically, DTW corrects the delay, equals
the number of samples Kn = K, and provides a quantitative value of the similarity σnm among
two different feature sequences fg,i and fg,i, being i, j ∈ 1 · · ·N. In this way, the closer σnm is to 0,
the more similar are the two sequences. DTW is applied in this step to remove any repetition,
which is labeled as dissimilar because of errors in sensor measurements. This process eventually
leads to a reduced amount of M < N valid set of feature sequencesWg = DTW(Fg) with fixed
length of K samples.

2. Feature Selection. The training of a specific gesture usually requires only a feature subset Sg ⊆ Wg

that precisely defines the meaning of the surgeon’s hand movements. For example, a scissors
gesture is performed by the separation of the index and middle fingertips, so most relevant
features are l2, β2. In this way, a feature selection method is implemented to automatically select
these most relevant features based on the following criteria:

• Similarity. For each feature component fx, the DTW is applied with respect to the other
features of vector fg. If two or more components fx are similar, then only one is used for
training the gesture. As before, this comparison is made in terms of the Euclidean distance
σnm given by the DTW algorithm.

• Relevance. Feature sequences with maximum peaks under a specific threshold are ignored.
In other words, features with non-relevant motion are ignored for the training. These relevance
thresholds are proportional to the energy thresholds obtained on the equation explained in (6).
The usual values of such thresholds are about 1 cm for distance features li and 15◦ for angle
features βi, qij. Such thresholds are considered with the HALS restriction of finger movements
in mind.

3. Discretization. The selected feature sequences, Sg, are processed by a discretization method,
which finds the optimal amount of clusters, cx, and stores their locations into a vector of center
values, Cg = (c1, c2 · · · , cx). The algorithm chosen for this task is the X-means [29], a variant
of the K-means that computes the optimal number of clusters by means of a specific criterion
like the Calinski–Harabasz evaluation [30]. The main advantage for using X-means lies in the
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automation of the centroids selection process. These center values Cg are used for discretizing
the selected features Sg into dg by means of the Euclidean distance of each feature sample with
each component center value (see Figure 6). Besides, a hysteresis zone near each center value is
considered to avoid peak values and minimize unstable oscillations because of noise effects. Final
values on each discretized feature component dx[k] are integers among 0 and its number of center
values (dx[k] ∈ 0 · · · dim(Cg)− 1).

Figure 6. Encoded sequence and centroid values for a specific feature, including the hysteresis areas
of non-actuation.

4. Encoding. All the discretized sequences, dg, of each feature component are combined into a single
encoded sequence of tags, Eg, by the encoding method. The tagged sequence, eg,n[k], is encoded
by means of the discretized feature components, dx[k], and the components cl of the center values
Cg (7):

eg,n[k] = 1 + d1[k] +
x

∑
m=2

(
m−1

∏
l=1

cl)dm[k]. (7)

This expression assigns a unique tag for each possible combination of all the discretized features.

In essence, all the steps of the data acquisition and processing were designed to determine the
parameters automatically and customized for the user who is training the system. Indeed, the only
parameters to be set are the energy thresholds and the relevance thresholds, which are automatically
obtained by means of a prior experiment. On the other hand, the vector of center values is also
automatically obtained with the X-means algorithm. Therefore, this methodology enhances the
adaptation of the algorithm to every single user and their unique way of making hand gestures.

2.3.2. Pattern Training

The encoded set, Eg, obtained from each repetition of the discretized feature sequences, dg,
is sequentially sent to the training process step (Figure 5). The training process constructs an HMM
network associated to each of the g gestures explained in Section 2 by means of the Baum–Welch
algorithm [31]. Each of these networks consists of a gesture set, λg, with the following trained
parameters (8):

λg = {SQ, SE, U, V, π} . (8)
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In this expression, SQ denotes the states of the HMM; SE is the set of all possible combinations
of the encoded sequences, Eg, for each sample, eg,n[k]; the transition matrix, U, is the probability
distribution, which indicates the relations between the states; the emission matrix, V, is the probability
distribution, which establishes the most probable value of the encoded sequence at each state; and π

is the initial states distribution. More specifically, this work chose five states SQ for all the λg trains.
The set of encoded sequences, SE, includes all the combinations of eg,n for each sample k. 5× 5 diagonal
symmetric matrix where the upper and lower diagonals are not null, and the sum by rows (columns)
is equal to 1. Likewise, V is initially a 5× (c1, c2, · · · , cx) matrix, where the sum by row is equal to 1.

After all the N repetitions performed for each gesture g, the resulting gesture sets, λg, are stored in
the dynamic gesture library. These data are used by the gesture recognition process, which is explained
in detail in the next section.

2.4. Gesture Recognition Process and Dynamic Gesture Update

The dynamic gesture library that is used during the recognition process is composed of the
gesture records that were made during the off-line training process. In order to include new records
of the gestures already trained but made during the surgery itself, an on-line procedure to include
them was designed. This way, the dynamic gesture library can adapt itself to the smooth changes the
surgeon could make in the trained gestures and consequently, to improve the overall performance of
the recognition process. In the following, the whole process from the gesture recognition to the update
of the library will be detailed (Figure 7).

Figure 7. On-line learning process workflow. Update of the dynamic gesture library through the
reinforcement learning (RL) process.

Once a new record has been recorded and encoded, the recognition process starts. The on-line
encoded sequence, E, is processed by a forward–backward algorithm for each gesture set, λg, of trained
data. This algorithm computes the probabilities, Pg, converted into a logarithmic scale, and as a result,
it returns the gesture, g, that has obtained the highest probability Pmax. Additionally, a confidence
index (CI) value between 0 (null confidence) and 1 (full confidence) is obtained. This index is computed
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by means of the two highest probabilities—that of the recognized gesture, Pmax, and that of the gesture
recognized in the second position, P2 (9):

CI = min
(

P2 − Pmax

2Pmax
, 1

)
. (9)

The dynamic gesture library is updated with the information of the record that has just been
recognized through the transition (U) and emission probability matrices (V). Each time a new record,
E, has to be recognized, the transition and emission probability matrixes of this new sequence are
computed. They are used to obtain the new matrixes of the gesture set λg (7) that was just recognized,
using (10) and (11):

Uh = (1− p)Uh−1 + pUnew, (10)

Vh = (1− p)Vh−1 + pVnew, (11)

where Uh is the new transition probability matrix of the gesture set λg; Uh−1 is the previous transition
probability matrix of the gesture set λg, and Unew is the transition probability matrix of the new record.
In the same way, Vh is the new emission probability matrix of the gesture set λg; Vh−1 is the previous
one, and Vnew is the emission probability matrix of the new record. Finally, p is the value used to
weight the new record with respect to the old ones. Depending on its value, the gesture library is
updated using a different amount of information from the newly recognized record. High values of p
make the gesture library include more information about the new record than of the previous ones.
On the contrary, small values of p mean that the library is barely modified by the new information.
Thus, this parameter is chosen so that the CI will be maximized, as explained next.

When the new record has been misrecognized, either because it is substantially different from
the ones in the library, or because the surgeon has made a mistake, the surgeon informs the system
through a voice command and the value of p is set to zero (i.e., this record is not used to update the
dynamic gesture library). On the contrary, when the system properly recognizes the record, p must be
chosen to improve the overall process. To avoid a static system where the weights, p, are defined and
fixed during the design process, a reinforcement learning (RL) algorithm is used to make the system
learn this parameter. This learning technique tries to maximize a reward that is received when the
system makes a decision [24]. Within this work, the goal was to maximize the CI previously defined,
so that the overall performance of the recognition process increases. Thus, the reward signal of the RL
algorithm will be the confidence index as defined in (8). On the other hand, the decision to be taken
is which weight value, p, will be used to update the dynamic gesture library. As this decision also
depends on the CI value, the RL algorithm is organized to make independent decisions according to
the level of confidence on the recognition. Thus, records with high CI will tend to higher weighting
values than the ones recognized with extremely low CI. Although the CI can take values between
0 and 1, in order to avoid having a different weight value for each possible CI, three different ranges
of the CI value are established. This way, only three weight values, p, are learned—one per CI group
(i.e., CI = [0.0–0.5), [0.5–0.8), [0.8–1.0]). As can be observed, the size of each group decreases as the CI
value increases (i.e., recognitions with CI ∈ [0.8–1.0] are more relevant than the ones in [0.5–0.8) and
even more than the ones in [0.0–0.5)). This makes it so that only the best recognitions (higher CI) have
a high impact on the dynamic gesture library update.

On the other hand, the weight values, p, have to be discretized in order to be used in the RL
process (i.e., the decision has to be made within a finite set of predefined values. To make the process
converge in a reasonable number of detections, it has to be reduced. Thus, it is discretized, taking
the following considerations into account: (1) New recorded matrices cannot completely substitute
the previous ones in the gesture set because all the historic information would be lost; thus p = 1 is



Sensors 2019, 19, 5182 12 of 23

discarded. (2) New record matrixes cannot be rejected if the gesture has been correctly detected, thus
p = 0 is discarded. (3) The gesture set has to include plenty of information from several sources, that is,
different gesture records. To achieve this, the values of p are preferred not to be too high because
higher values imply the loss of information of the previous records. Consequently, the possible values
of p are discretized into: p = 0.2, 0.3, 0.4, 0.5, 0.6.

According with the discretization and aggrupation that has been made, the RL algorithm has
different weight values to choose per CI group. That is, for each CI value within a group, the RL
algorithm has five different p values to choose. This range of possibilities constitute the set of
state–action pairs that defines this kind of algorithm and are implemented as any other production
rule in the procedural memory. The states are the different CI groups and the action is the weight
value selection (Table “PAIRS” in Figure 7).

To be able to make the decision, that is, to choose a p value within the five possible ones within a
CI group, these action–state pairs (CI group—p) are weighted. Each pair is associated to a Q-value
that will be used by the RL algorithm to make the decision. The Q-value is updated when the reward
is received, following (12) (SARSA algorithm):

δh = α (rh+1 + γQh+1 − Qh) , (12)

where Qh+1 is the Q-value in the h + ith iteration; rh+1 is the reward collected in this iteration
(i.e., the CI); α is the learning rate; and γ is the discount rate. The learning rate determines the
importance of new knowledge over old information, while the discount factor determines the
importance of future rewards [32]. The last two parameters are considered as initial conditions
of the RL algorithm and are set as preconditions in the experiments.

As the RL technique is based on discovering which actions are the most rewarded by trying
them [24], this kind of algorithm is a trade-off between exploration and exploitation: the system has
to exploit what it already knows, but it also has to explore new actions. To determine how the rules
are selected based on their Q-value, the ε− greedy exploration strategy [33] is used. This strategy
randomly selects a pair (CI group—p) with ε probability, while the pair with the highest Q-value is
selected with 1− ε probability.

2.5. Co-Worker Robotic Scenario for HALS Kidney Resection

The HGR system proposed by this work was tested on a HALS protocol of a total kidney resection,
where the ureter and blood vessels were clipped. The experimental setup, which is shown in Figure 8a,
emulated a HALS co-worker robotic surgery scenario, using commercial devices. It included two robots:
a WAM manipulator from Barret Technology that magnetically handled a stereoscopic mini-camera [26],
and a UR3 manipulator from Universal Robots that controlled a surgical tool. The abdominal simulator
dimensions were 37× 47× 20 cm3, which is in the range of the commercial ones found in the market for
abdominal laparoscopic training [34]. The surgeon managed one conventional surgical tool with one
hand. The surgeon’s other hand ws introduced into the abdominal simulator through a HandPort [35],
as shown in Figure 8b,c. This HandPort is a commercial tool from Endopath Dextrus that allows up
to 4 cm abdominal wall thickness [36]. Moreover, the surgeon’s hand was equipped with a smart
Data Glove Ultra from Fifth Dimension Technology. This glove gives the position of the fingertips
as well as the flexion of the finger joints. The fingertips are open, so the surgeon can have the same
tactile sensation as without the glove. Although this configuration has only been tested on in-vitro
experiments, the glove could be protected with an extra surgical glove, so it can be isolated from the
patient, which prevents a further sterilization of the device.
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(a)

(b) (c)

Figure 8. Experimental setup. (a) Co-worker robot assistant formed by two robotic arms that handle a
surgical tool and a stereoscopic mini-camera. (b) The inside of the abdominal simulator. (c) Detail of
the HandPort used to insert the hand into the abdominal simulator.

The stages of the total kidney resection of the HALS co-worker scenario proposed in this paper
are shown in Table 1. Although there is no limit to the number of gestures managed by the proposed
algorithm, the kidney resection protocol only needs three different gestures. Each stage of this
protocol can be described by the recognition of a set of surgical gestures made by the surgeon’s hand
(Figure 9). The selection of these gestures considers that the surgeon is able to make their related finger
displacement in a HALS in-vitro environment (Figure 8):

• Grabbing. This gesture consists of opening and closing the hand. It is useful to detect surgical
situations like grabbing a big mass of tissue or an organ, although it can also be made for separating
adhesions (stages 1 and 6).

• Scissors. With the index and middle fingers extended, the surgeon separates and joins their tips
like a scissor mechanism. This can be used to order the robot tool to make an action with its tool
(stage 4).

• Forceps. The thumb and index fingertips get closer and retreat like forceps. This may apply to
detecting when the surgeon’s hand is pulling a thin tissue or vessel (stage 3).

Table 1. Kidney resection protocol for HALS.

Stage Tool Gesture Robot Action

1 Hand Grabbing Hand Gest. Endoscope Motion
2 Forceps Forcep Insertion Forcep and Endoscope Motion
3 Hand Forcep Hand Gest. Endoscope Motion
4 Clipper Scissor Hand Gest. Endoscope Motion
5 Scissor Scissor Insertion Scissor and Endoscope Motion
6 Hand Grabbing Hand Gest. Endoscope Motion
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Figure 9. Set of surgical gestures needed for the kidney resection protocol for HALS.

As shown in Figure 3, the recognition of a new gesture makes the system progress to the next
stage. Then, the gesture library is updated through the process explained in Section 2.4 and a new
action is commanded to the endoscope and/or the robotized surgical tool, as described in Section 2.2.

This protocol and the gesture recognition process itself entails knowledge that has to be included
into the semantic memory. Specifically, related to the protocol, the first semantic unit has to include the
HALS protocol, so it is encoded as S11 =< 1, KidneyResection >. The information about the protocol
stages and the triggers that make the protocol to progress from one stage to the next is codified in the
second semantic unit as:

S21 =< 1, stage1, grabbing hand gesture >,

S22 =< 1, stage2, f orceps insertion >,

S23 =< 1, stage3, f orceps hand gesture >,

S24 =< 1, stage4, scissor hand gesture >,

S25 =< 1, stage5, scissor insertion >,

S26 =< 1, stage6, grabbing hand gesture > .

(13)
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Finally, the semantic unit S3 stores the robot actions as follows:

S31 =< 1, stage1, endoscope movement >,

S32 =< 1, stage2, f orceps movement >,

S33 =< 1, stage2, endoscope movement >,

S34 =< 1, stage3, endoscope movement >,

S35 =< 1, stage4, endoscope movement >,

S36 =< 1, stage5, scissors movement >,

S37 =< 1, stage5, endoscope movement >,

S38 =< 1, stage6, endoscope movement > .

(14)

Related to the gesture recognition process, in order for each type of gesture to be recognized,
its set, λg, has to be included. Likewise, the discretization of the weight values and the aggrupation of
the CI, needed for the on-line update of the dynamic gesture library, must also be included.

Three new semantic units are needed to codify this information, what makes the semantic memory
finally have a total of six units.

Specifically, S4 includes the gesture type and the parameters included in its set:

S4j :=< gesturej, SQj, SEj, Uj, Vj, πj >, (15)

where for each gesture, SQ denotes the states of the HMM, SE is the set of all possible combinations of
the encoded sequences, U is the transition matrix, V is the emission matrix, and π is the initial states
distribution as defined in Section 2.4. For the HALS protocol defined in Table 1, this semantic unit will
be encoded as:

S41 =< grabbing, SQ1, SE1, U1, V1, π1 >,

S42 =< scissors, SQ2, SE2, U2, V2, π2 >,

S43 =< f orceps, SQ3, SE3, U3, V3, π3 > .

(16)

S5 includes the discretization of the weighting factor, p, of the on-line process:

S5 =< 0.2, 0.3, 0.4, 0.5, 0.6 > . (17)

Finally, S6 contains the aggrupation of the CI.

S61 =< 0.0, 0.5 >,

S62 =< 0.5, 0.8 >,

S63 =< 0.8, 1.0 > .

(18)

On the other hand, the entire gesture recognition process and the dynamic gesture library update
process form part of the procedural memory (Section 2.2.2). Thus, the whole HALS workflow shown in
Figure 3 is encoded into the production rules (PRl) shown in Table 2. The first one, PR1, is devote to the
recognition of a new gesture. When the perception system detects a new record, E obtained with (9),
the gesture recognition process explained in Section 2.4 starts ([g, Ug, Vg] = recognition(E, S4)).
Once a new gesture, g, has been recognized, two actions are made: (PR2) the HALS protocol stage
is updated (new_stage = update_stage(g, S4)) and (PR3) the RL algorithm selects a new weight,
p = RL_algorithm(CI), to later (PR4) update the dynamic gesture library with the information of
the recently recognized gesture [Uh, Vh] = library_update(p, Uh−1, Vh−1, Unew, Vnew). When a new
stage is detected, (PR5) is performed by the surgical robot to properly assist the surgeon, executed by
the action system (execute_actions(newstage, S3)). Finally, if there is nothing new (PR6) the cognitive
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system enters into a waiting state. Each of these six productions are codified as a larger number
of rules.

Table 2. Production rules.

PR1 : IF E THEN [g, Ug, Vg] = recognition(E, S4)
PR2 : IF g THEN new_stage = update_stage(g, S4)
PR3 : IF g THEN p = RL_algorithm(CI)
PR4 : IF p THEN [Uh, Vh] = library_update(p, Uh−1, Vh−1, Unew, Vnew)
PR5 : IF new_stage THEN execute_actions(newstage, S3)
PR6 : IF nothing THEN wait

3. Discussion and Results

The proposed experiments focused on the hand gesture recognition process detailed in this
paper. In particular, the objective of the experiments was to compare the overall performance of the
gesture recognition process detailed in this paper. The comparison was made among three different
configurations of the algorithm: using only the gesture recognition process with no dynamic gesture
library update (Only Recognition); using the gesture recognition process coupled with the on-line
update of the dynamic gesture library explained in Section 2.4 but with fixed weight (p = 0.5)—that
is, no RL algorithm to infer the weight values (Recognition + p = 0.5); and finally, the whole process
including the RL approach (Recognition + RL).

For the third configuration used in the experiments (i.e., the one that used the RL algorithm),
the discount rate (γ) was set to 0.9 and the learning rate (α) to 0.3, making the system consider past
information but also new information. Regarding the use of new knowledge to explore, the ε− greedy
probability (ε) was configured with an initial value of 0.4 in the first 20 gestures to allow exploration
of new weight values. Then, it was reduced to 0.2 to get a higher exploitation of the already known
values and thus enable the convergence of the weight factor.

The offline training process introduced in Section 2.3 was performed with 30 repetitions of each
hand gesture explained above (Figure 9). The topology of the HMMs associated to each gesture
was the same as described in Section 2.3.2. The obtained dynamic gesture library was used to make
realizations of the three configurations already explained by ten different users. Each realization
included the detection of 60 gestures. The results obtained by each configuration of the algorithm
described above are shown in the form of confusion matrices in Figure 10. Each row represents
the performed gesture, and each column represents the detected gesture. So, the diagonal (green)
represents the gestures that were correctly detected. The rows and columns sum different values
because each user did each gesture different times in a random order. This method prevents the user
from making very similar gestures because of the continuous repetitions. Thus, the only condition
consists of getting a total of 60 repetitions per user so the total sum of all elements of each confusion
matrix is 600. From the results obtained, it can be noticed that the percentage of correct gesture
detection was slightly higher when the RL algorithm is used. The obtained values were equivalent to
the ones analyzed in [13].

Coupled with the type of gesture detected, the process produces the confidence index of the
well-detected gesture, which informs about the reliability of the detection. The closer the confidence
index is to 1, the more reliable the detection. The CI results for all the realizations made by all subjects
are shown in Figure 11. A change can be seen in the tendency of the CI. When no RL algorithm was
used, the most populated range of well-detected gestures was the one with CI in the [0.0–0.5) range;
however, when the RL process was used, the bigger range was the opposite one, [0.8–1.0]. The mean
of well-detected gestures with CI in [0.8–1.0] for all users changed from 37.08% when no RL algorithm
was used to 65.51% when it was used.
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Figure 10. Confusion matrices for each configuration of the recognition algorithm.

(a)

(b)

Figure 11. Occurrence percentage of well-detected gestures depending on their confidence index.
(a) Without the on-line learning algorithm; (b) With the on-line RL algorithm.

A deeper analysis of the experiment results shows that the number of well-detected recognitions
with full confidence (CI = 1.0) in the results also increased when the RL algorithm was used (Table 3).
This result coupled with the previous one made it so the overall false positives were reduced when the
RL algorithm was used. The previous results reveal that the contribution of the on-line RL process not
only increased the total percentage of well-detected gestures, but it also improved the performance of
the recognition process, as its confidence index increased as well.
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Table 3. Well-detected gestures with CI = 1.0.

Only
Recognition

Recognition +
p = 0.5

Recognition +
RL

User 1 14.30% 47.17% 60.55%
User 2 14.72% 38.83% 41.95%
User 3 31.63% 43.66% 56.33%
User 4 24.44% 40% 62.32%
User 5 36.67% 45% 59.62%
User 6 24.44% 39% 49%
User 7 16.85% 36.66% 48.33%
User 8 19.76% 46.66% 60%
User 9 20.27% 45% 60%

User 10 26.08% 38.33% 43.33%

When the configuration with the on-line RL process was used, three different weight factors
were learned, as explained in Section 2.4. A weight factor was learned for detections made with a
confidence index in the [0.0–0.5) range, another one for detections where the CI was within [0.5–0.8);
and finally, the last weight factor for detections with CI in [0.8–1.0]. Figure 12 shows the evolution of
these three weight factor values, p, in Realization 1 of User 1, when RL was used. The remaining ones
behaved in the same way.

Figure 12. Weight value (p) learning of Realization 1 of User 1. The learning was divided into the three
aggrupations of the confidence index.
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As can be seen in Figure 12a (CI ∈ [0.8–1.0]), at the beginning of the learning process there was
a high variability in the weight value, but because of the reward feedback it finished converging to
p = 0.5. This value is one of the upper possible ones, which makes the contribution of the new gesture
to the library high when the confidence index is also high. For the well-detected gestures with a
lower CI, there were not enough samples to make the algorithm converge, as shown in Figure 12b,c.
That is, the number of well-detected gestures with CI lower than 0.6 reduced significantly when the
RL algorithm was used.

Through these results it can be stated that the use of the RL on-line process improved the number
of well-detected gestures and the overall performance of the recognition process. Although the accuracy
of the system was not heavily improved when the RL process was used (Figure 10), the confidence in
the well-detected recognitions was increased over 20% in relation to the use of only the Recognition
process. The percentage of recognized gestures increased by switching from low to high confidence
index, making the system more reliable.

Furthermore, in order to test the real-time capabilities of the algorithm, the mean response time
was measured. On average, the algorithm spent 0.065 s in recognizing a gesture. As the time required to
record the gesture is about 2 s on average—greater than the one needed to the recognition process—the
real-time capabilities are assured as stated in [37]. On the other hand, a user feels that a system is
reacting instantaneously if the time response is lower than 0.1 s [38], which is met in the recognition
process of the proposed algorithm.

Finally, an additional experiment was considered to validate the choice of the HMM network as
the core process of the proposed algorithm. Toward this end, User 2 made 30 repetitions of each of
the three gestures shown in Figure 9 for training both a conditional random field (CRF) and an HMM
algorithm. Then, this user performed three realizations, each of them consisting of the detection of
60 gestures on a random sequence. Again, the same data acquired were used in parallel by the CRF
and the HMM. The average percentage of correctly detected gestures was 88.33% for the CRF and
89.44% for the HMM.

In this way, the CI behavior was also analyzed. As seen in Table 4, the CIs when the gesture was
correctly detected were higher when the CRF algorithm was used. However, when the CRF gave a
false positive (i.e., when the gesture was not correctly detected), its confidence index was much higher
than the one obtained in HMM.

Table 4. Average confidence index. CRF: conditional random field; HMM: hidden Markov model.

Misrecognized Gesture Well-Detected Gesture

HMM CRF HMM CRF

Experiment 1 0.3161 0.4137 0.6984 0.8681
Experiment 2 0.1843 0.4540 0.6998 0.8166
Experiment 3 0.1455 0.5280 0.6696 0.8449

The experimental results obtained for each recognition methodology were compiled in the form of
a receiver operating characteristic (ROC) curve. Figure 13 shows the ROC curves of all the experiments
with the true positive rate (TPR) versus the false positive rate (FPR) data. The accuracy parameter
is the area under each of the curves, and quantifies the performance of the recognition algorithm.
The static HMM algorithm with no update of the gesture library gave an accuracy of 0.8502, whereas
the CRF algorithm had about the same value (0.8436). The update of the HMM gesture library with a
constant gain of p = 0.5 improved the accuracy up to 0.8720. However, the RL algorithm gave the best
results, with an accuracy of 0.9085.
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Figure 13. Receiver operating characteristic (ROC) curves for each of the recognition algorithms
analyzed in the experiments: HMM, CRF, update training with constant p = 0.5, and RL.

4. Conclusions

The experimental results of this HGR system demonstrated how the on-line reinforcement learning
process made the system improve its overall performance, increasing the confidence of each recognized
gesture. Additionally, the proposed approach was compared with a CRF algorithm. Although the
recognition rates were quite similar, the confidence index of false positives in CRF was higher than
with the HMM. Thus, the use of the HMM model, improved with the reinforcement learning algorithm,
increased the mean confidence index, suggesting it is a more suitable approach for surgical applications.
The obtained results agree with the values obtained from other works with different methodologies,
such as recurring neural networks (91.9%) [13] or dynamic time warping (91.4%) [17]. However, it can
be remarked that the use of the RL algorithm may slightly improve both the accuracy and the CI,
as was shown in the experiments.

However, this approach presents some limitations that should be solved. One of these is the
surgeon-dependency—that is, the gestures that are trained can only be detected with the same surgeon
that performed the training. The use of a cognitive architecture would enhance the use of a modified
algorithm to combine the information of all the training into a single common gesture library. In this
way, any surgeon could benefit from the previous work and collaborate with new data thanks to the
online recognition process. On the other hand, when the recognition system fails, the feedback is
provided by voice commands, which would increase the surgeon’s workload. In this sense, the success
rate could be increased by means of a multi-sensor system, which would take into consideration other
sensors such as a vision system and/or the MYO armband. Finally, during the experimental stage, only
three gestures were trained and evaluated. Although these gestures were considered sufficient in the
proposed surgical scenario, they could be extended to evaluate the proposed approach performance as
the number of trained gestures are increased.

Regarding future research directions, our aim is to integrate the proposed gesture recognition
approach as a subsystem within the architecture shown in Figure 2. Thus, a complete cognitive system
would be developed, integrated, and tested in a real surgical scenario.
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Abbreviations

The following abbreviations are used in this manuscript:

MIS Minimally Invasive Surgery
HALS Hand-Assisted Laparoscopic Surgery
HMM Hidden Markov Model
SILS Single-Incision Laparoscopic Surgery
HMI Human–Machine Interface
HGR Hand Gesture Recognition
CRF Conditional Random Field
DTW Dynamic Time Warping
GMM Gaussian Mixture Model
RL Reinforcement Learning
CI Confidence Index
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