
sensors

Article

Physical and Metrological Approach for Feature’s
Definition and Selection in Condition Monitoring †

Giulio D’Emilia * , Antonella Gaspari and Emanuela Natale

Department of Industrial and information Engineering and of Economics, University of L’Aquila,
67100 L’Aquila, Italy; antonella.gaspari@univaq.it (A.G.); EMANUELA.NATALE@UNIVAQ.IT (E.N.)
* Correspondence: Giulio.demilia@univaq.it
† This paper is an extended version of the paper D’Emilia, G.; Gaspari, A.; Natale, E. Integration of model and

sensor data for smart condition monitoring in mechatronic devices. In Proceedings of the 2019 IEEE
International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT 2019).

Received: 9 October 2019; Accepted: 22 November 2019; Published: 26 November 2019
����������
�������

Abstract: In this paper, a methodology is described aiming at emphasizing physical and metrological
criteria in feature selection for condition monitoring of a real scale mechatronic system. The device is
used for packaging applications according to the movements of its end effector, driven by a couple of
brushless servomotors and a kinematic mechanical linkage. The approach is hybrid, meaning that the
starting feature set is built with reference to both experimental data from different sensors and to the
indication of a simplified kinematic and dynamic model of the mechanical linkage itself. A critical
comparison and mixing of theoretical and experimental data, based also on a physical interpretation of
differences, suggests some more features, with respect to the classical ones, of hybrid type, which could
be mostly correlated to the effects of statuses and defects of the system to be identified. The whole
procedure is step by step validated, in order to evaluate the variability of features, throughout the
whole procedure. The variability is analyzed depending on the actions that are realized in order to
define, select, and use the proposed features for data processing by advanced algorithms, like the
most typically used classifiers and artificial neural networks. A comparison with the state-of-the-art
automatic feature’s selection procedure is also presented. Experimental results show that the proposed
methodology is able to classify with high accuracy many statuses of the mechatronic system, which are
only slightly different as for set-up settings and/or mechanical wear and lubrication conditions of
mechanical parts of the mechatronic system. Issues to be pursued to a more effective generalization
of the method are also discussed.

Keywords: condition monitoring; accelerometer; laser vibrometer; system model; feature selection;
ANN; classification accuracy

1. Introduction

Condition Monitoring (CM) of mechatronic systems in an industrial scenario is a practice more
and more used to improve the use of the asset with reference to many types of machinery and operative
situations [1,2].

Sometimes, specific tasks are of interest, like a suitable definition of the working parameters at
the set-up of the system and/or identification of critical conditions due to fault and/or wear for smart
maintenance [3–7], to now be realized in modern operating scenarios like Industry 4.0 or IoT [8].

If we consider the main requirements of CM, procedures should be selective and resolute,
with reference to the status of interest, reliable, with reference to the capability of operating well also in
difficult conditions from the environmental point of view, of general validity, in order to be transferable
to systems different from each other, maintaining the diagnostic capability.
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All these characteristics require that all the steps of the CM activity are optimized, considering
the aspects connected to the measurement of data (sensor choice and positioning, data acquisition,
measurement of experimental data, sensor fusion, . . . ) to the data processing and synthesis, to give
support to the decision-making.

A remarkable role for the success of the CM application is connected to the variation of specific
features, defined to synthetize the phenomena of interest. The feature’s behavior depends on many
factors, like, for instance, the quantity of interest, the type of sensor used and the way data from
different sensors are merged [9,10], the part of the operating cycle taken into account and, of course,
sensor positioning throughout the kinematic chain [1].

According to the literature [4,11–14], features in the time and/or frequency domain are available
that are expected to give reliable and selective information about the setting or about the presence of
typical defects in the mechatronic devices.

Improving the meaning, the accuracy, the selectivity and the resolution of features, especially in
complex mechatronic systems, is not a trivial task. In fact, both huge amounts of data deriving from
networks of sensors have to be merged and advanced procedures of data mining and processing should
be used. Finally, they should be easy and light to calculate with reference to the data processing [15,16].

In a previous work [17], the authors aim at improving the classification capability of features,
by using an integrated approach of different contributions. Sensor fusion has been used to have
experimental information at different positions of the mechanism and to merge their experimental
information to the indications of a simulation model of the kinematic and dynamic behavior of
the system. This approach allowed for defining a wide set of features, able to take into account most of
the phenomena of interest for the CM itself. The hybrid approach already proved to be very effective
in diagnosis and prognosis for smart maintenance [18].

Addressing correctly the CM methodology towards a reliable, accurate, selective, and resolute
classification of the status of interest asks for some requirements. The features the CM is based on
should be exhaustive with respect to the possible phenomena of interest, meaningful from a physical
point of view, robust with respect to the noise, coherent between each other and limited as a number.
Due to these many reasons, feature selection is a key point of the CM strategy. A first selection criterion
of the features based on their repeatability was proposed [17]. The debate about these topics is very
active, with reference to both general approach and specific applications, like, for instance, those
related to tool CM in production machine [19–22] or computer vision applications [23]. How much
these methods are of general validity is still an open point for CM of mechatronic systems.

In [24,25], authors provide a useful analysis of the main techniques for feature extraction
and selection, for CM applications of industrial interest. They propose a set of algorithms which
automatically extract and select features, independently of both the type of the specific applications of
interest and the classifier used, as a basis for the tasks that the maintenance-on-condition requires.

Other examples exist [26], providing a wide survey on semi-supervised methods for feature
selection: most of the available algorithms make use of a series of nested algorithms that must be
adequately known and characterized, so that they can work properly and return fruitful results.
This scenario appears inter-disciplinary due to the nature of the topics, ranging from electro-mechanical
know-how, to informatics, automatics, statistics, and so on. Therefore, entrusting some “black boxes”
called for understanding the causes of problems linked to the ordinary industrial operations,
and identifying their solution still represents a limitation, especially when the complexity of the
assets/system can make application of tools more difficult. In other cases, if a lack of knowledge of
processes is encountered, for instance when the process is quite new, a multi-step feature selection
procedure is realized to get a reliable monitoring of the process [27].

The goal of the present paper resides in the possibility of increasing the awareness of the
phenomena underlying the monitored processes by taking under control the data flows at all the main
steps of the procedure, thanks to an increased robustness due to a physical and metrological support;
this is believed to increase the general validity of the available tools.
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The paper is organized as follows: Section 2 describes the approach, which has been applied to a
test bench taken as an example of device of general use in a generic industrial plant. The mechatronic
device under test is an industrial system for automatic packaging, whose behavior is strongly influenced
by the initial setting of the control parameters and by the lubrication status of the ball screw along
the vertical axis. Feature extraction and selection serve as a preliminary step of a training and testing
procedure of advanced algorithms, whose performance must be assessed clearly, i.e., highlighting
the specific need of the CM application. Section 3 summarizes the main results that have been
reached, by applying a physical and metrological approach, in comparison with automatic procedures
commercially available. Conclusions and future developments are provided at the end of the paper.

2. Materials and Methods

2.1. Test Bench and Simulation Model

The methodology has been implemented with reference to an automatic system in real scale
(Figure 1a), able to realize an alternate linear motion along a vertical axis by means of one ball screw.
One motor manages the motion, so the movement of the shaft is a pure translation, with sinusoidal
motion law at a frequency in the range up to 5 Hz and a stroke up to 150 mm [17].

The scheme of Figure 1b shows the measurement apparatuses, with reference to both internal
sensors to the system, i.e., angular position and motor currents transducers, and to the external ones,
i.e., a Laser Doppler Vibrometer (LDV), bandwidth 50 kHz, and a Micro Electro-Mechanical System
(MEMS) tri-axis accelerometer, bandwidth 200 Hz.

The acquisition from external sensors is carried out by means of a Data Acquisition System (DAQ)
by National Instruments (Austin, TX, USA), at a sampling rate of 1000 Hz. A synchronization between
the external data acquisition and the PLC has been realized, by using a trigger signal from the PLC to
the DAQ.

By way of example, Figure 2 shows time diagrams of quantities measured by both internal and
external sensors to the PLC.

Figure 1. Experimental test bench: (a) picture [11]; (b) scheme of the measurement and data acquisition apparatus.
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Figure 2. Example of experimental time histories. Respectively: angular position (◦) and linear
acceleration (m/s2); motor current (mA) and linear acceleration (m/s2); angular velocity (◦/s) and linear
velocity (m/s).

The main steps of the methodology are according to the following ones:

1. Realization of a representative kinematic and dynamic model of the system of interest.
The theoretical model developed for the system has been extensively described in [10].

2. Realization of experiments, corresponding to different operating conditions.
3. Multiple runs of the model, considering as input different quantities, theoretical or measured

ones [17,28]. The possible inputs are:

a. Angular position of the motor axis,
b. Angular velocity of the motor axis,
c. Electric current at the driving servomotor,
d. Linear acceleration of the ball screw shaft,
e. Linear velocity of the ball screw shaft.

4. Comparison between outputs of the model and data deriving from measurements (angular position
or velocity of the motor axis from the encoder, electric current at the driving servomotor from the
internal sensor, linear acceleration of the ball screw shaft from the accelerometer, linear velocity
of the ball screw shaft from the LDV).

5. Calculation and selection of the most suitable features for the jload setting [17] and the lubrication
state identification. Jload is a parameter of the control system, representing the load inertia at the
motor axis.

6. Application of advanced data processing techniques for classification.

It has to be noticed that steps 3 and 4 of the procedure are useful to identify specific time windows
for feature computation, where the real behavior differs from the theoretical model due to peculiar
effects of motion and control: this comparison can suggest many possible hybrid features to be
used in the next steps, based on both experimental and simulated data. As an example, in Figure 3,
a comparison between simulated and measured acceleration signals is shown: it can be seen that the
simulated acceleration, obtained using as an input of the model the real current, presents a peak in
correspondence to the dead center, unlike real acceleration. This means that the motion law is correctly
followed, but the absorption of current is maximum at the dead centers, in particular for incorrect
setting of jload. For this reason, the difference between peaks of real and theoretical acceleration,
for example, can be a significant hybrid feature for the correct setting of the system. These aspects
have been deeply treated in previous application of the methodology [17,28].
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Nevertheless, previous works highlighted the need for paying particular attention to the feature
extraction and selection in order to realize a reliable, accurate and efficient approach for CM of
automatic systems [17,28].

In order to get reliable criteria of comparison among different possible solutions for feature
extraction and selection, a careful analysis of the features accuracy is carried out, as explained in
Section 2.3.

Several metrics for the evaluation of the performances of classifiers have been considered,
identifying the most suitable ones, depending on their meaningfulness for CM (Section 2.7).

Figure 3. Comparison between simulated and measured acceleration signals [17]. MODEL (CURRENT)
is the acceleration simulated, using as an input of the model the measured current; MODEL
(ANGULAR POSITION) is the acceleration simulated, using as an input of the model the angular position.
MEASURED is the measured acceleration signal.

2.2. Definition of the Initial Set of Features

Different quantities have been measured, both internal to the PLC, like tracking deviation (TD)
and current (Mcur) of the servomotor used for motion control and external ones with respect to the
PLC, like vibrations in different points of the kinematic chain.

On the basis of these quantities, the initial group of features has been built by adding to the
traditional features of measured quantities, other features, suggested by the simulation model of
the mechanism.

The features that are traditionally used for CM (RMS, crest factor, kurtosis, . . . , in the time domain;
amplitude of power spectra, band power, envelope, . . . , in the frequency domain) [4,12–14,19–25],
and that are considered in this work, are useful in most applications to maintain the relevant information
about the process or tool conditions [4].

The kinematic model is asked to indicate the way of defining other meaningful features in different
ways, e.g., measured data of specific quantities and during specific time windows of the cycle, sensitivity
analysis of the system to the condition to be classified (setting and/or defect), mixing of measured and
simulated data, . . . . Therefore, in addition to traditional features, specific features built for the analyzed
application and hybrid features are also considered, obtained by mixing experimental and simulation
data, as explained in Section 2.1. A set of 101 features has been defined by this procedure (SET 1).

Automatic definition of the initial set of features has been also taken into account for comparison
purposes, with reference to the accuracy of classification. Using literature and commercially available
features extraction methods on measured data [29–32], a second set was created, having 100 features
(SET 2), the same size as SET 1. Many possible approaches for feature extraction could be used.
The proposed method was intentionally compared with a method of large utilization and easy
application, in order to give a comparison with an approach that does not require physical knowledge
of the application. In particular, the automatic sparse filtering feature extraction method has been used
in this work.
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It has to be pointed out that features belonging to SET 1 have been evaluated considering up to 10 s
of acquisition, while the ones of SET 2 refer to a total length of acquisition of 2.5 s. From a preliminary
analysis, this is due to the automatic tool limitations, in terms of unsatisfactory results as far the
accuracy of classification—i.e., the accuracy less than 60%, or in terms of long computing times.

2.3. Feature Selection

Feature selection aims at improving the performance of a CM procedure, increasing the accuracy
of classification and, at the same time, reducing computation load and time. For these motivations,
this step is crucial for the procedure.

Physical criterion means that there are physical reasons why the features could be more significant
like, for instance, kinematic amplification of displacements and accelerations, dynamic or electrical
effects depending on inertial forces in particular windows of the operation cycle, and control settings
of the PLC controller.

Metrological selection means to evaluate carefully the repeatability of features, with respect to the
differences of the mean values of the same features, when the statuses to be classified are changed.

By way of example, Figure 4 shows the relative difference of some features calculated on the basis
of TD, at different jload; features, whose differences of the mean values are significant with respect to
the repeatability, are chosen, in particular, PRC98_TD. For clarity, PRC98_TD is the 98th percentile
of the amplitude of TD. Similarly to TD features, there are some features calculated on the basis of
the measured current of the servomotor, which result as particularly significant with respect to the
lubrication and setting conditions, as described in [10]. It has to be pointed out that this approach is
not trivial, due to the need for taking into account also the operating modus of the mechatronic system.

Figure 4. Trends of the features calculated on the basis of Tracking Deviation (TD), at different jload [22].
Repeatability is shown as error bars.

For comparison purposes, automatic methods for feature selection have been applied to both SET
1 and SET 2.

A sequential feature selection method has been chosen and used, which is commercially available
and of general application. It computes the number of misclassified observations of a classification
model [33,34]. In fact, this method refers to the optimization of a function or criterion, which is typically
based—in turn—on the training of a classification model and the prediction of values using this model.
The classification model is based on a discriminant function [35,36] that can be of different types; in
our case, the following have been tested, being the working ones: ‘linear’, ‘diaglinear’, and ‘quadratic’.
Figure 5 highlights the main steps of data processing and of training and testing procedures for ANN
and classifiers. Algorithms for raw data post-processing refer to the need of organizing and managing
the data provided by the test bench (e.g., to organize the time sequence of the acquired samples),
which are extensively described in [37].
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Figure 5. Flow diagram of the main steps of data processing.

2.4. Design of Experiments

The ability of features to evaluate setting characteristics has been tested, by varying the jload
parameter, and by realizing variable lubrication statuses of the ball screw, related to different quality
levels of it. The test condition is sinusoidal motion law of the end effector of the kinematic linkage,
cycle frequency equal to 3 Hz, which is a very challenging operating condition for the mechatronic
system, being close to its maximum rate.

Nine classes should be classified, obtained by combining three lubrication conditions and three
jload values (3 × 3 = 9 classes), in particular:

• jload (3.0 kg cm2, 5.5 kg cm2, 8.0 kg cm2),
• lubrication (inadequate lubricant, G0; minimum lubricant, G1; regular lubricant, G2),

The effect has been investigated of some influencing parameters, like:

• length of the acquisition interval,
• added noise to the experimental data,
• number of test repetitions.
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2.5. Training and Testing Procedure for Classifiers and for ANN

In order to evaluate the performances of classifiers and ANN, different configurations have to
be compared with regard to the training data set and to the testing procedure. Each configuration is
named using the following form:

SET i − js − Lk - Fw, (1)

where:

• i stands for the name of the group of features, as above-mentioned (SET 1 and SET 2);
• j denotes the total length of acquisition used for training of classifiers/ANN, as one of the following

options: 10 s, 15 s, 20 s, 30 s or 40 s, meaning that, considering the whole number of windows
on which the features are calculated, the total temporal basis used for the training procedure, is
referred to a total length of acquisition of different independent experimental tests of j s; it has
to be pointed out that the time duration of acquisition has been set with reference to a range
including a minimum number of operation cycles (5 s) and a maximum one related to the need
of acquiring too many samples. In addition, 40 s has been considered a correct trade-off, for the
latter requirement.

• k specifies the temporal interval of each independent experimental test, on which the features are
evaluated (5 s or 10 s). The ratio j/k defines the number of independent experimental tests used
for training purposes and, therefore, it also denotes the number of observations used for training;

• w gives us the idea of the number of features used for classification:

# 101 refers to all of the features of SET 1,
# 21 refers to 21 features of SET 1, calculated on the basis of Mcur and TD, derived from

applying the so-called physical selection method of features,
# 16 are the features of SET 1 referred to the 98th percentile of both measured and simulated

quantities available, derived from applying the so-called physical-metrological method for
feature selection;

# other, depending on the specific situation, as explained in the following.

As already said, the feature selection by means of the use of physical and metrological criteria
should be compared to some state-of-the-art automatic feature selection methods, in order to benchmark
and locate the proposed method and to investigate its robustness, also from a statistical point of view.
For this reason, one of the following has been added to the nomenclature, indicating that the
feature selection method is automatic, and based on linear, diaglinear, or quadratic discriminant
function, respectively:

• ‘linear’,
• ‘diaglinear’,
• ‘quadratic’.

2.6. Advanced Algorithms for Classification

The classifiers taken into consideration can be divided into two typologies:

• an ANN classifier,
• classifiers based on algorithms different from ANN.

The ANN used for classification is a two-layer feed-forward network, composed of 10 hidden neurons.
Sigmoid transfer functions are used in the hidden layers.

The outputs of the ANN are 9, corresponding to the nine classes defined in Section 2.4.
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The data set for training the net has been randomly divided into: 85% of samples for training,
and 15% for validation. An independent data set is used for testing purposes, according to the
procedure of Section 2.5.

Training uses the scaled conjugate gradient backpropagation algorithm. It automatically stops
when generalization stops improving, as indicated by an increase in the cross-entropy error of the
validation samples.

The following possible classifiers available in a commercial software [38] have been used for
comparison purposes, which are typically used for CM applications. Among these, a preliminary
selection has been carried out based on the classification accuracy. The classification accuracy is
evaluated during the training phase, using 5-fold for cross-validation [39] meaning that the app
partitions the data into five disjoint sets or folds and for each fold:

• Trains a model using the out-of-fold observations,
• Assesses model performance using in-fold data,
• Calculates the average test error over all folds.

This method gives a good estimate of the predictive accuracy of the final model trained with all
the data. Feature sets have been used several times for training of both classifiers and ANNs,
in repeatability post-processing conditions, and a negligible variability has been denoted in terms of
accuracy of classifiers:

• Discriminant Classifiers, including both Linear and Quadratic Discriminant. Good classification
accuracy reached in almost every group of features selected, for Linear Discriminant
(accuracy >95%). It fails in almost every case when the Quadratic Discriminant classifier
is used.

• Ensemble, including: Boosted Trees (0%, in almost every case), Subspace KNN and Bagged Trees
(from 60% to 89%), Subspace Discriminant (from 72.2% up to 100%) and RUSBoosted Trees (<50%).

• Naïve Bayes. It fails in almost all cases with Gaussian Naïve Bayes, it ranges from 5% to 85%,
with Kernel Naïve Bayes.

• Support Vector Machine (SVM). It performs well when Quadratic or Cubic SVM (around 90%,
up to 100% in some cases), resulting in being aleatory when Linear, Fine Gaussian and Medium
Gaussian SVM are chosen (from 0% to 97%).

• Tree, including Fine Tree, Medium Tree, and Coarse Tree. Poor accuracy of classification
(around 40% maximum).

• k-nearest neighbor classifier (KNN), including Fine KNN, Medium KNN, Coarse KNN, Cosine
KNN, Cubic KNN, and Weighted KNN. Fine KNN and Weighted KNN reach high accuracy of
classification, while the behavior of others is unsatisfactory.

It has to be pointed out that all the required actions of parameters setting and optimization and
data normalization have been carried out automatically by the commercial software used.

Figure 6 shows the performance of typology KNN. Looking at Figure 6 and evaluating the
above-mentioned classifiers, Fine KNN has been selected as a reference for comparison with ANN,
being a good option in terms of classification accuracy.
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Figure 6. K-nearest neighbor classifiers: comparison among different configurations.

2.7. Performance Metrics

Different possible metrics could be used to evaluate the performance of a classifier, each of which
highlights specific aspects of its behavior, so the choice among them depends on the needs of the
specific application. In this CM application, whose purpose is to recognize the operating condition
of the machine, in terms of jload setting and lubrication condition, we are mainly interested in the
probability of detection of the state of the system, in order to restore, when necessary, the correct setting
and an adequate lubrication. Moreover, we are interested in knowing the probability of false alarms,
which are dangerous, because they prevent us from implementing the right intervention, or lead us to
intervene incorrectly.

For these reasons, the following metrics have been used in this work:
1. Accuracy [40,41]: ∑l

1
tpi+tni

tpi+tni+ f pi+ f ni

l
, (2)

where:

tpi: true positive,
fpi: false positive,
fni: false negative,
tni: true negative for the class Ci,
l: number of classes.

It must be considered that accuracy considers different classification errors to be equally important,
adding together true positives and true negatives in the numerator of the formula [42]. For these
reasons, it would be interesting to also use performance metrics that disassociate the errors that
occurred in each class, such as the following two.
2. True Positive Rate (TPR), which represents the probability of detection [40,41]:∑l

1 tpi∑l
1(tpi + f ni)

. (3)
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3. False Positive Rate (FPR), which represents the probability of false alarm [40,41]:∑l
1 f pi∑l

1( f pi + tni)
. (4)

4. AUC (Area Under Curve), which is the area under the ROC (Receiver Operating Characteristic)
graph [43], used to analyze the relationship between TPR and FPR. AUC represents the performance
as a single scalar. AUC is an “ordering/rank metric”, which looks at predictions differently from the
threshold metrics. If cases are ordered by predicted value, the ordering/rank metrics measure how well
the ordering ranks positive cases above negative cases. The rank metrics can be viewed as a summary
of the performance of a model across all possible thresholds [44].

The metrics from 1 to 3 are “threshold metrics”, that is, they depend on how the predicted values
fall relative to a threshold [44]. In this work, a threshold of 0.5 has been set on the ANN output,
which is a conservative and common choice [44].

3. Results

The proposed method of identification of a selected set of features, based on metrological
and physical criteria, has been also compared with some of automatic tools, available in literature,
for feature selection. The identification of the best method of selection for each specific application is
out of the scope of this work.

Considering again the results in Figure 6, it should be highlighted that the automatic tool is able to
indicate a reduced number of valid features, two in this case, which are the most effective ones. It has
to be pointed out that classification ability of the couple of features identified by automatic tool allows
many classifiers, which have been used, to work very satisfactorily.

Figure 7 shows that the use of sets of features selected on the basis of physical and metrological
criteria can be convenient (i.e., SET 1-F21 and SET 1-F16), compared to the case in which all the available
features are used (i.e., SET 1-F101).

Figure 7. Comparison between all features and groups of features selected by the physical and
metrological method. Artificial Neural Network is used for classification.

Figure 8 shows that training the ANN on a larger data set, obtained by calculating features on
portions of the acquired time series, produces better results. In particular, if the 80% of the overall data
set is used for training, the performance of the ANN is maximized.
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Figure 8. Comparison among cases corresponding to different time bases for the features calculation.
ANN is used for classification.

Figure 9 shows a comparison between the use of the selected set by physical and metrological
criteria (i.e., SET 1-F21) and couples of features suggested by an automatic procedure of selection.

Figure 9. Comparison among automatic and physical-metrological selection methods. ANN is used
for classification.

It is interesting to notice that SET 1-40 s-L10-F2 ‘linear’ and SET 1-40 s-L10-F2 ‘diaglinear’ return a
different couple of selected features:

- for the first case, the following features:

• TD_Mean: mean values of TD,
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• PRC98_TD: 98th percentile of TD distribution,

- for the second case:

• TD_Pk: range of measured values of TD,
• PRC98_TD: 98th percentile of TD distribution.

The meaning of features of SET 1 has been explained in [16].
Some interesting considerations arise:

• changing the data set to be processed, the automatic method returns different couples of
features, being PRC98_TD and RMS_Scur_Mposa_diff in SET 1-20 s-L10-F2 ‘linear’, where
RMS_Scur_Mposa_diff is the RMS of the differences between simulated current values (when the
input of the model is the measured angular position) and Mcur. It has to be pointed out that in
any case features are identified belonging to SET 1-F21.

• training the ANN with features on the basis of the physical and metrological method
produces satisfactory results with respect to the couples of features selected by the automatic
classification method.

It is interesting to observe that the score, in terms of TPR, for SET 1-F21 is in every case less than
0.89, while the AUC is equal to 1 for all classes to be classified, indicating the maximum performance.
This means that the values corresponding to positives are the highest for each class, and this is a further
point in favor of the classification method.

Figure 10 presents a summary of the results for classification when the method for feature selection,
the data set characteristics, and the number of features are changed. Results for ANN and the fine
KNN algorithm, previously acknowledged as the best one among the all tested classifiers, are shown:
it can be seen that in most cases the ANN and classifier performance is very satisfactory; in particular,
with SET1-20 s-L5-F2 ‘linear’, SET1-40 s-L10-F16, SET1-20 s-L5-F21, and SET1-40 s-L10-F21, both the
ANN and the classifier work well. This confirms the goodness of the selection method by physical and
metrological criteria; in fact, in any case, the selected features are according to this criterion. It has to
be noted that the features of SET1-20 s-L5-F2 ‘linear’, automatically selected, belong to the set of 21 or
16 features by the physical and metrological approach.

Figure 10. Comparison between performances of ANN and fine KNN (performance indicator: True
Positive Rate).
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Instead, it can be seen that neither of the two considered methods satisfactorily classifies when
SET 2 is used.

Moreover, the ANN works better when the training data set is large. This confirms the observation
made with reference to Figure 8.

As a result of further tests, the addition of noise, for enlarging the variability of the training set,
does not produce improvements on the ANN performance.

4. Conclusions

In this paper, a physical and metrological approach is presented for extracting and selecting
features for CM applications, with reference to an automatic mechatronic system in real scale for
packaging applications.

The described approach is hybrid, that is, the initial feature set has been built on the basis of
experimental data from sensors and of results supplied by a simplified kinematic and dynamic model
of the system. This approach has suggested the features that could be most sensitive, from a physical
point of view, to changes in jload setting and lubrication conditions. Repeatability of features is a
further criterion of selection from a metrological point of view.

Then, the most significant features among those identified have been selected, to be processed by
advanced classification algorithms, based on ANN or other classifiers.

The effect of some aspects of the procedure on the classification performance has been analyzed,
like: the choice of the temporal window for the feature calculation, the choice of different groups of
features, and the addition of noise to the data. Results about a comparison with the state-of-the-art of
automatic feature extraction and selection have also been discussed.

If the features set selected by the physical and metrological criterion is used, a high score
in terms of TPR is achieved, classifying by ANN different setting and lubrication conditions.
Furthermore, corresponding AUC values equal to 1 are found, confirming a reliable capability
of classification. This result also confirms that the initial set of features is itself promising.

If the use of the ANN is taken into account, the main results are according to the following:

• improvements due to added noise to the data are negligible;
• the acquisition length being fixed, ANN benefits from having more temporal windows for

supervised classification.

About the comparison of the proposed method with automatic ones, the main indications of this
experimental work show that:

• a group of very few features can be found for classification purposes;
• the features automatically selected belong to the group suggested by metrological and

physical criteria;
• if the tests on which the features are calculated are changed, the selected features are partially

changed too, even though they are still in the group suggested by metrological and physical criteria;
• ANN used for classification does not work with automatically selected features, which operate

satisfactorily only with some classifiers (e.g., Fine KNN and Weighted KNN).

In future work, the analysis will be deepened using a higher number of test and training samples.
Further experimental analysis for the identification of the best criteria to be used for automatic

feature extraction will be carried out, for a more exhaustive comparison.
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