A Secure Occupational Therapy Framework for Monitoring Cancer Patients’ Quality of Life †
Abstract
:1. Introduction
1.1. Cancer Follow-Up/Occupational Therapy
1.2. Cancer Patients’ QoL Data Collection
1.3. Technologies for Cancer Follow-Up Care
2. Literature Review
3. System Design
3.1. Preliminaries
3.2. Design Goals
3.3. Framework Design
- Physical assistance: The design goal is to provide physical support to manage symptoms such as fatigue or anxiety. The goal is to shift away from the support of a caregiver, and instead, the patient performs his/her daily activities as much as possible.
- Supervision and hints: The goal is to support a patient with several relevant OTs and design model therapies based on augmented and mixed reality.
- Activity demands: The task is that OT activities can be adapted based on the motor and cognitive demands of patients.
- Sequencing of activity: The role of this design is to discover the patient’s priority of activities through incentives. The number of steps in tasks, order, the frequency, and the complexities can be adjusted based on the QoL data while a cancer patient can complete the OT with motivation and fewer side effects.
- Type of activity: Depending on the functional state, the type of OT activities can be mapped with serious games and HRQoL instruments, thereby decreasing cancer-related symptoms.
- Environment: The OT activity environment tends to affect participation in ADL. Isolated environments such as palliative care make patients uncomfortable. Hence, to reduce symptoms and improve the performance of OT outcomes, it is imperative that the OT has to be designed for environments where a patient performs ADL, i.e., at home.
3.3.1. OT Use Cases
- Sandbox-based practice exercises (session is not saved)
- Game-based therapy exercise
- Guided exercise through augmented reality view
- Guided exercise through telecollaboration view
- Guided exercise through a virtual reality view
- Guided exercise with robotic guidance
- Exercise through skeletal guidance
3.3.2. Software Components
3.3.3. OT Sensing Platform
3.3.4. Secure QoL Data-Sharing Architecture
3.3.5. IoT-Based Natural User Interface Design for OT
3.3.6. Blockchain-Based Smart Contract Design for OT
3.3.7. QoL-Supported OT Therapy Design
3.3.8. Sensors and their Optimum Working Range
3.3.9. ROM BOT—A Virtual 3D Digital Twin of Cancer Patient
- A therapist can use ROM BOT to do an initial assessment of a patient’s overall or specific joint problem (see Figure 19).
- A therapist can use it to generate an ideal range of motion (ROM) of a specific joint or a set of joints, which can be customized into a set of model therapy steps.
- The engine that drives the ROM BOT comes in handy during the actual OT session by displaying a virtual skeleton that mimics the patient’s action with kinematic data.
- The ROM BOT can integrate with off-the-shelf skeletal tracking sensory products.
4. Implementation
- Abduction/Adduction of all fingers and thumb
- Abduction/Adduction of a single finger
- Radial/Ulnar deviation around wrist joint
- Hyper-Flexion/Hyper-Extension around wrist joint
- Flexion/Extension around wrist joint
- Forearm pronation/supination
- Squeeze/Enlarge palm surface area
- Thumb touching middle finger
5. Discussion of Test Results
5.1. Continuous Improvement through User Co-Design
5.2. Blockchain Performance Testing
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tremmas, I.; Petsatodis, G.; Potoupnis, M.; Laskou, S.; Giannakidis, D.; Mantalovas, S.; Koulouris, C.; Katsaounis, A.; Pavlidis, E.; Amaniti, A.; et al. Monitoring changes in quality of life in patients with lung cancer under treatment with chemotherapy and co administration of zoledronic acid by using specialized questionnaires. J. Cancer 2018, 9, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Boström, B.; Sandh, M.; Lundberg, D.; Fridlund, B. A comparison of pain and health-related quality of life between two groups of cancer patients with differing average levels of pain. J. Clin. Nurs. 2003, 12, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Shallwani, S.M.; King, J.; Thomas, R.; Thevenot, O.; De Angelis, G.; Ala’S, A.; Brosseau, L. Methodological quality of clinical practice guidelines with physical activity recommendations for people diagnosed with cancer: A systematic critical appraisal using the AGREE II tool. PLoS ONE 2019, 14, e0214846. [Google Scholar] [CrossRef] [PubMed]
- Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Fløtten, Ø.; Aasebø, U. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small-cell lung cancer: A randomised trial by the Norwegian Lung Cancer Study Group. Br. J. Cancer 2013, 109, 1467–1475. [Google Scholar]
- Raijmakers, N.J.H.; Zijlstra, M.; Van Roij, J.; Husson, O.; Oerlemans, S.; Van De Poll-Franse, L.V. Health-related quality of life among cancer patients in their last year of life: Results from the PROFILES registry. Support. Care Cancer 2018, 26, 3397–3404. [Google Scholar] [CrossRef]
- Short, P.F.; Vasey, J.J.; Tunceli, K. Employment pathways in a large cohort of adult cancer survivors. Cancer 2005, 103, 1292–1301. [Google Scholar] [CrossRef]
- Fernando, H.C.; Landreneau, R.J.; Mandrekar, S.J.; Nichols, F.C.; DiPetrillo, T.A.; Meyers, B.F.; Heron, D.E.; Hillman, S.L.; Jones, D.R.; Starnes, S.L. Analysis of longitudinal quality-of-life data in high-risk operable patients with lung cancer: Results from the ACOSOG Z4032 (Alliance) multicenter randomized trial. J. Thorac. Cardiovasc. Surg. 2015, 149, 718–726. [Google Scholar] [CrossRef]
- Pompili, C.; Novoa, N.; Balduyck, B. Clinical evaluation of quality of life: A survey among members of European Society of Thoracic Surgeons (ESTS). Interact. Cardiovasc. Thorac. Surg. 2015, 21, 415–419. [Google Scholar] [CrossRef]
- Lugo, D.; Pulido, A.L.; Mihos, C.G.; Issa, O.; Cusnir, M.; Horvath, S.A.; Lin, J.; Santana, O. The effects of physical activity on cancer prevention, treatment and prognosis: A review of the literature. Complement. Ther. Med. 2019, 44, 9–13. [Google Scholar] [CrossRef]
- Van Soom, T.; Tjalma, W.; El Bakkali, S.; Verbelen, H.; Gebruers, N.; van Breda, E. Perspective: Towards Personalised Metabolic Coaching in Cance. Facts Views Vis. ObGyn 2019, 10, 125–130. [Google Scholar]
- Hutchison, N.A.; Deval, N.; Rabusch, S.; Rich, H.; Kelley, T.; Flinn, N.; Banerji, N. Physical Therapy–Based Exercise Protocol for Cancer Patients: Evaluating Outcomes for Cardiopulmonary Performance and Cancer-Related Fatigue. PMR 2019, 11, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Sleight, A.G.; Duker, L.I.S. Toward a Broader Role for Occupational Therapy in Supportive Oncology Care. Am. J. Occup. Ther. 2016, 70. [Google Scholar] [CrossRef] [PubMed]
- Pergolotti, M.; Williams, G.R.; Campbell, C.; Munoz, L.A.; Muss, H.B. Occupational Therapy for Adults with Cancer: Why It Matters. Oncol. 2016, 21, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.G.; Gibson, R.W.; Arbesman, M.; D’Amico, M. Systematic Review of Occupational Therapy and Adult Return-to-Work Interventions. Am. J. Occup. Ther. 2017, 71. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.; Gilchrist, L.S. Cancer Rehabilitation with a Focus on Evidence-Based Outpatient Physical and Occupational Therapy Interventions. Am. J. Phys. Med. Rehabil. 2011, 90, S5–S15. [Google Scholar] [CrossRef] [PubMed]
- Braveman, B.; Hunter, E.G.; Nicholson, J.; Arbesman, M.; Lieberman, D. Occupational Therapy Interventions for Adults with Cancer. Am. J. Occup. Ther. 2017, 71. [Google Scholar] [CrossRef]
- Cooper, J. Occupational Therapy in Oncology and Palliative Care; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Baxter, M.F.; Newman, R.; Longpré, S.M.; Polo, K.M. Occupational Therapy’s Role in Cancer Survivorship as a Chronic Condition. Am. J. Occup. Ther. 2017, 71. [Google Scholar] [CrossRef]
- Pompili, C. Quality of life after lung resection for lung cancer. J. Thorac. Dis. 2015, 7, S138–S144. [Google Scholar]
- Guleria, R.; Pathak, A.; Bhutani, M.; Pal, H.; Charu, M.; Kochupillai, V.; Anant, M.; Pathak, A.K. Quality of life measures in lung cancer. Indian J. Cancer 2005, 42, 125. [Google Scholar] [CrossRef]
- Milošević, B.; Pejić, D.; Momčičević, D.; Kovačević, P.; Stanetić, M.; Dragić, S. Quality of life in lung cancer patients due to treatment. SIGNA VITAE 2016, 11, 47–50. [Google Scholar] [CrossRef]
- Şahin, S.; Akel, S.; Zarif, M. Occupational Therapy in Oncology and Palliative Care. Occupational Therapy: Occupation Focused Holistic Practice in Rehabilitation; Huri, M., Ed.; IntechOpen: London, UK, 2017; pp. 207–221. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.M.; Shin, H.; Jang, J.S.; Kim, Y.I.; Han, D.H. A Mobile Game for Patients With Breast Cancer for Chemotherapy Self-Management and Quality-of-Life Improvement: Randomized Controlled Trial Corresponding Author. J. Med. Internet Res. 2018, 20, e273. [Google Scholar] [CrossRef]
- Sarac, S.; Milic, R.; Vasiljevic, M.; Sarac, M. Quality of life in patients with non-small cell lung cancer. Vojn. Pregl. 2017, 74, 625–632. [Google Scholar] [CrossRef]
- Bozec, A.; Schultz, P.; Gal, J.; Chamorey, E.; Chateau, Y.; Dassonville, O.; Poissonnet, G.; Santini, J.; Peyrade, F.; Saada, E.; et al. Evaluation of the information given to patients undergoing head and neck cancer surgery using the EORTC QLQ-INFO25 questionnaire: A prospective multicentric study. Eur. J. Cancer 2016, 67, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Davies, N. Measuring health-related quality of life in cancer patients. Nurs. Stand. 2009, 23, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Eser, S.; Göksel, T.; Erbaycu, A.E.; Baydur, H.; Başarık, B.; Yanık, A.Ö.; Gürsul, K.K.; Çelik, P.; Ediz, E.Ç.; Hatipoğlu, O.; et al. Comparison of Generic and Lung Cancer-Specific Quality of Life Instruments for Predictive Ability of Survival in Patients with Advanced Lung Cancer; Springer: Berlin/Heidelberg, Germany, 2016; Volume 5, p. 1833. [Google Scholar]
- Lee, H.K.; Ju, F.; Osarogiagbon, R.U.; Faris, N.; Yu, X.; Rugless, F.; Jiang, S.; Li, J. A System-Theoretic Method for Modeling, Analysis, and Improvement of Lung Cancer Diagnosis-to-Surgery Process. IEEE Trans. Autom. Sci. Eng. 2018, 15, 531–544. [Google Scholar] [CrossRef]
- Brown, J.S.; Cunningham, J.J.; Gatenby, R.A. Aggregation Effects and Population-Based Dynamics as a Source of Therapy Resistance in Cancer. IEEE Trans. Biomed. Eng. 2016, 64, 512–518. [Google Scholar] [CrossRef]
- Odeh, M.; Dajani, R.; Tbaishat, D.; Odeh, Y.; Tbakhi, A.; Sultan, I.; Hakooz, N.; Kharbat, F. i.LLL.CancerCare: Towards an Intelligent Life Long Learning Framework for Cancer Care. In Proceedings of the 2018 1st International Conference on Cancer Care Informatics (CCI), Amman, Jordan, 19–21 November 2018; pp. 244–246. [Google Scholar]
- Ghoul, S.; Nashawati, D.M.; Hamaly, M.A.; Mutlaq, S.; Mansour, A.; Nofal, A. Streamlining the Interventional Breast Imaging Workflow by Lean Methodology Implementation. In Proceedings of the 2018 1st International Conference on Cancer Care Informatics (CCI), Amman, Jordan, 19–21 November 2018; pp. 41–46. [Google Scholar]
- Li, A.; Wang, R.; Liu, L.; Xu, L.; Wang, F.; Chang, F.; Yu, L.; Xiang, Y.; Zhou, F.; Yu, Z. BCRAM: A Social-Network-Inspired Breast Cancer Risk Assessment Model. Cyber Enabled Intell. 2019, 15, 171–193. [Google Scholar]
- Haney, K.; Tandon, P.; Divi, R.; Ossandon, M.R.; Baker, H.; Pearlman, P.C. The Role of Affordable, Point-of-Care Technologies for Cancer Care in Low- and Middle-Income Countries: A Review and Commentary. IEEE J. Transl. Eng. Heal. Med. 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.A. Multisensor Serious Game-Based Therapy Environment for Hemiplegic Patients. Int. J. Distrib. Sens. Netw. 2015, 11, 910482. [Google Scholar] [CrossRef]
- Brennan, M.E.; Butow, P.; Marven, M.; Spillane, A.J.; Boyle, F.M. Survivorship care after breast cancer treatment–Experiences and preferences of Australian women. Breast 2011, 20, 271–277. [Google Scholar] [CrossRef]
- Hall, S.J.; Samuel, L.M.; Murchie, P. Toward shared care for people with cancer: Developing the model with patients and GPs. Fam. Pract. 2011, 28, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.A.; Neal, R.D.; Williams, N.H.; France, B.; Hendry, M.; Russell, D.; Hughes, D.A.; Russell, I.; Stuart, N.S.; Weller, D.; et al. Follow-up of cancer in primary care versus secondary care: Systematic review. Br. J. Gen. Pract. 2009, 59, e234–e247. [Google Scholar] [CrossRef] [PubMed]
- Okera, M.; Baker, N.A.; Hayward, A.M.; Selva-Nayagam, S.; Selva-Nayagam, S. Oncology workforce issues: The challenge of the outpatient clinic. Intern. Med. J. 2011, 41, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.; Hall, S.; Sinclair, J.E.; Bond, C.; Murchie, P. Using technology to deliver cancer follow-up: A systematic review. BMC Cancer 2014, 14, 311. [Google Scholar] [CrossRef] [Green Version]
- Allsop, M.J.; Taylor, S.; Mulvey, M.R.; Bennett, M.I.; Bewick, B.M. Information and communication technology for managing pain in palliative care: A review of the literature. BMJ Support. Palliat. Care 2014, 5, 481–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.A.; Hossain, M.S. A cloud-based virtual caregiver for elderly people in a cyber physical IoT system. Clust. Comput. 2018, 22, 2317–2330. [Google Scholar] [CrossRef]
- Salgado, D.P.; Martins, F.R.; Rodrigues, T.B.; Keighrey, C.; Flynn, R.; Naves, E.L.M.; Murray, N. A QoE assessment method based on EDA, heart rate and EEG of a virtual reality assistive technology system. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; pp. 517–520. [Google Scholar]
- Kosmyna, N.; Tarpin-Bernard, F.; Bonnefond, N.; Rivet, B. Feasibility of BCI Control in a Realistic Smart Home Environment. Front. Hum. Neurosci. 2016, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- AbuHijla, F.; Jaradat, I.; Almousa, A.; Abuhijlih, R. Impact of Big Data on Radiation Oncology Practice. In Proceedings of the 2018 1st International Conference on Cancer Care Informatics (CCI), Amman, Jordan, 19–21 November 2018; pp. 59–95. [Google Scholar]
- Liang, M.; Li, Z.; Chen, T.; Zeng, J. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach. IEEE ACM Trans. Comput. Biol. Bioinforma. 2015, 12, 928–937. [Google Scholar] [CrossRef]
- Dey, T.; Jaiswal, S.; Sunderkrishnan, S.; Katre, N. Medical Use Case of Internet of Things and Blockchain. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 486–491. [Google Scholar]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2019, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Savelyev, A. Copyright in the blockchain era: Promises and challenges. Comput. Law Secur. Rev. 2018, 34, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Glatz, C.; Ditz, J.; Kosch, T.; Schmidt, A.; Lahmer, M.; Chuang, L.L. Reading the mobile brain: From laboratory to real-world electroencephalography. In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (MUM 2017), Stuttgart, Germany, 26–29 November 2017; pp. 573–579. [Google Scholar] [CrossRef]
- Han, K.; Li, S.; Tang, S.; Huang, H.; Zhao, S.; Fu, G.; Zhu, Z. Application-Driven End-to-End Slicing: When Wireless Network Virtualization Orchestrates With NFV-Based Mobile Edge Computing. IEEE Access 2018, 6, 26567–26577. [Google Scholar] [CrossRef]
- Liu, M.; Mao, Y.; Leng, S.; Mao, S. Full-Duplex Aided User Virtualization for Mobile Edge Computing in 5G Networks. IEEE Access 2017, 6, 2996–3007. [Google Scholar] [CrossRef]
- Qu, Y.; Nosouhi, M.R.; Cui, L.; Yu, S. Privacy Preservation in Smart Cities. In Smart Cities Cybersecurity and Privacy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–88. [Google Scholar]
- Magyar, G. Blockchain: Solving the privacy and research availability tradeoff for EHR data: A new disruptive technology in health data management. In Proceedings of the 2017 IEEE 30th Neumann Colloquium (NC), Budapest, Hungary, 24–25 November 2017; pp. 135–140. [Google Scholar]
- Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Ma, X.; Tang, W.; Wang, P.; Guo, X.; Gao, L. Extracting Stage-Specific and Dynamic Modules through Analyzing Multiple Networks Associated with Cancer Progression. IEEE ACM Trans. Comput. Biol. Bioinforma. 2018, 15, 647–658. [Google Scholar] [CrossRef]
- Cavalheri, V.; Tahirah, F.; Nonoyama, M.L.; Jenkins, S.; Hill, K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer (Review). Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Thorsen, L.; Gjerset, G.M.; Loge, J.H.; Kiserud, C.E.; Skovlund, E.; Fløtten, T.; Fosså, S. Cancer patients’ needs for rehabilitation services. Acta Oncol. (Madr) 2011, 50, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gong, X.; Shi, C.; Sun, L.; Tang, Z.; Yuan, Z.; Wang, J.; Yu, J. Multi-focused psychosocial residential rehabilitation interventions improve quality of life among cancer survivors: A community-based controlled trial. J. Transl. Med. 2018, 16, 250. [Google Scholar] [CrossRef]
- Petruševičienė, D.; Surmaitiene, D.; Baltaduonienė, D.; Lendraitienė, E. Effect of Community-Based Occupational Therapy on Health-Related Quality of Life and Engagement in Meaningful Activities of Women with Breast Cancer. Occup. Ther. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.J.; Todd, J.G.; Futcher, J.M. How can occupational therapists measure outcomes in palliative care? Palliat. Med. 2007, 21, 477–485. [Google Scholar] [CrossRef]
- Désiron, H.A.; Donceel, P.; de Rijk, A.; Van Hoof, E. A Conceptual-Practice Model for Occupational Therapy to Facilitate Return to Work in BC patients; Springer: Berlin/Heidelberg, Germany, 2013; pp. 516–526. [Google Scholar]
- Hong, F.; Ye, W.; Kuo, C.H.; Zhang, Y.; Qian, Y.; Korivi, M. Exercise Intervention Improves Clinical Outcomes, but the ‘Time of Session’ is Crucial for Better Quality of Life in Breast Cancer Survivors: A Systematic. Cancers 2019, 11, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, S.M.; Golden, S.E.; Thomas, C.R.; Deffebach, M.E.; Sukumar, M.S.; Schipper, P.H.; Tieu, B.H.; Moghanaki, D.; Wisnivesky, J.; Slatore, C. Patient-clinician communication among patients with stage I lung cancer. In Supportive Care in Cancer; Springer: Berlin/Heidelberg, Germany, 2018; Volume 26, pp. 1625–1633. [Google Scholar]
- Ye, X.; Wei, J.; Li, Z.; Niu, X.; Wang, J.; Chen, Y.; Guo, Z.; Lu, S. Design and implementation of a mobile system for lung cancer patient follow-up in China and initial report of the ongoing patient registry. Oncotarget 2017, 8, 5487–5497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Kernec, J.; Fioranelli, F.; Ding, C.; Zhao, H.; Sun, L.; Hong, H.; Lorandel, J.; Romain, O. Radar Signal Processing for Sensing in Assisted Living: The challenges associated with real-time implementation of emerging algorithms. IEEE Signal Process. Mag. 2019, 36, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Avrahami, D.; Patel, M.; Yamaura, Y.; Kratz, S. Below the Surface: Unobtrusive Activity Recognition for Work Surfaces using RF-radar sensing. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (IUI ’18), New York, NY, USA, 7–11 March 2018; pp. 439–451. [Google Scholar]
- Zhao, M.; Adib, F.; Katabi, D. Emotion recognition using wireless signals. Commun. ACM 2018, 61, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Kayes, A.S.M.; Rahayu, W.; Dillon, T.; Chang, E.; Han, J. Context-Aware Access Control with Imprecise Context Characterization Through a Combined Fuzzy Logic and Ontology-Based Approach. Future Gener. Comput. Syst. 2019, 1, 237–255. [Google Scholar] [CrossRef]
- Ouaddah, A.; Abou Elkalam, A.; Ait Ouahman, A. FairAccess: A new Blockchain-based access control framework for the Internet of Things. Secur. Commun. Networks 2017, 9, 5943–5964. [Google Scholar] [CrossRef]
- Voloch, N.; Levy, P.; Elmakies, M.; Gudes, E. An Access Control Model for Data Security in Online Social Networks Based on Role and User Credibility. In International Symposium on Cyber Security Cryptography and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 156–168. [Google Scholar]
- Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X.; Wan, J. Smart Contract-Based Access Control for the Internet of Things. IEEE Internet Things J. 2019, 6, 1594–1605. [Google Scholar] [CrossRef] [Green Version]
- Kayes, A.S.M.; Rahayu, W.; Dillon, T. Critical situation management utilizing IoT-based data resources through dynamic contextual role modeling and activation. Computing 2019, 101, 743–772. [Google Scholar] [CrossRef]
- Novello, S.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M. Analysis of patient-reported outcomes from the LUME-Lung 1 trial: A randomised, double-blind, placebo-controlled, Phase III study of second-line nintedanib in patients with advanced non-small cell lung cancer. Elsevier Eur. J. Cancer 2015, 51, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Granda-Cameron, C.; Viola, S.R.; Lynch, M.P.; Polomano, R.C. Measuring Patient-Oriented Outcomes in Palliative Care: Functionality and Quality of Life. Clin. J. Oncol. Nurs. 2007, 12, 65–77. [Google Scholar] [CrossRef]
- Barwal, V.K.; Mazta, S.R.; Thakur, A.; Seam, R.K.; Gupta, M. Quality of life among lung cancer patients undergoing treatment at a tertiary cancer institute in North India. Res. Med. Sci. 2016, 4, 4903–4910. [Google Scholar] [CrossRef] [Green Version]
- Hooper, B.; King, R.; Wood, W.; Bilics, A.; Gupta, J. An international systematic mapping review of educational approaches and teaching methods in occupational therapy. Br. J. Occup. Ther. 2013, 76, 9–22. [Google Scholar] [CrossRef]
- Rubin, I.L.; Merrick, J.; Greydanus, D.E.; Patel, D.R. Health Care for People with Intellectual and Developmental Disabilities across the Lifespan; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gupta, G.; Pequito, S.; Bogdan, P. Re-Thinking EEG-Based Non-Invasive Brain Interfaces: Modeling and Analysis. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 275–286. [Google Scholar]
- Yao, L.; Sheng, X.; Mrachacz-Kersting, N.; Zhu, X.; Farina, D.; Jiang, N. Performance of Brain–Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yao, L.; Zhang, D.; Wang, X.; Sheng, Q.Z.; Gu, T. Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems Computing Networking and Services, Melbourne, VIC, Australia, 7–10 November 2017; pp. 28–37. [Google Scholar]
- Zaki, M.; Alquraini, A.; Sheltami, T. Home Automation using EMOTIV: Controlling TV by Brainwaves. J. Ubiquitous Syst. Pervasive Netw. 2018, 10, 27–32. [Google Scholar] [CrossRef]
- Bairavi, K.; Sundhara, K.B.K. EEG Based Emotion Recognition System for Special Children. In Proceedings of the 2018 International Conference on Computers in Management and Business ICCMB’18, Singapore, 24–26 February 2018; Volume 18, pp. 1–4. [Google Scholar]
- Li, Z.; Xu, J.; Zhu, T. Recognition of Brain Waves of Left and Right Hand Movement Imagery with Portable Electroencephalographs. arXiv 2015, arXiv:1509.08257. [Google Scholar]
- Lim, C.G.; Lee, C.Y.; Kim, Y.M. A performance analysis of user’s intention classification from EEG signal by a computational intelligence in BCI. In Proceedings of the 2nd International Conference on Machine Learning and Soft Computing-ICMLSC ’18, Phu Quoc Island, Vietnam, 2–4 February 2018; pp. 174–179. [Google Scholar]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Ang, K.K.; Guan, C. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 392–401. [Google Scholar] [CrossRef]
- Qiu, Z.; Allison, B.Z.; Jin, J.; Zhang, Y.; Wang, X.; Li, W.; Cichocki, A. Optimized motor imagery paradigm based on imagining Chinese characters writing movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1009–1017. [Google Scholar] [CrossRef]
- Leeb, R.; Keinrath, C.; Friedman, D.; Guger, C.; Scherer, R.; Neuper, C.; Garau, M.; Antley, A.; Steed, A.; Slater, M.; et al. Walking by Thinking: The Brainwaves Are Crucial, Not the Muscles! Presence Teleoperators Virtual Environ. 2006, 15, 500–514. [Google Scholar] [CrossRef]
- Penaloza, C.I.; Alimardani, M.; Nishio, S. Android Feedback-Based Training Modulates Sensorimotor Rhythms during Motor Imagery. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 666–674. [Google Scholar] [CrossRef]
- Lai, R.; Chuen, D.L.E.E.K. Blockchain—From Public to Private, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 2. [Google Scholar]
- Li, W.; Sforzin, A.; Fedorov, S.; Karame, G.O. Towards Scalable and Private Industrial Blockchains. In Proceedings of the BCC ’17 ACM Work on Blockchain, Cryptocurrencies Contract, Abu Dhabi, United Arab Emirates, 2 April 2017; pp. 9–14. [Google Scholar]
- Sorace, S.; Quercia, E.; La Mattina, E.; Patrikakis, C.Z.; Bacon, L.; Loukas, G.; Mackinnon, L. Serious Games: An Attractive Approach to Improve Awareness of Community Policing Technologies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Rahman, M.A.; Hossain, M.S.; Rashid, M.M.; Barnes, S.J.; Alhamid, M.F.; Guizani, M. A Blockchain-Based Non-Invasive Cyber-Physical Occupational Therapy Framework: BCI Perspective. IEEE Access 2019, 7, 34874–34884. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S. M-Therapy: A Multi-sensor Framework for in-home Therapy Management: A Social Therapy of Things Perspective. IEEE Internet Things J. 2017, 5, 2548–2556. [Google Scholar] [CrossRef]
- Kuzmin, A. Blockchain-based structures for a secure and operate IoT. In Proceedings of the 2017 Internet of Things Business Models, Users, and Networks, Copenhagen, Denmark, 23–24 November 2017; pp. 1–7. [Google Scholar]
- O’Hara, K. Smart Contracts-Dumb Idea. IEEE Internet Comput. 2017, 21, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Moubarak, J.; Filiol, E.; Chamoun, M. Comparative analysis of blockchain technologies and TOR network: Two faces of the same reality? In Proceedings of the 2017 1st Cyber Security in Networking Conference (CSNet), Rio de Janeiro, Brazil, 18–20 October 2017; pp. 1–9. [Google Scholar]
- Qamar, A.M.; Khan, A.R.; Husain, S.O.; Rahman, M.A.; Basalamah, S. A Multi-Sensory Gesture-Based Occupational Therapy Environment for Controlling Home Appliances. In Proceedings of the ACM International Conference on Multimedia Retrieval (ICMR 2015), Shanghai, China, 23–26 June 2015. [Google Scholar]
- Rahman, M.A.; Hossain, D.; Qamar, A.M.; Rehman, F.U.; Toonsi, A.H.; Ahmed, M.; Basalamah, S. A Low-cost Serious Game Therapy Environment with Inverse Kinematic Feedback for Children Having Physical Disability. In Proceedings of the International Conference on Multimedia Retrieval—ICMR ’14, Glasgow, UK, 1–4 April 2014; pp. 529–531. [Google Scholar]
- Rui Neves Madeira, O.P.; Costa, L. Exercise training for advanced lung cancer (Review). Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [Green Version]
- Duarte, N.; Postolache, O.; Scharcanski, J. KSGphysio—Kinect serious game for physiotherapy. In Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 16–18 October 2014; pp. 606–611. [Google Scholar]
- Borodulkin, L.; Ruser, H.; Trankler, H.-R. 3D virtual ‘smart home’ user interface. In Proceedings of the IEEE International Symposium on Virtual and Intelligent Measurement Systems (IEEE Cat. No. 02EX545), Girdwood, AK, USA, 19–20 May 2002; pp. 111–115. [Google Scholar]
- Lee, J.Y.; Seo, D.; Rhee, G.W.; Hong, S.H.; Nam, J.-S. Virtual and Pervasive Smart Home Services Using Tangible Mixed Reality. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications, Sydney, NSW, Australia, 10–12 December 2008; pp. 403–408. [Google Scholar]
- Huang, Y.; Ozolek, J.A.; Hanna, M.G.; Singh, R.; Rohde, G.K. SetSVM: An Approach to Set Classification in Nuclei-Based Cancer Detection. IEEE J. Biomed. Health Inform. 2019, 23, 351–361. [Google Scholar]
- Magazzeni, D.; McBurney, P.; Nash, W. Validation and Verification of Smart Contracts: A Research Agenda. IEEE Comput. 2017, 50, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hassanain, E.; Rashid, M.M.; Barnes, S.J.; Shamim Hossain, M. Spatial Blockchain-Based Secure Mass Screening Framework for Children with Dyslexia. IEEE Access 2018, 6, 61876–61885. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rashid, M.; Barnes, S.; Hossain, M.S.; Hassanain, E.; Guizani, M. An IoT and Blockchain-Based Multi-Sensory In-Home Quality of Life Framework for Cancer Patients. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019. [Google Scholar]
Max Latency | Min Latency | Avg. Latency | Throughput |
---|---|---|---|
4.32 s | 1s | 2.9s | 266 tps |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdur Rahman, M.; Rashid, M.M.; Le Kernec, J.; Philippe, B.; Barnes, S.J.; Fioranelli, F.; Yang, S.; Romain, O.; Abbasi, Q.H.; Loukas, G.; et al. A Secure Occupational Therapy Framework for Monitoring Cancer Patients’ Quality of Life. Sensors 2019, 19, 5258. https://doi.org/10.3390/s19235258
Abdur Rahman M, Rashid MM, Le Kernec J, Philippe B, Barnes SJ, Fioranelli F, Yang S, Romain O, Abbasi QH, Loukas G, et al. A Secure Occupational Therapy Framework for Monitoring Cancer Patients’ Quality of Life. Sensors. 2019; 19(23):5258. https://doi.org/10.3390/s19235258
Chicago/Turabian StyleAbdur Rahman, Md., Md. Mamunur Rashid, Julien Le Kernec, Bruno Philippe, Stuart J. Barnes, Francesco Fioranelli, Shufan Yang, Olivier Romain, Qammer H. Abbasi, George Loukas, and et al. 2019. "A Secure Occupational Therapy Framework for Monitoring Cancer Patients’ Quality of Life" Sensors 19, no. 23: 5258. https://doi.org/10.3390/s19235258
APA StyleAbdur Rahman, M., Rashid, M. M., Le Kernec, J., Philippe, B., Barnes, S. J., Fioranelli, F., Yang, S., Romain, O., Abbasi, Q. H., Loukas, G., & Imran, M. (2019). A Secure Occupational Therapy Framework for Monitoring Cancer Patients’ Quality of Life. Sensors, 19(23), 5258. https://doi.org/10.3390/s19235258