Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things
Abstract
:1. Introduction
- Encoded image bits classification using M-SPIHT encoder to classify the encoded bits into two categories: critical and uncritical bit streams.
- Based on the M-SPIHT encoder classification, the UEP using the spatial modulation is proposed to improve the quality of the reconstructed image transmitted over the underwater acoustic channel.
- A mathematical framework for assessing the ABER performance of the SM information carrying units is laid out thoroughly to prove the capability of UEP using SM scheme.
- The proposed UEP-SM scheme carefully evaluated the reconstructed image improvement with the PSNR by simulation experiment on the simulated channel and measured underwater acoustic channel.
2. Encoded Image Classification
3. UEP Using Spatial Modulation
3.1. Spatial Modulation
3.2. ABER of SM Information Carrying Units
3.2.1. ABER of the Bits Carried by the Antenna Index
3.2.2. ABER of the Bits Carried by Constellation Diagram
3.3. UEP Using Spatial Modulation
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Domingo, M.C. An overview of the internet of underwater things. J. Netw. Comput. Appl. 2012, 35, 1879–1890. [Google Scholar] [CrossRef]
- Junejo, N.U.R.; Esmaiel, H.; Zhou, M.; Sun, H.; Qi, J.; Wang, J. Sparse channel estimation of underwater tds-ofdm system using look-ahead backtracking orthogonal matching pursuit. IEEE Access. 2018, 6, 74389–74399. [Google Scholar] [CrossRef]
- Junejo, N.U.R.; Esmaiel, H.; Sun, H.; Qasem, Z.A.; Wang, J. Pilot-Based adaptive channel estimation for underwater spatial modulation technologies. Symmetry 2019, 11, 711. [Google Scholar] [CrossRef]
- Esmaiel, H.; Jiang, D. SPIHT coded image transmission over underwater acoustic channel with unequal error protection using HQAM. In Proceedings of the IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013; pp. 1365–1371. [Google Scholar]
- Hussein, H.; Esmaiel, H.; Jiang, D. Fully generalised spatial modulation technique for underwater communication. Electron. Lett. 2018, 54, 907–909. [Google Scholar] [CrossRef]
- Esmaiel, H.; Jiang, D. Image transmission over underwater acoustic environment using OFDM technique with HQAM mapper. In Proceedings of the IEEE ICIST, Yangzhou, China, 23–25 March 2013; pp. 1596–1601. [Google Scholar]
- Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Adnan, S.; Fu, Y.; Esmaiel, H.; Chen, Z.; Junejo, N.U.R. Sparse detection with orthogonal matching pursuit in multiuser uplink quadrature spatial modulation MIMO system. IET Commun. 2019, 1–7. [Google Scholar] [CrossRef]
- Qasem, Z.A.; Esmaiel, H.; Sun, H.; Wang, J.; Miao, Y.; Anwar, S. Enhanced fully generalized spatial modulation for the internet of underwater things. Sensors 2019, 19, 1519. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Pearlman, W.A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Christophe, E.; Pearlman, W. Three-dimensional SPIHT coding of volume images with random access and resolution scalability. EURASIP J. Image Video Process. 2008, 2008, 248905. [Google Scholar] [CrossRef]
- Renzo, M.D.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial modulation for generalized MIMO: Challenges, opportunities and implementation. Proc. IEEE 2014, 102, 56–103. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A. Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 2009, 8, 3692–3703. [Google Scholar] [CrossRef]
- Naidoo, N.R.; Xu, H.-J.; Quazi, T.A.-M. Spatial modulation: Optimal detector asymptotic performance and multiple-stage detection. IET Commun. 2011, 5, 1368–1376. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L. Generalized space shift keying modulation for MIMO channels. In Proceedings of the 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15–18 September 2008; pp. 1–5. [Google Scholar]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Alouini, M.-S.; Goldsmith, A.J. A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Trans. Commun. 1999, 47, 1324–1334. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L. Spatial modulation: Optimal detection and performance analysis. IEEE Commun. Lett. 2008, 12, 545–547. [Google Scholar] [CrossRef]
- Xu, H. Symbol error probability for generalized selection combining reception of M–QAM. SAIEE Afr. Res. J. 2009, 100, 68–71. [Google Scholar] [CrossRef]
- Esmaiel, H.; Jiang, D. Progressive ZP-OFDM for Image Transmission Over Underwater Time-Dispersive Fading Channels. In Proceedings of the iCCECE, Southend, UK, 16–17 August 2018; pp. 226–229. [Google Scholar]
- Ali, H.S.; Atallah, A.M.; Abdalla, M.I. An efficient source–channel coding for wireless image transmission over underwater acoustic channel. Wirel. Pers. Commun. 2017, 96, 291–302. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Wang, P.; Lin, S.-C. SoftWater: Software-defined networking for next-generation underwater communication systems. Ad Hoc Netw. 2016, 46, 1–11. [Google Scholar] [CrossRef]
- Mostafa, M.; Esmaiel, H.; Mohamed, E.M. A comparative study on underwater communications for enabling C/U plane splitting based hybrid UWSNs. In Proceedings of the IEEE WCNC, Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Mubarak, A.S.; Esmaiel, H.; Mohamed, E.M. LTE/Wi-Fi/mmWave RAN-Level interworking using 2C/U plane splitting for future 5G networks. IEEE Access 2018, 6, 53473–53488. [Google Scholar] [CrossRef]
- Yang, T. Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications. IEEE J. Ocean Eng. 2003, 28, 229–245. [Google Scholar] [CrossRef]
- Esmaiel, H.; Jiang, D. Zero-pseudorandom noise training OFDM. Electron. Lett. 2014, 50, 650–652. [Google Scholar] [CrossRef]
- Younis, A.; Serafimovski, N.; Mesleh, R.; Haas, H. Generalised spatial modulation. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1498–1502. [Google Scholar]
- Mesleh, R.; Ikki, S.S.; Aggoune, H.M. Quadrature spatial modulation. IEEE Trans. Veh. Technol. 2014, 64, 2738–2742. [Google Scholar] [CrossRef]
- Mesleh, R.; Ikki, S.S.; Aggoune, H.M. Quadrature spatial modulation–performance analysis and impact of imperfect channel knowledge. Trans. Emerg. Telecommun. Technol. 2017, 28, e2905. [Google Scholar] [CrossRef]
- Hussein, H.S.; Elsayed, M.; Mohamed, U.S.; Esmaiel, H.; Mohamed, E.M. Spectral efficient spatial modulation techniques. IEEE Access 2018, 7, 1454–1469. [Google Scholar] [CrossRef]
SNR = 10 dB | SNR = 20 dB | |
---|---|---|
Conventional SM | ||
PSNR = 13.1 dB | PSNR = 20.4 dB | |
Proposed SM-UEP | ||
PSNR = 18.02 dB | PSNR = 27.5 dB |
SNR = 10 dB | SNR = 20 dB | |
---|---|---|
Conventional SM | ||
PSNR = 11.8 dB | PSNR = 23.3 dB | |
Proposed SM-UEP | ||
PSNR = 15.8 dB | PSNR = 27.4 dB |
SNR = 10 dB | SNR = 20 dB | |
---|---|---|
Conventional SM | ||
PSNR = 21.08 dB | PSNR = 32.52 dB | |
Proposed SM-UEP | ||
PSNR = 25.71 dB | PSNR = 32.54 dB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaiel, H.; Qasem, Z.A.H.; Sun, H.; Wang, J.; Rehman Junejo, N.U. Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things. Sensors 2019, 19, 5271. https://doi.org/10.3390/s19235271
Esmaiel H, Qasem ZAH, Sun H, Wang J, Rehman Junejo NU. Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things. Sensors. 2019; 19(23):5271. https://doi.org/10.3390/s19235271
Chicago/Turabian StyleEsmaiel, Hamada, Zeyad A. H. Qasem, Haixin Sun, Junfeng Wang, and Naveed Ur Rehman Junejo. 2019. "Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things" Sensors 19, no. 23: 5271. https://doi.org/10.3390/s19235271
APA StyleEsmaiel, H., Qasem, Z. A. H., Sun, H., Wang, J., & Rehman Junejo, N. U. (2019). Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things. Sensors, 19(23), 5271. https://doi.org/10.3390/s19235271