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Abstract: Reconstructing images from multi-view projections is a crucial task both in the computer
vision community and in the medical imaging community, and dynamic positron emission
tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the
limitations of photon emissions and the trade-off between temporal and spatial resolution. In
this paper, we develop a novel tensor based nonlocal low-rank framework for dynamic PET
reconstruction. Spatial structures are effectively enhanced not only by nonlocal and sparse features,
but momentarily by tensor-formed low-rank approximations in the temporal realm. Moreover, the
total variation is well regularized as a complementation for denoising. These regularizations are
efficiently combined into a Poisson PET model and jointly solved by distributed optimization. The
experiments demonstrated in this paper validate the excellent performance of the proposed method
in dynamic PET.

Keywords: dynamic positron emission tomography (PET); non-local; tensor decomposition;
low-rank approximation; compressed sensing; reconstruction; distributed optimization

1. Introduction

Positron emission tomography (PET) seeks to obtain radioactivity distributions by collecting
numerous photons emiĴed by the annihilations of positrons that come from the isotope-labeled
tracer injected in living tissue. Correspondently, considering the unique traits of physiological and
molecular imaging, PET is universally and irreplaceably required in clinic imaging, especially in
cancer diagnoses [1], lesion detection [2], and functional supervision in vivo. However, despite
its predominance for functional imaging, PET is dwarfed in resolution due to limitations either
from acquisition time or the injection dose when compared with other structural medical imaging
systems such as magnetic resonance imaging (MRI) and computed tomography (CT). Moreover, in
dynamic PET imaging, where the time-varying radioactivity concentration at each spatial location
is obtained, the structural information and denoising performance are more critical, along with
increasing demands for time activity curves (TAC) for different regions of interest (ROI). Under this
framework, reliable algorithms for dynamic PET reconstruction have been discussed and debated
for decades.

Initial aĴempts at PET reconstruction included the famous analytic filtered back-projected
(FBP) [3] based algorithms, least squares (LS) [4], and the maximum likelihood-expectation
maximization (ML-EM) [5] method. Although milestones, problematic conditions [6] always
accompany the optimization of the mentioned algorithms (i.e., the solution might be sensitive to
trivial fluctuation and thus consequently increase noise along the iterations). Thus, much effort has
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been devoted to this topic, among which the maximum a posteriori (MAP) [7] strategy, or penalized
ML method [6], have become the key to the solution. The main idea for this strategy is to integrate
regularization terms, or image priors from a Bayesian perspective, into the reconstruction model.
There are various representative regularizations, including the weighted quadratic penalty [8], Gibbs
prior [9], Gauss–Markov prior [10], Huber prior [11], total variation [12], and so on. More recently,
especially for dynamic imaging, temporal priors are starting to be introduced in reconstruction (e.g.,
the tracer kinetics model [13–15], kernel model [16], and dose estimation [17]).

Nevertheless, in spite of the significant progress achieved by researchers, traditional
reconstruction algorithms are still open to question. For one thing, traditional methods, to a large
extent, only focus on denoising behavior while ignoring the structural information within the images.
This has undoubtedly created a greater divide within the increasing clinical demand for resolution.
The other problem, which is of greater significance, is that the trade-off between the temporal and
the spatial resolution constantly degrades the quality of the dynamic reconstruction (i.e., a beĴer
temporal resolution requires more frequent sampling within a given duration, which causes fewer
photon counts for each frame, thus undermining the spatial resolution, and vice versa).

In this paper, we explore a potential solution for the mentioned dilemma by providing a
novel tensor based nonlocal low-rank framework in dynamic PET reconstruction. Several efforts
have been devoted to related topics. Low rank decomposition [18] and non-negative matrix
factorization [19–21], on the one hand, have been found to be able to capture the inner temporal
correlation in a dynamic PET. On the other hand, the nonlocal feature, which refers to the abundant
self-similar structures within an image, are excellently adopted in image denoising (e.g., the nonlocal
means (NLM) [22], weighted nuclear normminimization (WNNM) [23], block-matching 3Ddenoising
(BM3D) [24], nonlocal restoration [25], and nonlocal representation [26]). Moreover, in [27], Dong et al.
demonstrate the existence of nonlocal self-similarities and sparse features in MRI images. As shown
in Figure 1, nonlocal low-rank [28,29] features exist not only in ordinary natural images but also in
PET reconstructed images. Furthermore, as will be illustrated in Section 3, we promote the use of
matrix based nonlocal low-rank features in a novel tensor form and successfully apply it to dynamic
PET reconstruction. In this way, the structures are not only enhanced spatially by the image itself but
simultaneously completed by relevant frames across the temporal dimension.
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Figure 1. The nonlocal low-rank validation on images. For each random-selected exemplar patch  
(e.g., 5 × 5 sized), there can be found ample similar patches within the image itself. (a) By stretching 
the exemplar patch and its similar patches into vectors, a corresponding feature matrix (e.g., 25 × 30 
sized) can be formulated. (b) The rank distribution for the matrices which is formulated from given 
images. Up: the monarch; Down: Positron emission tomography (PET) scan of an Alzheimer’s 
patient’s brain. 

2. Background 

2.1. Dynamic PET Imaging Model 

Typically, during the detection procedure, the PET scanner collects the emitted photons and then 
pre-processes them into so-called sinogram data as the input of the reconstruction. For dynamic PET, 
let the sinogram matrix 𝒀 = [𝒚ଵ, 𝒚ଶ, . . . , 𝒚௧, . . . 𝒚்] ∈ ℝெ × ்  denote the collection of sinogram data 
vectors, where 𝑡 = 1,2, . . . , 𝑇  denotes the index of the frames; and sinogram vector  𝒚௧ = {𝑦௧௤ , 𝑞 = 1,⋅⋅⋅, 𝑀} ∈ ℝெ  denotes the sum of the photons collected in the t-th frame, where q 
represents the index of the total M pairs of detectors. Correspondently, 𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧, . . . 𝒙்] ∈ℝே × ் denotes the collection of the images that are supposed to be recovered, where vector  𝒙௧ ∈ ℝே  represents the t-th frame. Since Poisson distribution uses inherited PET systems, the 
reconstruction of each frame can be successfully modeled by the affine transformation: 𝒚௧ ∼ Poisson{𝐲̄௧}  s.t.  𝐲̄௧ = 𝐸(𝒚௧) = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧, (1)

where 𝒚̄௧  is the expectation of 𝒚௧ ; 𝑮 ∈ ℝெ×ே is the system matrix; and 𝒓௧  and 𝒔௧  represent the 
random coincidence and scatter coincidence, which inevitably contain heavy noise. In this way, we can 
obtain the likelihood function of 𝒚௧ as 

Pr( 𝒚௧|𝒙௧) = ෑ 𝑒ି௬̄೟೜ 𝑦̄௧௤ ௬೟೜𝑦௧௤!ெ
௤ . (2)

Instead of maximizing Label (2), we estimate 𝒙௧  by minimizing the negative log-likelihood 
version for the convenience of optimization: 

min𝒙೟ P(𝒙௧) = min𝒙೟ − log( Pr( 𝒚௧|𝒙௧)) = min𝒙೟ ෍ 𝑦̄௧௤ − 𝑦௧௤ log( 𝑦̄௧௤)ெ
௤   𝑠. 𝑡.   𝒚̄௧ = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧, (3)

where the constant term log( 𝑦௧௤!) is left out. 

Figure 1. The nonlocal low-rank validation on images. For each random-selected exemplar patch (e.g.,
5 × 5 sized), there can be found ample similar patches within the image itself. (a) By stretching the
exemplar patch and its similar patches into vectors, a corresponding feature matrix (e.g., 25 × 30 sized)
can be formulated. (b) The rank distribution for the matrices which is formulated from given images.
Up: the monarch; Down: Positron emission tomography (PET) scan of an Alzheimer’s patient’s brain.
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The main contributions are listed as follows:

(1) An innovative form of a nonlocal low rank tensor constraint is adopted in the Poisson’s
model, which captures data correlation in multiple dimensions in dynamic PET, beyond just
spatiotemporal correlation. For one thing, without any additional information, Poisson’s model
exploits the temporal information among the frames themselves, effectively complementing the
structures in low-active frames and recovering severely corrupted data. For the other, it exploits
the spatial information from nonlocal self-similarities within each frame, thereby enhancing the
structured sparsity for each image.

(2) As an additional regularization, the total variation (TV) constraint is employed to extract
local structure and further complement the denoising function. On the other hand, the
expectation–maximization method is employed as a fidelity term to incorporate hidden data
in the objective function and thus increase efficiency in optimization.

(3) In the optimization procedure, we develop a distributed optimization framework inspired by
the alternative direction method of multipliers (ADMM) [30]. In this way, the mentioned
terms can be explicitly organized in a united objective function and effectively handled as three
subproblems during the iterations.

2. Background

2.1. Dynamic PET Imaging Model

Typically, during the detection procedure, the PET scanner collects the emiĴed photons and then
pre-processes them into so-called sinogram data as the input of the reconstruction. For dynamic
PET, let the sinogram matrix Y = [y1,y2, … , y𝑡, … , y𝑇 ] ∈ R𝑀 × 𝑇 denote the collection of sinogram
data vectors, where 𝑡 = 1, 2, … , 𝑇 denotes the index of the frames; and sinogram vector y𝑡 = {𝑦𝑡𝑞 ,
𝑞 = 1, … , 𝑀} ∈ R𝑀 denotes the sum of the photons collected in the t-th frame, where q represents the
index of the total M pairs of detectors. Correspondently, X = [x1, x2, … , x𝑡, … x𝑇 ] ∈ R𝑁 × 𝑇 denotes
the collection of the images that are supposed to be recovered, where vector x𝑡 ∈ R𝑁 represents the
t-th frame. Since Poisson distribution uses inherited PET systems, the reconstruction of each frame
can be successfully modeled by the affine transformation:

y𝑡 ∼ Poisson{y𝑡} s.t. y𝑡 = 𝐸(y𝑡) = Gx𝑡 + r𝑡 + s𝑡, (1)

where y𝑡 is the expectation of y𝑡 ; G ∈ R𝑀×𝑁 is the system matrix; and r𝑡 and s𝑡 represent the random
coincidence and scaĴer coincidence, which inevitably contain heavy noise. In this way, we can obtain the
likelihood function of y𝑡 as

Pr(y𝑡|x𝑡) =
𝑀

∏𝑞
𝑒−𝑦𝑡𝑞

𝑦𝑡𝑞
𝑦𝑡𝑞

𝑦𝑡𝑞! . (2)

Instead ofmaximizing Label (2), we estimate x𝑡 byminimizing the negative log-likelihood version
for the convenience of optimization:

min
x𝑡

P(x𝑡) = min
x𝑡

− log(Pr(y𝑡|x𝑡)) = min
x𝑡

𝑀

∑𝑞
𝑦𝑡𝑞 − 𝑦𝑡𝑞 log(𝑦𝑡𝑞) 𝑠.𝑡. y𝑡 = Gx𝑡 + r𝑡 + s𝑡, (3)

where the constant term log(𝑦𝑡𝑞!) is left out.
Therefore, in the scale of dynamic reconstruction, Equation (3) can be transformed into

min
X

P(X) = min
X

𝑇

∑𝑡

𝑀

∑𝑞
𝑦𝑡𝑞 − 𝑦𝑡𝑞 log(𝑦𝑡𝑞) 𝑠.𝑡. y𝑡 = Gx𝑡 + r𝑡 + s𝑡. (4)
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However, optimization merely by Equation (4) is ill-conditioning—i.e., the reconstruction is
vulnerable to accumulated iterative noise accompanying the iteration. The predominant solution to
this shortcoming is to include the regularization terms in Equation (4) as the image prior. Thus, the
object function of PET reconstruction can be wriĴen as

min
X

Ψ(X) = min
X

P(X) +R(X), (5)

where P(X) denotes the fidelity term defined in Equation (4), and R(X) denotes the regularization term.

2.2. Tensor Decomposition

Just like the matrix, the low-rank approximation of the tensor is also inevitably based
on tensor decomposition. At present, the strategies for tensor decomposition mainly fall
into three groups: the CANDECOMP/PARAFAC [31] (CP) decomposition methods, Tucker
decomposition [32,33] methods, and tensor-singular value decomposition [34–36] (t-SVD) methods.
Because of the stability and efficiency inherited in their optimization, t-SVD has aroused increasing
interest among the community.

As shown in Figure 2, for a three-way tensor 𝓐 ∈ R𝑛1×𝑛2×𝑛3 , t-SVD shares the same form as the
matrix SVD:

𝓐 = 𝓤 ∗ 𝓢 ∗ 𝓥𝑇 , (6)

where 𝓤 ∈ R𝑛1×𝑛1×𝑛3 and 𝓥 ∈ R𝑛2×𝑛2×𝑛3 are orthogonal tensors [37]; 𝓥𝑇 represents the conjugate
transpose [34] of 𝓥; 𝓢 ∈ R𝑛1×𝑛2×𝑛3 is a f-diagonal tensor in which each frontal slice 𝓢(𝑖) is a diagonal
matrix [35]; and ∗ denotes the t-product [37,38].
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In this paper, we proposed a nonlocal tensor low-rank framework for dynamic PET
reconstruction, where the tensor low-rank approximation is efficiently and effectively conducted by
a t-SVD based method. The details of this method will be illustrated in Section 3.

3. Method

In this paper, we proposed a novel reconstruction framework that can jointly recover, denoise,
and (mostly) critically complete the structures in the dynamic PET imaging system. The overall
procedure is illustrated in Algorithm 1.
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Algorithm 1: Dynamic PET reconstruction via Nonlocal Low-rank Tensor Approximation and Total
Variation

Input: Sinogram 𝑌 and system matrix G, weighting parameters 𝛼, 𝛽, 𝜆, 𝜂, and the reference frame index 𝑡𝑟.
1: Initialization: 𝑘 = 0,X0 = FBP(Y).
2: Repeat:
3:  Compute the patch sets 𝑆𝑡𝑟𝑖

(𝑘), ∀𝑖 based on the 𝑡𝑟-th frame x𝑡𝑟
(𝑘) using (7).

                        ⊳ 𝓛 − subproblem
4:  Construct the nonlocal featured tensor 𝓧𝑖

(𝑘+1), ∀𝑖 by (8) and (9).
5:  Approximate the low-rank tensor 𝓛𝑖

(𝑘+1), ∀𝑖 by adopting t-SVT method in (13) and (21).
6:  Construct Ω by updating the differential vector Ω𝑡

(𝑘+1), ∀𝑡 via (22).
                        ⊳ 𝜔− subproblem
7:  Update the Lagrangian multiplier v𝑡(𝑘+1), ∀𝑡 via (23).
8:  Repeat:                   ⊳ X− subproblem
9:    E-step: Introduce the expectation variable ̂𝑐𝑡𝑞𝑗 and construct the X−relevant objective function Ψ(X)
in (24).
10:    M-step: Update 𝑥(𝑘+1)

𝑡𝑗 , ∀𝑡, 𝑗 using (25) and (26).
11:  Until: Inner Relative change (X(𝑘+1)−X(𝑘))

X(𝑘+1) < 10−5

12:𝑘 ← 𝑘 + 1
13: Until: Relative change (X(𝑘+1)−X(𝑘))

X(𝑘+1) < 10−6

14: Output: Reconstructed image sequence X(𝑘).

3.1. Nonlocal Low Rank Tensor Approximation

The nonlocal tensor regularization consists of two parts: forming the nonlocal tensor within the
recovered frames and formulating the low-rank property in the formed tensors.

3.1.1. Tensor Formulation

During the optimizing procedure, a temporary estimated image sequence
X = [x1, x2, … , x𝑡, … x𝑇 ] ∈ R𝑁×𝑇 will be obtained after each iteration, where x𝑡 ∈ R𝑁 represents
the t-th frame of image vector as mentioned in Section 2.1. Similar to Figure 1, numerous W × W
sized overlapping patches x̃𝑡𝑖 ∈ R𝑛 (n = W × W) can be extracted from each x𝑡, where i denotes the
index of the image patch. According to the nonlocal self-similar properties, within the image, there
are plentiful patches that share the same structure with each x̃𝑡𝑖. Based on the Euclidean distance, we
choose the m nearest patches for each x̃𝑡𝑖:

𝑆𝑡𝑖 = {𝑠|‖x̃𝑡𝑖 − x̃𝑡𝑖,𝑠‖2 < 𝜌𝑡𝑖}, (7)

where 𝑆𝑡𝑖 is the index set of similar patches for the i-th positioned patch x̃𝑡𝑖; and 𝜌𝑡𝑖 is the threshold
value defined by the distance between x̃𝑡𝑖 and its m-th nearest patch. Thus, for each exemplar x̃𝑡𝑖, we
formulate a matrix:

X𝑡𝑖 = [x̃𝑡𝑖, x̃𝑡𝑖,1, … , x̃𝑡𝑖,𝑠, … , x̃𝑡𝑖,𝑚−1],X𝑡𝑖 ∈ R𝑛 × 𝑚. (8)

As shown in Figure 1, due to the nonlocal self-similarity, it is fairly assumed that each X𝑡𝑖
is low-rank.

From a dynamic recovery perspective, sets 𝑆𝑡𝑖 for 𝑡 = 1, 2, … , 𝑇 are identical, since the structure
in dynamic PET is unchanged. Therefore, based on the patch position i, we can construct a 3D tensor
𝓧𝑖 ∈ R𝑛 × 𝑚 × 𝑇 , whose frontal slices are calculated as

𝓧𝑖(:, :, 𝑡) = X𝑡𝑖, 𝑡 = 1, 2, … , 𝑇 . (9)
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Figure 3 illustrates the overall procedure for forming a nonlocal tensor. Within each iteration,
numerous 𝓧𝑖s for various i positions will be constructed and then approximated by a
low-rank property.Sensors 2019, 19, x 6 of 21 
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3.1.2. Low Rank Tensor Approximation

The next step is the low rank approximation for constructed tensors 𝓧𝑖, ∀𝑖. Traditionally, the
primal model of rank regularization searches for the tensor 𝓛𝑖, where

𝓛𝑖 = arg
𝓛𝑖

𝑚𝑖𝑛𝑟𝑎𝑛𝑘(𝓛𝑖) s.t. 𝓛𝑖 = 𝓧𝑖. (10)

Nevertheless, this model is non-deterministic polynomial-time (NP) hard, and its direct
optimization is nonconvex. Taking this situation into account, we choose a surrogate form of Equation
(10) and turn it into a convex optimization issue:

𝓛𝑖 = argmin
𝓛𝑖

1
2‖𝓛𝑖 − 𝓧𝑖‖2

𝐹 + 𝜆‖𝓛𝑖‖∗. (11)

Here, ‖ ⋅ ‖∗ denotes the tensor nuclear norm [39] and ‖ ⋅ ‖𝐹 denotes the Frobenius norm. Under
this circumstance, it is feasible to get a closed-form solution by adopting tensor singular value
thresholding (t-SVT) [39]:

𝓛𝑖 = 𝓤𝑖 ∗ 𝒟𝜆(𝓢𝑖) ∗ 𝓥𝑖
𝑇 , (12)

with 𝓧𝑖 = 𝓤𝑖 ∗ 𝓢𝑖 ∗ 𝓥𝑖
𝑇 representing the mentioned t-SVD of 𝓧𝑖 and

𝒟𝜆(𝓢𝑖) = 𝐼𝐹 𝐹 𝑇(3)((𝓢𝑖 − 𝜆)+), (13)

where (𝑋)+ = max(𝑋, 0); 𝐼𝐹 𝐹 𝑇(3)(𝑋)denotes the fast Inverse Fast Fourier Transform (IFFT) ofX across
dimension 3; and 𝓢𝑖 = 𝐹 𝐹 𝑇(3)(𝓢𝑖) denotes the Fast Fourier Transform (FFT) of 𝓢𝑖 across dimension 3.
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3.2. Total Variation Regularization in Dynamic PET

Apart from nonlocal low-rank tensor regularization, we also incorporate the total variation [40]
(TV) as a complementary constraint into the dynamic PET reconstruction framework. Unlike the
nonlocal tensor, the adopted TV regularization focuses on inherited local information within each
frame. Moreover, this pixel-based regularization compromises patch-based regularization and thus
improves the denoising performance of the proposed algorithm.

For each image frame x𝑡 ∈ R𝑁 in the estimated sequence X = [x1, x2, … , x𝑡, … x𝑇 ] ∈ R𝑁 × 𝑇 , we
adopt an l2 formed TV regularization, which is properly formulated in accordance with augmented
Lagrangian optimization [41,42]:

𝑚𝑖𝑛
𝑥𝑡𝑗 ∑

𝑗
‖𝜔𝑡𝑗‖2 s.t. 𝐷𝑗x𝑡 = 𝜔𝑡𝑗 for all 𝑗, (14)

where 𝜔𝑡𝑗 = 𝐷𝑗x𝑡 denotes the discrete gradient of x𝑡 at position j; and 𝐷𝑗 denotes the j-th element of
the corresponding differential operatorD. Correspondingly, the augmented Lagrangian function can
be wriĴen as:

min
Ω

DTV(Ω|X) =
𝑇

∑𝑡
‖𝜔𝑡‖+ 𝜂

2‖𝜔𝑡 −Dx𝑡‖
2
2 − 𝑡(𝜔𝑡 −Dx𝑡), (15)

where Ω = [𝜔1, 𝜔2,… ,𝜔𝑇 ] ∈ R𝑁 × 𝑇 represents the collection of discrete gradient vectors Ω𝑡 = Dx𝑡
for each recovered frame; 𝜂 represents the tunable weighting parameters of the quadratic term; and
𝑡 represents the updatable multiplier vector. Consequently, this method guarantees the convexity of
TV regularization, and hence equips the proposed method with global convergence.

3.3. Expectation Maximization for Fidelity Term

Indisputably, solving the fidelity term Equation (4), to a large extent, is an essential mission in
estimating the reconstruction images 𝑋. Regardless of regularization, Equation (4) can be further
wriĴen as:

min
X

P(X) = min
X

𝑇

∑
𝑡=1

𝑁

∑
𝑗

𝑀

∑𝑞
(𝑔𝑞𝑗𝑥𝑡𝑗 − 𝑐𝑡𝑞𝑗 log(𝑔𝑞𝑗𝑥𝑡𝑗)) s.t. 𝑦𝑡𝑞 = ∑𝑞

𝑐𝑡𝑞𝑗 , (16)

where 𝑥𝑡𝑗 denotes the j-th pixel in image x𝑡; 𝑔𝑞𝑗 is the qj-th entry in system matrix G, representing the
contribution of the j-th pixel given to the q-th detector; and the hidden variable 𝑐𝑡𝑞𝑗 represents the
photon count from the j-th pixel to the q-th detector pair in the t-th frame.

The main challenge lies in the solving procedure, especially handling the hidden variable 𝑐𝑡𝑞𝑗 .
In this work, we adopt the well-known expectation maximization (EM) [5,43], which introduces
‘complete data’ into the model and thus facilitates optimization. In order to solve Equation (18), there
are two essential steps:

• E-step: This step employs the expectation ̂𝑐𝑡𝑞𝑗 = 𝐸(𝑐𝑡𝑞𝑗|x𝑡, 𝑦𝑡𝑞) as the substitute for the hidden
variable 𝑐𝑡𝑞𝑗 in Equation (18):

̂𝑐𝑡𝑞𝑗 =
𝑔𝑞𝑗𝑥𝑡𝑗

∑𝑁
𝑗 𝑔𝑞𝑗𝑥𝑡𝑗 + 𝑟𝑡𝑞 + 𝑠𝑡𝑞

𝑦𝑡𝑞 . (17)

• M-step: This step maximizes the likelihood by zeroing the derivative of Equation (19):

𝜕P(X)
𝜕𝑥𝑡𝑗

= 0. (18)

The EM algorithm, which will be illustrated in greater detail in the next section, makes our
proposed framework readily and efficiently solvable.
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3.4. The Overall Optimization Framework

Based on Equation (5), the overall reconstruction model can be represented as

min
X

Ψ(X) = min
X

𝛼TNL(X) + 𝛽DTV(X)+P(X), (19)

where P(X) is the fidelity term in the reconstructionmodel Equation (16); TNL(X) represents the tensor
formed nonlocal low rank constraint in Section 3.1; DTV(X) represents the dynamic PET adopted total
variation term in Section 3.2; and 𝛼 and 𝛽 denote the weighting parameters. By taking the mentioned
terms into account, the objective function can be formulated as:

Ψ(X,ℒ,𝜔) = 𝛼(∑𝑖
1
2‖ℒ𝑖 −𝒳𝑖‖

2
𝐹 +𝜆‖ℒ𝑖‖∗) + 𝛽(∑𝑇

𝑡 ‖𝜔𝑡‖
+ 𝜂

2‖𝜔𝑡 −Dx𝑡‖
2
2 − 𝑡(𝜔𝑡 −Dx𝑡)) +∑𝑇

𝑡 ∑𝑀
𝑞 𝑦𝑡𝑞 − 𝑦𝑡𝑞 log(𝑦𝑡𝑞),

𝑠.𝑡. y𝑡 = Gx𝑡 + r𝑡 + s𝑡.
(20)

Normally, recovering X = [x1, x2,… , x𝑡,… x𝑇 ] ∈ R𝑁×𝑇 directly from Equation (20) is a complex
process. For this process, we refer to the alternative directionmethod of multipliers (ADMM) [30] and
divide the model into three subproblems ofℒ, 𝜔 and X in a distributed optimization way.

(1) ℒ-subproblem. Let (�)(𝑘) denote the updated variable after the k-th iteration; e.g.,X(𝑘) represents
the computed image sequence after the k-th iteration. In the (k + 1)-th iteration, nonlocal low-rank
approximation is first implemented. After the formulation of nonlocal feature tensors𝒳𝑖

(𝑘+1), ∀𝑖,
as illustrated in Section 3.1, we can obtain the function related to each low rank tensor:

ℒ𝑖
(𝑘+1) = 𝒰𝑖

(𝑘+1) ∗𝒟𝜆(𝒮𝑖
(𝑘+1)) ∗𝒱(𝑘+1)

𝑖
𝑇 , (21)

with𝒳𝑖
(𝑘+1) = 𝒰𝑖

(𝑘+1) ∗𝒮𝑖
(𝑘+1) ∗𝒱(𝑘+1)

𝑖
𝑇

(2) 𝜔-subproblem. Unlike updating ℒ𝑖, the discrete gradient is updated frame by frame. As
shown in Equation (15), we update Ω = [𝜔1, 𝜔2,… ,𝜔𝑇 ] ∈ R𝑁×𝑇 by employing the shrinkage
operator [44]:

𝜔𝑡
(𝑘+1) = max

{
‖Dx𝑡(𝑘) − 𝑡

(𝑘)

𝜂 ‖2 −
1
𝜂, 0}

Dx𝑡(𝑘) − 𝑡
(𝑘)/𝜂

‖Dx𝑡(𝑘) − 𝑡(𝑘)/𝜂‖2
. (22)

Correspondingly, the multiplier vector updates by:

v𝑡(𝑘+1) = v𝑡(𝑘) − 𝜂(Dx𝑡(𝑘) −𝜔𝑡
(𝑘+1)). (23)

(3) X-subproblem. After the update of ℒ and Ω, the last critical process is to update X =
[x1, x2,… , x𝑡,… x𝑇 ] ∈ R𝑁×𝑇 . In addition to the fidelity term in Equation (18), the former
mentioned regularizations must be considered. In this procedure, we adopt the EM algorithm
and hence reform Equation (20) into a joint function relevant to X (or 𝑥𝑡𝑗):

Ψ(X) =
𝑇
∑
𝑡

𝑁
∑
𝑗

𝑀
∑
𝑞
(𝑔𝑞𝑗𝑥𝑡𝑗 − ̂𝑐𝑡𝑞𝑗 log(𝑔𝑞𝑗𝑥𝑡𝑗)) + 𝛼∑

𝑖

𝑇
∑
𝑡

𝑁
∑
𝑗

1
2‖ℒ𝑖

(𝑘+1)
(𝑡) −Γ𝑖𝑡𝑗𝑥𝑡𝑗‖2𝐹

+𝛽
𝑇
∑
𝑡

𝑁
∑
𝑗

𝜂
2 (D𝑗𝑥𝑡𝑗 −𝜔𝑡𝑗

(𝑘+1))2 + 𝜈𝑡𝑗(𝑘+1)(𝜔𝑡𝑗
(𝑘+1) −D𝑗𝑥𝑡𝑗)

𝑠.𝑡. ̂𝑐𝑡𝑞𝑗 =
𝑔𝑞𝑗𝑥𝑡𝑗 (𝑘)

∑𝑁
𝑗 𝑔𝑞𝑗𝑥𝑡𝑗 (𝑘)+𝑟𝑡𝑞+𝑠𝑡𝑞

𝑦𝑡𝑞 .

(24)

Here,ℒ𝑖(𝑡) (orℒ𝑖(:, :, 𝑡)) denotes the t-th frontal slice of tensorℒ𝑖; Γ𝑖𝑡𝑗 denotes the contributionweight
for pixel x𝑡𝑗 to tensor 𝒳𝑖; 𝜔𝑡𝑗 denotes the j-th element of Ω𝑡, and 𝐷𝑗 denotes the j-th column of the
differential operator D; and 𝜈𝑡𝑗 is the j-th element of multiplier v𝑡.
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According to the M-step in Equation (18), we can harvest a unitary quadratic equation:

𝐴𝑡𝑗(𝑥𝑗)2 +𝐵𝑡𝑗𝑥𝑗 +𝐶𝑡𝑗 = 0

𝑠.𝑡. A𝑡𝑗 = 𝛼∑
𝑖

𝑇
∑
𝑡
Γ𝑇
𝑖𝑡𝑗Γ𝑖𝑡𝑗 +𝛽𝜂

𝑇
∑
𝑡
D𝑇

𝑗 D𝑗 , 𝐶𝑡𝑗 = −
𝑇
∑
𝑡

𝑀
∑
𝑞

̂𝑐𝑡𝑞𝑗

B𝑡𝑗 =
𝑇
∑
𝑡

𝑀
∑
𝑞
𝑔𝑞𝑗 −𝛼∑

𝑖

𝑇
∑
𝑡
Γ𝑇
𝑖𝑡𝑗ℒ𝑖

(𝑘+1)
(𝑡) −

𝑇
∑
𝑡
𝛽𝜂D𝑇

𝑗 𝜔𝑡𝑗
(𝑘+1) −D𝑇

𝑗 𝜈𝑡𝑗(𝑘+1) .

(25)

Therefore, 𝑥𝑡𝑗(𝑘+1) can be readily solved as the positive root of (25):

𝑥(𝑘+1)𝑡𝑗 =
(−𝐵𝑡𝑗 + √𝐵𝑡𝑗2 − 4𝐴𝑡𝑗𝐶𝑡𝑗)

2𝐴𝑡𝑗
. (26)

In this X sub-problem, given that we do not have a close-formed solution for the PET
reconstruction model [5], the X-subproblem is not fully solved by the employment of EM. However,
due to the implementation of ADMM based optimization, the overall framework will converge, even
if its sub-problems are not carried out exactly [30].

Algorithm 1 demonstrates the overall procedure of our proposed algorithm. It is noteworthy
that, in the initialization step, we employed the filtered backward projection (FBP) [3] method to
produce a ‘warm start’. By doing so, as we will show in the next section, iterative performance is
notably improved.

4. Experiments and Results

In this section, we perform various experiments, in order to validate the qualitative and
quantitative measures of the proposed method. Data on diversified photon counts, sizes, tracers, and
structures are recovered by our proposed method and compared with the results of representative
and state-of-the-art algorithms.

4.1. Implementations

4.1.1. Evaluation Criteria

For the qualitative evaluation, randomly selected reconstructions are shown in this part, where
the structural detail, noise level, and so on will be intuitively illustrated. For the quantitative
evaluation, other than the peak signal-to-noise ratio (PSNR)), we also employ the relative bias and
variance [45] as the indicators of the resolution and smoothness, respectively:

Bias = ( 1
𝑁𝑡

)
𝑁𝑡

∑
𝑗

|𝑥𝑗 − 𝑥̂𝑗|
𝑥̂𝑗

, (27)

Variance =( 1
(𝑁𝑡 − 1))

𝑁𝑡

∑
𝑗
(
|𝑥𝑗 −𝑥|

𝑥𝑗
)
2
, (28)

where 𝑥̂𝑗 denotes the ground truth in the j-th pixel; 𝑥 denotes the mean value of the ROI; and 𝑁𝑡
denotes the total number of pixels in the given ROI. Unlike the PSNR, the smaller the relative bias and
variance are, the beĴer the reconstruction is.

We also conduct the multiple simulations experiment. In this study, we employ the contrast
recovery coefficient (CRC) and the standard deviation (STD) [16,46]:

CRC = 1
𝑅

𝑅

∑
𝑟=1

|𝑆𝑟 −𝐵𝑟|
𝐵𝑟

, (29)
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STD = 1
𝑁𝐵

𝑁𝐵

∑
𝑗=1

√ 1
𝑅−1 ∑

𝑅
𝑟=1 (𝐵𝑟,𝑗 −𝐵𝑗)

𝐵𝑗
. (30)

Here, 𝑅 = 50 represents the number of realizations in the simulation. In Equation (29), 𝑆𝑟
represents the mean value of the ROI in r-th realization and 𝐵𝑟 represents the mean value of the
background region in r-th realization. In Equation (30), 𝑁𝐵 denotes the total number of pixels in the
background region; 𝐵𝑗 = (1/𝑅)∑𝑅

𝑟=1𝐵𝑟,𝑗 denotes the mean value of j-th pixel in background region
across R realizations.

For the real data, we adopt the contrast to noise ratio (CNR) [47]:

𝐶𝑁𝑅 = (𝑚𝑅𝑂𝐼 −𝑚𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)/𝑆𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 , (31)

where the𝑚𝑅𝑂𝐼 and𝑚𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 represent the intensity of the ROI and background region respectively,
and 𝑆𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 is the standard deviation of the background region.

4.1.2. Dataset

As shown in Figure 4, we mainly adopt a 64 × 64 sized Zubal brain phantom as the template and
employ the 11C-dihydrotetrabenazine (denoted as DTBZ) as the tracer. The scanning procedure in
simulated into 18 frames for a duration of 20 min with the corresponding TAC presented in Figure 1.
Moreover, to validate the performance of the algorithms under a diversified tracer dose, the data are
generated in 3 × 106, 107 and 3 × 107 total photon counts over 18 frames. Furthermore, in the multiple
realizations experiment, we generate total 100 realizations for 3× 106 and 3× 107 counted data (R = 50
for each simulation). In addition, all the simulated seĴings correspond to real cases.
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the figure.

Furthermore, 111 × 111 sized Zubal head phantoms [16] are recovered to validate the
effectiveness of the proposed method on different tracers (18F-FDG) and image sizes. Moreover, real
cardiac data are tested in this section. The data are scanned over 60 min by a Hamamatsu SHR-22000
(Hamamatsu Photonics K.K., Hamamatsu City, Japan). There are, overall, 19 frames, and each are
scanned by 130 detector pairs from 192 angles.

4.1.3. Comparative Algorithms

To evaluate the performance of the proposed algorithm, we introduce five representative
algorithms in comparison (the maximum likelihood-expectation maximization (ML–EM)
algorithm [5], the penalized weighted least square (PWLS) method [8], the total variation
optimized by augmented Lagrangian (TV-AL) method [48], the penalized likelihood incremental
optimization method regularized by hyperbolic potential function [45,49] (denoted as PLH-IO), and
the spatial-temporal total variation (ST-TV) method [50]) proposed for dynamic PET reconstruction.
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4.1.4. Parameters SeĴing

After deliberate examination, we set the weighting parameters as follows: the nonlocal tensor
weight parameter 𝛼 = 1.7; TV weight parameter 𝛽 = 0.9; tensor thresholding parameter 𝜆 = 2.5; and
and parameter 𝜂 = 50. Another critical issue is the tensors’ sizes. As shown in Figure 5, the optimal
patch size is 3 × 3. Thus, if the number of feature patches is set to 10 in the 18-frame sequence, each
selected tensor’s size is 9× 10× 18. We set themaximum iteration to 500 for all methods in comparison.Sensors 2019, 19, x 11 of 21 
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Figure 5. Normalized peak signal-to-noise ratio (PSNR) of reconstructions under different patch size
W. (a) for images in different size, (b) for data under different photon count.

4.1.5. Experiment Description

We evaluate our method both qualitatively and quantitatively on simulation and real PET data.
We firstly compare the reconstructions for 64 × 64 sized Zubal brain data under 3 × 107 total photon
counts, and demonstrate 5th, 11th, and 17th frame in Figure 6. In Figure 7, we further compare the 11th
reconstructed frames under lower-counted sequences: 3× 106 and 1 × 107 photon counts. In addition,
we recover the 111 × 111 sized Zubal head phantom to validate the performance under different sizes
and TACs, as shown in Figure 8. For the real patient study, we demonstrate the first frame of dynamic
cardiac PET reconstructions in Figure 9, and compute the CNR for each method.

Sensors 2019, 19, x 11 of 21 

 

 
(a) (b) 

Figure 5. Normalized peak signal-to-noise ratio (PSNR) of reconstructions under different patch size 
W. (a) for images in different size, (b) for data under different photon count. 

4.1.5. Experiment Description 

We evaluate our method both qualitatively and quantitatively on simulation and real PET data. 
We firstly compare the reconstructions for 64 × 64 sized Zubal brain data under 3 × 107 total photon 
counts, and demonstrate 5th, 11th, and 17th frame in Figure 6. In Figure 7, we further compare the 
11th reconstructed frames under lower-counted sequences: 3 × 106 and 1 × 107 photon counts. In 
addition, we recover the 111 × 111 sized Zubal head phantom to validate the performance under 
different sizes and TACs, as shown in Figure 8. For the real patient study, we demonstrate the first 
frame of dynamic cardiac PET reconstructions in Figure 9, and compute the CNR for each method. 

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 6. Dynamic brain phantom reconstructed by different algorithms. The total photon counts are 3 × 10଻ over 18 image frames. From the first to the last row: the 5th, 11th and 17th frame. (a) ground 
truth, (b) ML-EM (16.01 dB, 16.41 dB, 15.92 dB), (c) PWLS (17.71dB, 16.88dB, 16.23dB), (d) TV-AL 
(18.49 dB, 18.76 dB, 18.52 dB), (e) PLH-IO (21.26 dB, 19.56 dB, 18.39 dB), (f) ST-TV (21.27 dB, 20.59 dB, 
19.02 dB), (g) Ours (21.79 dB, 21.71 dB, 20.63 dB). 

  

Figure 6. Dynamic brain phantom reconstructed by different algorithms. The total photon counts are
3 × 107 over 18 image frames. From the first to the last row: the 5th, 11th and 17th frame. (a) ground
truth, (b) ML-EM (16.01 dB, 16.41 dB, 15.92 dB), (c) PWLS (17.71dB, 16.88dB, 16.23dB), (d) TV-AL
(18.49 dB, 18.76 dB, 18.52 dB), (e) PLH-IO (21.26 dB, 19.56 dB, 18.39 dB), (f) ST-TV (21.27 dB, 20.59 dB,
19.02 dB), (g) Ours (21.79 dB, 21.71 dB, 20.63 dB).
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EM (12.51 dB, 15.06 dB), (b) PWLS (15.89 dB, 16.67 dB), (c) TV-AL (16.09 dB, 16.45 dB), (d) PLH-IO 
(16.83 dB, 18.84 dB), (e) ST-TV (17.43 dB, 19.21 dB), (f) Ours (17.78 dB, 19.98 dB). 
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Figure 8. The 15th frame of 111×111 sized Zubal head phantom reconstructed by different algorithms. 
(a) ground truth, (b) ML-EM (18.19 dB), (c) PWLS (18.35 dB), (d)TV-AL (19.22 dB),  
(e) PLH-IO (19.17 dB), (f) ST-TV (19.45 dB), (g) Ours (19.73 dB). 
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frame under 186,337 photon counts. Second row: the 11th frame under 619,848 photon counts. (a)
ML-EM (12.51 dB, 15.06 dB), (b) PWLS (15.89 dB, 16.67 dB), (c) TV-AL (16.09 dB, 16.45 dB), (d) PLH-IO
(16.83 dB, 18.84 dB), (e) ST-TV (17.43 dB, 19.21 dB), (f) Ours (17.78 dB, 19.98 dB).
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Figure 8. The 15th frame of 111× 111 sized Zubal head phantom reconstructed by different algorithms.
(a) ground truth, (b) ML-EM (18.19 dB), (c) PWLS (18.35 dB), (d)TV-AL (19.22 dB), (e) PLH-IO
(19.17 dB), (f) ST-TV (19.45 dB), (g) Ours (19.73 dB).

In the quantitative evaluations, we firstly present the PSNR, relative bias and variance for data
under 3 × 107, 3 × 106 and 1 × 107 photon counts in Table 1; furthermore, we compute the relative bias
and variance in each ROI for 3 × 106 counted data and demonstrate them in Table 2. In Figure 10a–c,
we compute the PSNR, relative bias, and variance for each frame in 1× 107 counted data. In Figure 10d,
we demonstrate the performance of the trade-off between resolution and smoothness, by altering the
parameters in each algorithm and ploĴing the bias and variance in each reconstruction.
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Figure 9. The 2nd frame of the dynamic cardiac real data, under 221,858 photon counts. The ROI is 
marked by a red circle. (a) ML-EM (CNR = 10.97), (b) PWLS (CNR = 13.72), (c) TV-AL(CNR = 18.46), 
(d) PLH-IO (CNR = 19.59), (e) ST-TV (CNR = 22.06), (f) Ours (CNR = 22.70), (g) the intensity profile 
across the ROI (the yellow line in the first graph). Our proposed method presents a superior contrast 
between the ROI and background region. 

In the quantitative evaluations, we firstly present the PSNR, relative bias and variance for data 
under 3 × 107, 3 × 106 and 1 × 107 photon counts in Table 1; furthermore, we compute the relative 
bias and variance in each ROI for 3 × 106 counted data and demonstrate them in Table 2. In Figure 
10a–c, we compute the PSNR, relative bias, and variance for each frame in 1 × 107 counted data. In 
Figure 10d, we demonstrate the performance of the trade-off between resolution and smoothness, by 
altering the parameters in each algorithm and plotting the bias and variance in each reconstruction.  

Table 1. Average value of statistical evaluation terms for reconstructed Brain Phantom sequences 
under different photon counts. 
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Table 2. Average value of relative bias and variance in each region of interest (ROI). 3x106 photon 
counted data are tested and shown. 

Algorithm 
Relative Bias  Relative Variance 
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ML-EM 0.2374 0.2353 0.3909 0.4407 0.2654  0.0252 0.0260 0.0105 0.0292 0.0410 
PWLS 0.2054 0.1955 0.1853 0.2381 0.1801  0.0217 0.0377 0.0054 0.0176 0.0217 
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Moreover, we conduct the experiment on multiple simulations. In our experiment, we run  
100 realizations for 3 × 107 and 3 × 106 counted data, and draw the CRC-STD curves, as shown in  

Figure 9. The 2nd frame of the dynamic cardiac real data, under 221,858 photon counts. The ROI is
marked by a red circle. (a) ML-EM (CNR = 10.97), (b) PWLS (CNR = 13.72), (c) TV-AL(CNR = 18.46),
(d) PLH-IO (CNR = 19.59), (e) ST-TV (CNR = 22.06), (f) Ours (CNR = 22.70), (g) the intensity profile
across the ROI (the yellow line in the first graph). Our proposed method presents a superior contrast
between the ROI and background region.

Table 1. Average value of statistical evaluation terms for reconstructed Brain Phantom sequences
under different photon counts.

Algorithm
PSNR (dB) Relative Bias Relative Variance

3 × 106 1 × 107 3 × 107 3 × 106 1 × 107 3 × 107 3 × 106 1 × 107 3 × 107

ML-EM 13.00 14.39 15.75 0.2374 0.2024 0.1742 0.0252 0.0147 0.0138
PWLS 15.20 16.25 16.81 0.2054 0.1747 0.1627 0.0217 0.0162 0.0154
TV-AL 15.91 17.13 18.76 0.1804 0.1548 0.1286 0.0303 0.0161 0.0152
PLH-IO 16.48 17.92 19.87 0.1883 0.1539 0.1225 0.0205 0.0131 0.0115
ST-TV 16.85 19.07 20.21 0.1725 0.1359 0.1139 0.0161 0.0125 0.0097

Ours 17.29 19.54 21.03 0.1609 0.1172 0.0983 0.0148 0.0111 0.0083

Table 2. Average value of relative bias and variance in each region of interest (ROI). 3 × 106 photon
counted data are tested and shown.

Algorithm
Relative Bias Relative Variance

Whole ROI1 ROI2 ROI3 ROI4 Whole ROI1 ROI2 ROI3 ROI4

ML-EM 0.2374 0.2353 0.3909 0.4407 0.2654 0.0252 0.0260 0.0105 0.0292 0.0410
PWLS 0.2054 0.1955 0.1853 0.2381 0.1801 0.0217 0.0377 0.0054 0.0176 0.0217
TV-AL 0.1804 0.1905 0.1758 0.2114 0.1522 0.0303 0.0464 0.0056 0.0215 0.0303
PLH-IO 0.1883 0.2601 0.1560 0.1680 0.2077 0.0205 0.0285 0.0035 0.0205 0.0205
ST-TV 0.1725 0.2001 0.1388 0.1700 0.1791 0.0161 0.0210 0.0042 0.0151 0.0190

Ours 0.1609 0.1864 0.1235 0.1591 0.1671 0.0148 0.0203 0.0035 0.0118 0.0186
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Figure 10. The quantitative evaluation for each image frame. (a) PSNR, (b) relative bias, (c) relative 
variance, (d) the experiment on the trade-off between image resolution and denoising performance. 

To better validate the proposed method, we further implement the experiments on multiple 
realizations. As demonstrated in Figure 11a–b, we run the experiments under high-count and  
low-count scenarios (3 × 107 and 3 × 106 counted data) and draw the correspondent CRC-STD 
curves, which illustrate the performance of compared methods. In these curves, each point 
corresponds to a certain setting for parameters in the relative method. According to the figures, the 
proposed method manages to recover higher CRC while keeping the background STD in a low level, 
which validates the stability of our method in reducing the noise while keeping the contrast 
distinctive. Moreover, we analyze the statistical performance of the Wilcoxon rank sum test on the 
multiple realizations data. As shown in Figure 11c–d, we compute the p-value between the proposed 
method and compared methods, in terms of PSNR on multi-simulation. In this study, the proposed 
method significantly outperforms the ST-TV in 3 × 106 dataset, at p-value < 0.01; more distinctively, 
the proposed method outperforms other methods in 3 × 106 dataset and all methods in 3 × 107 
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Figure 10. The quantitative evaluation for each image frame. (a) PSNR, (b) relative bias, (c) relative
variance, (d) the experiment on the trade-off between image resolution and denoising performance.

Moreover, we conduct the experiment on multiple simulations. In our experiment, we run
100 realizations for 3 × 107 and 3 × 106 counted data, and draw the CRC-STD curves, as shown in
Figure 11a–b. Accordingly, the CRC is computed from ROI 2, and the background STD is computed
from ROI 4, which represents the white maĴer. In addition, we run the Wilcoxon rank sum test on
the multiple realization test, as demonstrated in Figure 11c–d. In addition, we further examine the
universality of the proposed method by reconstructing data under wider range of photon counts, as
demonstrated in Figure 11a, from 1× 106 to 1× 108. Further discussions on convergence are illustrated
in Figure 11b and the discussion section.
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Figure 11. The statistical test on multiple realizations. First row: the CRC-STD curves for high-count 
and low-count simulations, with realization number R=50 in each dataset. Second row: the PSNR bar 
plot and Wilcoxon rank sum test on multiple realizations datasets. Here ** and *** represent p-value 
< 0.01 and p-value < 0.001 respectively. (a) CRC-STD curves on 3 × 107 dataset, (b) CRC-STD curves 
on the 3 × 106 dataset, (c) Wilcoxon rank sum test on 3 × 107 dataset, and (d) Wilcoxon rank sum test 
on the 3 × 106 dataset. 

4.2.3. Robustness and Convergence Analysis 

The robustness and convergence experiments are demonstrated in this section. As we can see 
from Figure 12a, the proposed method presents better performance and robustness than other 
methods under a broad range of photon counts.  

For the convergence, Figure 12b demonstrates the PSNR for iterations of all tested methods. 
Specifically, we individually test our methods with and without a warmstart, which is mentioned in 
Section 3. Our warmstart-equipped method surpasses other methods in its convergence performance. 
  

Figure 11. The statistical test on multiple realizations. First row: the CRC-STD curves for high-count
and low-count simulations, with realization number R = 50 in each dataset. Second row: the PSNR
bar plot and Wilcoxon rank sum test on multiple realizations datasets. Here ** and *** represent
p-value < 0.01 and p-value < 0.001 respectively. (a) CRC-STD curves on 3 × 107 dataset, (b) CRC-STD
curves on the 3 × 106 dataset, (c) Wilcoxon rank sum test on 3 × 107 dataset, and (d) Wilcoxon rank
sum test on the 3 × 106 dataset.

4.2. Results

4.2.1. Qualitative Evaluation

The initial experiment focuses on the resolution and the denoising performance throughout the
temporal dimension. According to the TAC in Figure 4, the distinction of activity between different
ROIs is inconspicuous in the early imaging stage, which consequently hampers the recovery of
the structural information in the corresponding image frames. As demonstrated in Figure 6, the
reconstructions of ML-EM and PWLS suffer from severe iterative noise and fail to recover a clear
boundary between regions. On the other hand, the TV-AL and PLH-IO showmore acceptable results
for the 17th frame. However, when it comes to former frames, neither of these two methods are able
to recover clear structures. Moreover, the TV-AL suffers from the staircase effect and artifacts, and
PLH-IO tends to over-smooth the image. Although ST-TV improves the resolution by incorporating
temporal information, it is still limited by recovering more detailed structures. In contrast, our
proposed method manages to recover more detailed structures and less noise in reconstructing the
brain phantom sequence under 3 × 107 photon counts. This contrast is more distinctive in simulated
low-dose images. As we can see in Figure 7, when recovering early frames in the low-count data, our
proposedmethod is able to recover substantially clearer structures than those of other methods under
similar noise levels.
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Meanwhile, our method also shows its universality in recovering sequences under different sizes
and TACs. In this experiment, 111 × 111 sized Zubal head phantom data were tested in an 18F-FDG
environment. In Figure 8, the 15th frame is randomly selected out of 24 frames. In addition, real
patient data are tested. In Figure 9, the second sequence is shown, and the photon counts are around
2.2 × 105. Obviously, our proposed method yields clearer boundaries and more conspicuous contrast
between ROIs and the background.

4.2.2. Quantitative Evaluation

The quantitative measurements are also meticulously implemented. Table 1 demonstrates the
average statistical values for the dynamic image sequences under diversified photon counts.
According to the table, the proposed method enjoys a higher PSNR and lower relative bias and
variance, revealing solid and substantial merits in structural enhancement, resolution improvement,
and image denoising. Table 2 provides more detailed measurements for each ROI reconstruction.
As shown in the table, the proposed method reconstructs images at a lower bias and variance in
each ROI to vary the count level, which demonstrates beĴer resolution and smoothness than those
of comparable methods.

Other than spatial information, temporal trends are also considered in Figure 10, where
Figure 10a–c presents the PSNR, bias, and variance for each frame. It can be easily observed that
the proposed method, overall, has beĴer results for each frame, which will facilitate the exploitation
of temporal information. In addition, given the fact that regular reconstruction methods are largely
based on the trade-off between the resolution and the noise level, we also implemented an experiment
of this trade-off, correspondingly represented by the relative bias and the relative variance in
Figure 10d. As we can see, apart from the relatively poorer performances of ML-EM and PWLS, both
TV-AL and PLH-IO show a negative correlation between these two indexes. In contrast, the marks of
our proposed method are densely concentrated in the boĴom-left of this graph, which shows a beĴer
image quality and beĴer compromise for the mentioned trade-off.

To beĴer validate the proposed method, we further implement the experiments on multiple
realizations. As demonstrated in Figure 11a–b, we run the experiments under high-count and
low-count scenarios (3 × 107 and 3 × 106 counted data) and draw the correspondent CRC-STD curves,
which illustrate the performance of compared methods. In these curves, each point corresponds to a
certain seĴing for parameters in the relative method. According to the figures, the proposed method
manages to recover higher CRC while keeping the background STD in a low level, which validates
the stability of our method in reducing the noise while keeping the contrast distinctive. Moreover, we
analyze the statistical performance of the Wilcoxon rank sum test on the multiple realizations data.
As shown in Figure 11c–d, we compute the p-value between the proposed method and compared
methods, in terms of PSNR on multi-simulation. In this study, the proposed method significantly
outperforms the ST-TV in 3 × 106 dataset, at p-value < 0.01; more distinctively, the proposed method
outperforms other methods in 3 × 106 dataset and all methods in 3 × 107 dataset, at a p-value < 0.001.

4.2.3. Robustness and Convergence Analysis

The robustness and convergence experiments are demonstrated in this section. As we can
see from Figure 12a, the proposed method presents beĴer performance and robustness than other
methods under a broad range of photon counts.
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5. Discussion 

Other than merely denoising, the proposed method simultaneously provides enhancement and 
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Unlike the tracer kinetics based dynamic reconstruction method, the proposed method 
spontaneously exploits the inner temporal correlation within the sequence without the need for tracer 
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information in the reconstruction sequence.  

This result is attributed to the tensor based low rank approximation. As presented in Figure 3, 
the third dimension of the 𝓧௜ ∈ ℝ௡×௠×்  exists alongside the temporal information. By 
implementing the tensor based low rank constraint on each 𝓧௜ , the spatial information is 
spontaneously infiltrated from high-counted frames to low-counted frames, while keeping the 
voxels’ relative intensities and edge arrangements fixed. Considering this feature, a dynamic PET 
sequence is considered ideal for this framework, given the unchanged boundary and structures along 
the dynamic sequences. On the other hand, since noise is randomly and sparsely arranged in the PET 
sequence, it is ruled out as the sparse component in the low rank approximation.  

Furthermore, we demonstrate the contribution of different regularization components in  
Figure 13 by setting various hyper-parameters. According to the figure, tensor constraints can 
successfully recover detailed structures but are slightly limited in smoothing an image under low 
counts. Fortunately, the employment of a TV constraint compensates for this issue, as demonstrated 
in Figure 13c. 

Nevertheless, there are still several concerns in this study. Firstly, for the data in unwilling but 
conspicuous motion, the proposed method is limited in harvesting temporal correlation, though 
other dynamic PET algorithms also suffer from this issue, to the best of our knowledge. Currently, 
the optimal solution is to conduct motion correction before reconstruction. Secondly, since 3D 
structural nonlocal features are not well proven in the computer vision community, this method is 
not guaranteed to function well in 3D PET reconstruction. However, we still provide two solutions 
for applying the proposed method in 3D data at the current stage: (1) Conduct the method slice by 
slice; and (2) rebin the data into a 2D form before reconstruction.  
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under diversified photon counts; (b) the PSNR convergent trends along iterations.

For the convergence, Figure 12b demonstrates the PSNR for iterations of all tested methods.
Specifically, we individually test our methods with and without a warmstart, which is mentioned in
Section 3. Our warmstart-equippedmethod surpasses other methods in its convergence performance.

5. Discussion

Other than merely denoising, the proposed method simultaneously provides enhancement and
completion of structural sparsity by introducing a 3D tensor based nonlocal low-rank constraint.
Unlike the tracer kinetics based dynamic reconstructionmethod, the proposedmethod spontaneously
exploits the inner temporal correlation within the sequence without the need for tracer information
and model fiĴing. In fact, our proposed method not only managed to suppress noise while
recovering at a high resolution, it also enhanced, and even completed, the structural information in
the reconstruction sequence.

This result is aĴributed to the tensor based low rank approximation. As presented in Figure 3,
the third dimension of the𝒳𝑖 ∈ R𝑛×𝑚×𝑇 exists alongside the temporal information. By implementing
the tensor based low rank constraint on each𝒳𝑖, the spatial information is spontaneously infiltrated
from high-counted frames to low-counted frames, while keeping the voxels’ relative intensities and
edge arrangements fixed. Considering this feature, a dynamic PET sequence is considered ideal for
this framework, given the unchanged boundary and structures along the dynamic sequences. On the
other hand, since noise is randomly and sparsely arranged in the PET sequence, it is ruled out as the
sparse component in the low rank approximation.

Furthermore, we demonstrate the contribution of different regularization components in
Figure 13 by seĴing various hyper-parameters. According to the figure, tensor constraints can
successfully recover detailed structures but are slightly limited in smoothing an image under low
counts. Fortunately, the employment of a TV constraint compensates for this issue, as demonstrated
in Figure 13c.
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Figure 13. The comparison of reconstructed images under different settings of hyper-parameters. (a) 
reconstruction constrained by TV regularization (by setting α=0), (b) reconstruction constrained by 
nonlocal low rank tensor (by setting β=0), (c) image reconstructed by proposed methods (α=2.5, β=1.4). 

The last issue focuses on the computational cost. For simulated data in Figure 4, the 
computational time for each method is demonstrated in Table 3. Here, the computational experiments 
are implemented under Matlab R2014a (Mathworks, Natick, MA., USA), on the same desktop with 
an Intel Core i7-4720HQ CPU (Santa Clara, CA, USA) @2.60 GHz and 8 GB RAM. We have to concede 
that, compared with the traditional pixel-based algorithms, the computational cost is inevitable in the 
proposed method, due to the multiple decompositions for feature tensors generated by feature cubes 
(or patches in 2D situation [23,24]). To address this issue, we will continue optimizing the proposed 
algorithm and employing other algorithms, such as TCTF [51]. 

In addition, the choice for the tensor decomposition model is still open in our future work. The 
T-SVD based method is proved effective in our work and [34–36], yet, strictly speaking, its tubal 
based rank is the analogous rank extended from SVD. In our future work, we will further analyze the 
data-structures, explore the feasibilities of other potential models, i.e., CP and Tucker rank [31], and 
testify the applicabilities of the latest proposed CP rank based methods [52,53] as well as Tucker rank 
based methods [54,55]). 

Table 3. Computational time for each method. 

Method ML-EM PWLS TV-AL PLH-IO ST-TV Ours 
Computational time (s/iteration) 0.04375 0.3163 0.07935 0.3507 0.1639 4.379 

6. Conclusions 

In this paper, we provide a novel tensor based nonlocal low-rank framework for dynamic PET 
reconstruction. By introducing a nonlocal featured tensor and applying the t-SVT in low-rank tensor 
approximation, the image structures are efficiently enhanced while effectively depressing the noise. 
More significantly, structural information is further completed by other frames in an interactive way, 
thereby compromising the conflict between spatial and temporal resolution. On the other hand, 
accompanied by the TV term denoising (from a local and pixel-based perspective), the regularizations 
are firstly integrated in the Poisson reconstruction model and efficaciously optimized in a distributed 
framework. 
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Figure 13. The comparison of reconstructed images under different seĴings of hyper-parameters.
(a) reconstruction constrained by TV regularization (by seĴing α = 0), (b) reconstruction constrained
by nonlocal low rank tensor (by seĴing β = 0), (c) image reconstructed by proposed methods (α = 2.5,
β = 1.4).

Nevertheless, there are still several concerns in this study. Firstly, for the data in unwilling
but conspicuous motion, the proposed method is limited in harvesting temporal correlation, though
other dynamic PET algorithms also suffer from this issue, to the best of our knowledge. Currently,
the optimal solution is to conduct motion correction before reconstruction. Secondly, since 3D
structural nonlocal features are not well proven in the computer vision community, this method is
not guaranteed to function well in 3D PET reconstruction. However, we still provide two solutions
for applying the proposed method in 3D data at the current stage: (1) Conduct the method slice by
slice; and (2) rebin the data into a 2D form before reconstruction.

The last issue focuses on the computational cost. For simulated data in Figure 4, the
computational time for eachmethod is demonstrated in Table 3. Here, the computational experiments
are implemented under Matlab R2014a (Mathworks, Natick, MA., USA), on the same desktop with
an Intel Core i7-4720HQ CPU (Santa Clara, CA, USA) @2.60 GHz and 8 GB RAM.We have to concede
that, compared with the traditional pixel-based algorithms, the computational cost is inevitable in the
proposed method, due to the multiple decompositions for feature tensors generated by feature cubes
(or patches in 2D situation [23,24]). To address this issue, we will continue optimizing the proposed
algorithm and employing other algorithms, such as TCTF [51].

Table 3. Computational time for each method.

Method ML-EM PWLS TV-AL PLH-IO ST-TV Ours

Computational time
(s/iteration) 0.04375 0.3163 0.07935 0.3507 0.1639 4.379

In addition, the choice for the tensor decomposition model is still open in our future work. The
T-SVD based method is proved effective in our work and [34–36], yet, strictly speaking, its tubal
based rank is the analogous rank extended from SVD. In our future work, we will further analyze
the data-structures, explore the feasibilities of other potential models, i.e., CP and Tucker rank [31],
and testify the applicabilities of the latest proposed CP rank based methods [52,53] as well as Tucker
rank based methods [54,55]).

6. Conclusions

In this paper, we provide a novel tensor based nonlocal low-rank framework for dynamic
PET reconstruction. By introducing a nonlocal featured tensor and applying the t-SVT in low-rank
tensor approximation, the image structures are efficiently enhanced while effectively depressing
the noise. More significantly, structural information is further completed by other frames in an
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interactive way, thereby compromising the conflict between spatial and temporal resolution. On the
other hand, accompanied by the TV term denoising (from a local and pixel-based perspective), the
regularizations are firstly integrated in the Poisson reconstruction model and efficaciously optimized
in a distributed framework.
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