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Abstract: Electroencephalography (EEG) has relatively poor spatial resolution and may yield incorrect
brain dynamics and distort topography; thus, high-density EEG systems are necessary for better
analysis. Conventional methods have been proposed to solve these problems, however, they depend
on parameters or brain models that are not simple to address. Therefore, new approaches are
necessary to enhance EEG spatial resolution while maintaining its data properties. In this work,
we investigated the super-resolution (SR) technique using deep convolutional neural networks (CNN)
with simulated EEG data with white Gaussian and real brain noises, and experimental EEG data
obtained during an auditory evoked potential task. SR EEG simulated data with white Gaussian
noise or brain noise demonstrated a lower mean squared error and higher correlations with sensor
information, and detected sources even more clearly than did low resolution (LR) EEG. In addition,
experimental SR data also demonstrated far smaller errors for N1 and P2 components, and yielded
reasonable localized sources, while LR data did not. We verified our proposed approach’s feasibility
and efficacy, and conclude that it may be possible to explore various brain dynamics even with a small
number of sensors.

Keywords: convolutional neural networks; electroencephalography; spatial resolution; super-resolution

1. Introduction

Super-resolution (SR) is a technique that enhances low-resolution (LR) images’ quality to
high-resolution (HR). Recently, this underdetermined inverse problem in imaging was addressed
successfully by a data-driven approach, deep convolutional neural networks (CNN). Firstly,
Dong et al., (2015) suggested simple neural networks using three convolution operations [1],
and Kim et al., (2015) extended the model by including twenty layers with larger kernels [2] that
learned image residuals to increase convergence speed. In subsequent work, Kim and his colleagues
constructed a recurrent model of convolution layers and adopted the skip-connection to prevent the
vanishing gradient problem [3]. To convert LR to HR efficiently, Shi et al., (2016) devised sub-pixel
convolutions rather than handcrafted bi-cubic interpolation in the initial layer [4]. Further, a novel
approach that minimizes loss related to a pre-trained model feature rather than the mean squared
error was proposed to recover high-frequency details and match humans’ visual perception [5]. It has
been assumed that SR images may be estimated in real image distributions composed of generative
adversarial networks (GAN). In [6], features from several local-residual-dense blocks were concatenated
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with point-wise convolution, and up-scaled using sub-pixel convolution. We found previously that
residual and dense structures guarantee good classification performance by propagating gradients
well [7,8]. In audio processing, SR may be understood as a concept of generative signal modeling.
Audio SR using CNN may increase the signal’s sampling rate and predict missing samples in LR
signals [9]. With respect to the signal-to-noise ratio (SNR) and log spectral distance, the CNN-based
audio SR outperformed spline interpolation and artificial neural networks (ANN).

Electroencephalography (EEG) measures electrical potentials from sensors attached to the scalp.
Cooperating neurons in the brain’s cortices generate brain waves, and these electrical activities are
widespread throughout the cerebrospinal fluid (CSF), skull, and scalp. Compared to other brain
imaging techniques, EEG has a relatively good temporal resolution, but poor spatial resolution that
generates inaccurate source information on the cortex [10,11], distorts topographical maps by removing
high spatial frequency [12,13], and makes it difficult to reject artefacts as discriminable independent
components [14]. Therefore, although they are more costly, high-density EEG systems are required to
reduce the errors in estimating brain function.

To address the disadvantage of poor spatial resolution, many researchers have studied methods
that enhance EEG spatial resolution to reduce signal distortion. Hjorth (1975) introduced a local
surface Laplacian method that estimated scalp potentials from four neighboring sensors’ averaged
potentials [15], and its modified surface Laplacian [16]. However, local surface Laplacian methods
are vulnerable to eye movements and blinking [17]. Thus, Perrin et al., (1987) and Nunez (1995)
proposed a global surface Laplacian by computing second derivatives of interpolated values [18,19].
In addition, spherical harmonics that solve the partial differential equations on an orthogonal basis [20]
were reported. However, a spherical spline is sensitive to spline parameters [21]. Another approach
is a cortical imaging method or current source density that estimates scalp voltages from current
dipoles using a volume conduction model [22-25]; however, these are severely model-dependent,
and demonstrate uncertainty with unknown sources [26]. Accordingly, there has been almost no
breakthrough to date that improves EEG spatial information, although modified methods have been
explored [27]. Recently, compressed sensing that recovers original data from far fewer features or
measurements seems promising [28,29]. Compressive sensing was applied to wireless EEG systems for
home care that may monitor the progression of Alzheimer’s disease and the effect of drugs [30,31], but its
application depends on the original data’s redundancy [28,29]. However, the recent success in applying
deep learning to the SR technique may offer a way to overcome EEG’s low resolution inexpensively.

Corley et al., (2018) investigated the EEG SR technique first in mental imagery classification in
brain—computer interface (BCI) [32]. They selected 8 or 16 channels from the original 32 and then
up-scaled them spatially to the original 32 channels using Wasserstein GAN; SR performance was
evaluated to determine whether SR data may be classified to the same degree as the original data, and
SR was found to yield comparable EEG classification results. However, it was not possible to determine
whether SR recovers or maintains the original EEG signals’ characteristics.

In this work, we proposed deep CNN firstly to enhance EEG data’s spatial resolution and
investigated its feasibility in sensor and source aspects. Recovered high-density EEG data could be
applied not only to detect events at the sensor level, but also to detect the source; further, it may
estimate functional connectivity and capture a subject’s intention and mental states. We investigated 2-,
4-, 8-, and 16-fold scale-ups over various SNRs extensively. We note that this work was an extended
version of our IEEE SMC 2018 conference paper [33] that reported the preliminary results of SR CNN
models for simulated data. However, this work reports a more extensive and in-depth investigation
with both simulated and experimental data. In addition, the up-scaling direction and evaluations were
considered using deep learning and signal processing approaches. To observe SR EEG characteristics
quantitatively, the mean squared error (MSE) and correlation at the sensor level, as well as source
localization at the source level, were considered. Section 2 presents details of the simulated and
experimental data and introduces our proposed CNN structure. In Section 3, we present the evaluation
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of the SR data characteristics for the simulated and experimental data. SR-related issues and limitations
of this work are discussed in Section 4, and Section 5 provides our conclusions.

2. Materials and Methods

2.1. Simulated Data

To generate simulated EEG data, we considered a three-spherical shell head model that represents
the brain (innermost), and skull and scalp (outermost) with their respective conductivities, 1, 0.0125,
and 1 [34]. Each shell’s relative radii were 0.87, 0.92, and 1, respectively. The boundary element method
(BEM) was applied to compute the simulated EEG data. All EEG sensors were placed on the outermost
shell (representing the scalp) according to the 10-10 international system. Two dipoles within the
brain were considered and BEM was applied to compute the EEG data at the sensors. Simulated
data were sampled at 512 Hz, and each trial lasted 1 s. To investigate the SR approach’s feasibility
using CNN, dipoles in the simulation were chosen to be more realistic, but to determine source
localization simply. A single dipole is very simple, while more than three make it difficult to estimate
the source’s performance. Thus, we considered two dipoles in this study, in which each is located in
each hemisphere sufficiently far apart to localize reasonably at low SNRs. In reality, two dipoles are
known to explain experimental auditory evoked potential (AEP) data. Noiseless simulated data are
illustrated in Figure 1. Finally, to generate noisy data, we added white Gaussian noise or real brain
noise (eyes open resting state) to the EEG computed, and generated various SNR data by scaling the
noise data (SNR of 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, and 0.01). We note that real brain noise was acquired
from one subject during a two-minute resting state (eyes open) without eye movements using the
Biosemi Active Two system with 64 channels.
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Figure 1. Simulated data without noise (a) position, (b) time series of two dipoles.
2.2. Experimental Data

We collected EEG data (512 Hz) from six subjects (aged 26.27 + 1.03) using the 64 channel Biosemi
ActiveTwo system (Amsterdam, Netherlands) during an experiment that the Institutional Review
Board of Gwangju Institute of Science and Technology approved (20181023-HR-39-02-02). Further,
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two re-referencing earlobe channels were used, and electrooculogram (EOG) and electromyogram
(EMG) data were collected to monitor unexpected noise from the eyes, jaw, and chin. Subjects fixed their
gaze on the monitor for one minute and closed their eyes for one minute. Thereafter, they performed
the AEP task for five runs, each of which consisted of 200 trials. Finally, we collected eyes-open and
eyes-closed data again. During the AEP task, an auditory stimulus, a beeping sound 50 ms in duration
with a 1000 Hz square wave tone, was given for each trial, and subjects were instructed to concentrate
on the sound. An inter-stimulus interval (ISI) between 1000 and 1500 ms was given randomly. The EEG
data from —300 to 1000 ms were used and preprocessed by band-pass filtering from 1 to 50 Hz. Severe
noise components were discarded using independent component analysis (ICA), and bad trials were
rejected by visual inspection. We observed that a small number of trials were contaminated by severe
noise attributable to frowning or unexpected spike signals. The data were divided randomly into
training (64%), validation (16%), and test (20%) trials, and the CNN process and evaluation were
conducted with these sets. This procedure was repeated five times with different training and test sets
for cross-validation.

After checking the six subjects” data quality, one subject’s data were discarded because of
unexpected severe noise. The CNN method for super-resolution was applied to the five datasets
remaining, and we found that all data yielded similar trends. Because our goal in this work was to
investigate the feasibility of the SR approach using CNN, we believed that one subject’s data were
sufficiently good for deep analysis, and thus, we selected one of the five datasets that demonstrated less
noisy trials in this work, although no significant difference in the data’s quality was seen. We rejected
noisy components and trials from the selected subject’s data and finally used 932 among 1000 trials in
our analysis.

2.3. Generating Low Spatial Resolution Data

First, we defined HR, LR, and SR. HR represented the original data (64 channels) and was used
for comparison with the CNN output in the training step. LR represented 64-channel data interpolated
from 32-, 16-, 8-, and 4-channel data, and was used for CNN input data. Throughout this work,
we often addressed LR without interpolation, which represents simply the original EEG data with 32,
16, 8, or 4 channels to compare the source localization results. SR is the output of the CNN process,
i.e., the super-resolution data (64 channels).

In the SR study, we down-scaled the original EEG data (64 channels) 2, 4, 8, and 16 times;
ie., 32 (64—32), 16 (64—16), 8 (64—8), and 4 (64—4) channel data were generated. Our channel
configuration was based on the Biosemi ActiveTwo 64-channel system’s configuration (https://www.
biosemi.com/headcap.htm). Then, we reduced these 64 channels to 32, 16, 8, and 4. We chose the 32
and 16 channels based on the Biosemi configuration system; 8 and 4 channels were chosen among
64 channels, and remained positioned evenly on the head. Details of the channels chosen are shown in
Figure 3. Then, we investigated two SR approaches (scale-up to 64-channel data) from the downscaled
data as follows:

e  Conventional interpolation approach (LR): Data for missing channels were estimated from known
nearby channels by simple linear interpolation (Figure 2). We note that this simple transformation
of data with fewer channels (4-, 8-, 16-, or 32-channel data) to interpolated LR data (64-channel
data) is a fundamentally ill-posed problem; Dong et al., up-scaled their input LR images to the
size desired using bicubic interpolation to achieve good beginning initialization [1].

Our proposed deep CNN approach (SR): Input data are introduced as the data (interpolated LR)
estimated by the conventional interpolation approach above. Then, trained deep CNN estimates the
corresponding SR data from the input data given. Detailed information on CNN is described in the
following section.
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Figure 2. Generation of low resolution (LR) data with white Gaussian noise (signal-to-noise ratio (SNR)
of 100) and processing high resolution (HR) and LR data when up-scaling from 16—64 (4x).
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Figure 3. Channel locations.

2.4. Deep CNN for Super-Resolution

The deep CNN structure that we designed adopted the symmetry of a stacked denoising
autoencoder [35] (Figure 4) and consists of three components: encoder, decoder, and integration.
The encoder, devised for down-sampling the input LR data into latent space, conducts three successive
convolutions (13 x 5 kernel, 64 filters, 2 strides). From the latent space, the decoder up-samples its
data size by applying three transposed convolutions (13 x 9 kernel, 64 filters, 2 up-sampling strides).
It is known that transposed convolution may be regarded as a reverse operation of convolution with
learnable parameters [36]. However, we verified checkerboard artifacts in the up-sampled data as
mentioned in [37]. The integration step is used to prevent any patterned noise and made the data size
fit our output HR. Two convolution layers (13 x 5 kernel with 64 filters, 1 stride, and 7 x 1 kernel, 1 filter,
1 stride) were used. Our kernel configurations were chosen because of Kim et al.,’s previous work,
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which reported that the larger kernel yields higher performance in image SR (13 x 13 vs. 41 x 41) [2].
Further, many studies have tended to separate neural networks into spatial (1 x m kernel) and temporal
(n % 1 kernel) elements [38-40], and temporal size was far larger than channel size (up to 8 to 10 times
approximately) in our data. Therefore, we chose 1 X m kernels (n > m) to extract spatiotemporal features
and the other parameters empirically, including the number of filters and the stride sizes. We observed
that using non-linear functions, such as ReLU and tanh led to failed optimization because of its limited
function’s value ranges (discussed later); therefore, the linear activation function (y = x) was used in
this study [41]. The initialization values that He et al. [42] introduced were applied to all layers, and
the Adam optimizer [43] was used with an empirical learning rate of 5 x 10~%. As stopping criteria for
training, we set maximum iteration numbers in which the difference in loss between previous and
current steps is so small that it could not lead to overfitting. The maximum iteration numbers were
40 (SNR of 100, 50), 80 (SNR or 10, 5), 150 (SNR of 1), 200 (SNR of 0.5, 0.1), 500 (SNR of 0.05, 0.01) in
simulated data and 300 in experimental data. In all cases (noise type and its SNR), the same CNN
structure was applied except for the input dimensions (simulated data: 512 X 64, experimental data:
666 x 64). In simulated data, 640 trials were used for training, 160 for validation, and 200 for testing.
Further, 596 trials for training, 150 trials for validation, and 186 trials for testing were applied to CNN
in the experimental data (932 trials).
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Figure 4. Proposed deep convolutional neural network (CNN) for super-resolution. Input and output
size are represented for simulated data. CONV: convolution, CONVT: transposed convolution.

2.5. Evaluation

The SR data recovered were evaluated with several metrics that differed depending upon the
tasks given.

2.5.1. Simulated Data

We compared the LR, HR, and SR data to the original noiseless EEG data for each trial.
In simulated data, we know the ground truth, which is noiseless EEG data. Thus, conventionally,
a comparison with ground truth was performed. For comparison, the MSE and correlations were
computed between the estimated data and the noiseless EEG data at the sensor level for all test
trials. At the source level, amplitude error, localization error, and focality were estimated. In source
localization, the three-spherical shell head model and BEM were used for forward computing and the
array-gain-minimum-variance beamformer was used to perform source localization [44]. The brain
region was beamforming-scanned at a 5 mm scanning interval within 51,127 voxels.
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e Sensor Level Metrics

L] Mean Squared Error (MSE):

MSE =

~ | =

t
(Z(Noiselessi - Di)2 (1)
i—1

1
t : the number of time sample, D : HR, LR, or SR

n Pearson Correlation Coefficient:

COV(Noiseless, D)

PNoiseless,D — (2)
ONoiseless X OD

COV : covariance, o : standard deviation
e  Source Level (localization) Metrics

The evaluation metrics were calculated using correct source detection trials at the source level.
L] Amplitude Error:
Amplitude Error = ’Mux(AmpNoiseles) — Max(Ampp,) (3)

Max(Amp) : maximum amplitude in region of interest (ROI), D : HR, LR, or SR

n Localization Error:
o e o \1/2
Localization Error = (pos(x, Y, Z) Noiseless — POS(X', Y, z )D) 4)
pos(x,y,z) : position at maximum amplitude voxel, D : HR, LR, or SR
L] Focality of Localization:
. 1
Focality = ®)

the number of voxels activated (power > threshold)

Localized sources’ activation (magnitude of source) was normalized for comparison. We observed
very few small values (weak activation; activation < 0.3) that were quite noisy. For visibility, we set the
threshold values to 0.3.

2.5.2. Experimental Data

Event-related potential (ERP) components were calculated at the sensor level. Unlike the simulated
data, the experimental data were analyzed using trial averaging data because AEP data are analyzed
in this way generally and clear ERP components can locate them with averaged data over trials.
Specifically, the N1 and P2 components are known widely to be AEP components’ representative
patterns [45,46]. Therefore, the N1 and P2 components” amplitudes and latencies were estimated in each
of the HR, LR, and SR datasets. Similar to the simulated data, localization performance was compared
among them according to the number of sources detected and localization amplitude error. Focality
was excluded from the experimental dataset because it activated only one voxel per source. In the
experimental data, we assumed that the HR data constituted the ground truth because experimental
data could not obtain noiseless data.

e  Sensor Level Metrics
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] Amplitude Error:
Amplitude Error = Z Max(Ampyg ) — Max(Ampyp, ) 6)

k=N1,P2

Max(Amp) : maximum amplitude in ROI, D : LR, or SR

m Latency Error:
Latency Error = Z |LHRk - LDkl (7)
k=N1,P2
L : latency at maximum amplitude voxel, D : LR, or SR
n Statistical test: We conducted a statistical analysis (at time point) between LR and HR,

and SR and HR for the experimental data. Test data were down-sampled temporally by 8
for simplicity, after which a paired Student’s t-test was performed for each time sample.
Statistical results at AFz, CPz, TP7, TP8, and POz channels were compared. The statistically
different time points (uncorrected, p < 0.01) indicated that LR and SR data failed to follow
the HR data.

e  Source Level (localization) Metrics

Detected sources were quite focal in several regions and were activated strongly or weakly
depending on conditions, while small activation values were observed in other regions (largely,
activation < 0.1). From this observation, we set 0.1 as a power threshold empirically because of its
visibility in the AEP data.

] Amplitude Error:
Amplitude Error = }Max(Amp) HR — Max(AmpD)| 8)

Max(Amp) : maximum amplitude in ROI, D : LR, or SR

L] The number of error sources: When HR data detect the source at a specific voxel, but LR
or SR data did not detect sources at the voxels, then the sources count as an error source.
The opposite case also includes error sources.

3. Results

3.1. SR Results for Simulated Data (White Gaussian Noise)

Data for one trial at the CPz channel are shown in Figure 5a; the LR data did not follow the
original data during some time periods, while the SR data maintained the original data’s trends and
generated far less noisy data, unlike the original signal.

Figure 5 presents MSE and correlation coefficients between noiseless EEG data and LR, HR, or SR
estimated data at the 16—64 scale-up over varying SNRs. Further, four different scale-up cases, 32—64
(2%), 1664 (4x), 8—64 (8x), and 4—64 (16x), were compared at an SNR of 5. MSE in HR represented
only the noise magnitude over SNRs for comparison with noiseless data. SR demonstrated far smaller
MSEs for high SNRs (>0.5) than did the others, while LR demonstrated smaller MSEs for low SNRs
(<0.1) than did HR and SR. For various scale-ups, SR showed the best performance by far in MSE at
high SNRs; LR showed nearly uniform MSEs, except for the 4—64 scale-up. In MSE estimation, sensors
on the boundary of head coverage were the principal factors; these sensors’ estimation yielded higher
MSEs than did others. We observed that interpolated data at boundary sensors yielded relatively
smaller errors with the CNN process up to eight channels, which could cover the boundary of the
head as a whole. However, four channels were positioned on central regions and could not cover the
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boundary; thus, estimated data at boundary sensors could not be optimized sufficiently. Therefore,
the 4—64 scale-up yielded relatively larger MSE than did other scale-ups.
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Figure 5. (a) Time series of LR (blue), HR (black), super resolution (SR) (red), and noiseless (green)
signal for single trial with white Gaussian noise with an SNR of 5 at CPz channel; (b) logarithm of mean
squared error (MSE) from noiseless signals; (c) correlation values according to the SNR with 16—64
up-scaling factor; (d) MSE; (e) correlation values according to up-scaling factors with an SNR of 5.

With respect to the correlations, SR demonstrated a more notable difference (higher correlation)
over 0.5-10 SNRs than did the others; SR had the highest correlations by far for various scale-ups,
while LR had nearly uniform correlations except for the 4—64 scale-up. Overall, SR outperformed
LR, and even HR, both in MSE and correlations. We note that SR data reduced noise, and thereby,
demonstrated higher performance than did the original HR data. Further, SR data followed the trend
of noiseless EEG data more closely, although they showed slightly fluctuating high-frequency behavior
attributable to the noise’s learning effect. In particular, SR that yielded 20 times less error in MSE
than LR was estimated roughly from actual MSE values (LR: 0.87, SR: 0.04), and SR with a 6% higher
correlation than LR was estimated from actual correlation values (LR: 0.93, SR: 0.99) at an SNR of 5 and
the 16—64 up-scale.

We conducted a source-level analysis for all cases of LR, HR, and SR data, as shown in Figure 6.
The source localization results were compared with respect to source detection, amplitudes of sources
detected, localization error (distance between maximum voxel and exact source), and source focality.
For comparison purposes, source localization was applied to the LR data without interpolation (smaller
number of channels than the original 64 channels). We observed that for very low SNRs (<0.1), none of
the LR, HR, and SR data were localized well, in that notable sources were not detected. We compared
localization performance over various SNRs and scale-ups for reasonably high SNRs (>0.5) as shown
in Figure 6b—g.

Among the three, the SR data showed the best localization performance in all respects
(source detection, source amplitude error, localization error, and focality). LR without interpolated
data was localized only for SNRs of 100 or 50, while interpolated LR data did not detect any sources
for all SNRs; it is interesting that for an SNR of 0.5, HR data were not localized; however, SR data were
localized reasonably well. Two sources were localized in the HR data for all trials over all high SNRs
(=5), while for several trials, sources were not detected at an SNR of 1. Two sources were localized in
SR data for all trials over all SNRs (>0.5). The sources’ amplitude error and focality increased as the
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SNR decreased, and they demonstrated nearly uniform results over various scale-ups. Localization
errors demonstrated marginal values over SNRs and scale-ups. The SR approach showed the best
performance by far at both the sensor and source levels, and in particular, SR demonstrated a higher
SNR than did the original data. For the 16—64 up-scale at an SNR of 5, SR had 40%, and 12% fewer
errors in amplitude and localization, respectively, and SR was 19 times more focal to sources than was
LR without interpolation (LR without interpolation: 0.65, 1.32, 1.14, SR: 0.40, 1.16, 0.06).
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Figure 6. (a) Topographic of source localization using LR (16 channels; no interpolation), interpolated
LR, HR, SR signal for single trial with white Gaussian noise with an SNR of 5, exact source location
(green dot); (b,c,d) amplitude error, distance error, and focality according to SNR with 16—64 up-scaling
factor; (e, f,g) amplitude error, distance error, and focality according to up-scaling factor with SNR of 5.

3.2. SR Results for Simulated Data (Real Brain Noise)

We investigated SR methods for simulated data with real brain noise, as shown in Figure 7.
HR time series have larger errors for brain noise than those of white Gaussian noise at the same SNR.
Brain noise has a larger power in the low frequency than in the high-frequency band, while white
Gaussian noise has uniform power over all frequency bands. Although brain noise yielded a lower
correlation than did white Gaussian noise, SR demonstrated better or comparable performance in MSE
and correlation compared to LR and HR. However, performance differences in real brain noise became
far smaller than those in white Gaussian noise, and we also observed that SR data reduced noise,
but the reduction was not notably large. At an SNR of 5 with the 16—64 up-scale, SR that yielded 30%
fewer errors than LR was estimated roughly from actual MSE values (LR: 1.41, SR: 0.96) and SR with
a correlation 5% higher than that of LR was estimated from actual correlation values (LR: 0.88, SR: 0.93).
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Figure 7. (a) Time series of LR (blue), HR (black), SR (red), and noiseless (green) signal for single
trial with real noise with an SNR of 5 at CPz channel; (b) logarithm of MSE from noiseless signals;
(c) correlation values according to an SNR with 16—64 up-scaling factor; (d) MSE, and (e) correlation
values according to up-scaling factors with an SNR of 5.

Figure 8 shows the source localization results for simulated data with real brain noise. SR seemed
to perform comparably to LR or HR or slightly more poorly. However, LR could not detect the sources
using cases with and without interpolation for the 8 =64 and 4—64 scale-ups, while SR data did.
In addition, HR and SR data detected sources for high SNRs of 5 or above. However, they identified three
sources (two brain sources and one noise source) for an SNR of 1. Overall, although the SR approach
with simulated data with real brain noise demonstrated slightly poorer localization performance than
with simulated data with white Gaussian noise, the SR approach may work reasonably well with real
brain noise, and thus, these data may recover important original information better than LR data or as
well as the original data (HR). SR had 45% and 22% fewer errors in amplitude and localization error,
respectively, and SR was 11 times more focal to sources than without interpolation LR (LR without
interpolation: 0.49, 1.75, 1.29, SR: 0.27, 1.36, 0.12) for the 16—64 up-scale at an SNR of 5.

3.3. SR Results for Experimental AEP Data

In addition to the simulated data both with white Gaussian and real brain noise, we explored the
SR approach with the experimental AEP data. Specifically, we focused on N1 and P2 components,
which are the most important characteristics in the AEP task, as illustrated in Figure 9. The detailed
information on each component’s latency amplitude is tabulated in Table 1. We observed that latency
errors were minuscule (<10 ms) in both components; however, we could not find any trend in latency
over various scale-up factors. Overall, LR and SR data behaved similarly to HR data, except for some
sensors that were placed on the margins; those were interpolated with only a few sensors. SR followed
the original data better, particularly temporal sensors that evidently have a larger N1-peak-to-P2-peak
amplitude with LR data than in HR’s amplitude. The statistically different time points (uncorrected,
p < 0.01) are marked in red or blue dots on the time axis. We observed that LR differed statistically
from HR at far more time points than did SR from HR. In particular, LR yielded statistically different
points at the CPz, TP7, and TP8 channels, while SR did so only at the CPz channels. Overall, we found
that SR data followed the HR data more closely in a statistical sense, although LR and SR exhibited
similar behavior at the AFz and POz channels.
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Figure 8. (a) Topographic of source localization using LR (16 channels; no interpolation), interpolated
LR, HR, SR signal for single trial with real noise with an SNR of 5, exact source location (green dot);
(b,c,d) amplitude error, distance error, and focality according to an SNR with 16—64 up-scaling factor;
(e£,g) amplitude error, distance error, and focality according to up-scaling factor with an SNR of 5.
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Figure 9. Time series of LR (blue), HR (black), and SR (red) for auditory evoked potential (AEP) data
(one representative set of five sets) at the AFz, TP7, CPz, TP8, and POz channels with 16—64 up-scaling
factor. Dotted marks are time points that differ statistically (p < 0.01) from HR.
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Table 1. Amplitude and latency information on N1 and P2 components for LR, HR, and SR (means and standard deviations over five sets).
CPz AFz TP7 TP8 POz
N1 Component Amplitude Latency Amplitude Latency Amplitude Latency Amplitude Latency Amplitude Latency
(uV) (ms) (uVv) (ms) (uV) (ms) (uV) (ms) (uVv) (ms)
LR 44+03 67.0 2.6 43+0.6 70.8 £2.3 29+06 68.8 £3.0 29+03 720+ 4.0 26+0.3 68.2+39
32to64 HR 50+03 65.8 + 3.5 42+07 68.8 + 4.6 1.6+04 61.8 +21.7 19+04 72.8 £3.0 24+03 68.8 + 3.3
SR 50+04 66.6 + 3.0 45+0.6 71.6 £1.7 1.8+0.5 682 +7.6 19+0.3 71.6 £3.6 28+0.3 674 +3.0
LR 45+04 68.0+2.8 44+0.6 70.4 £ 3.0 33+04 68.2+43 31+04 69.6 +3.3 25+0.2 67.8 £3.5
16to64 HR 50+0.3 65.8 £ 3.5 42 +0.7 68.8 + 4.6 1.6+04 61.8 +£21.7 19+04 72.8 +3.0 24+03 68.8 £ 3.3
SR 50+03 67.0 +£3.3 44+05 71.6 £2.2 1.8+0.4 69.8 £5.1 20+03 732 +3.0 27+04 68.0+2.4
LR 52+0.7 684 +22 35+05 71.6 £3.6 32+04 68.2+43 3.0+04 70.8 £3.0 1.5+0.3 674+49
8to64 HR 50+03 65.8 £3.5 42+07 68.8 £ 4.6 1.6 +£0.4 61.8 +21.7 19+04 728 £3.0 24+03 68.8 £3.3
SR 55+0.7 68.2+4.3 46+0.6 732 +£3.0 20+04 68.2 £ 6.6 21+04 732+41 31+02 68.2+3.3
LR 22+03 68.6 5.0 29+04 73.6 £4.3 21+02 68.2 +£6.5 20+03 684 +41 22+03 68.6 £5.0
4to64 HR 50+03 65.8 +3.5 42+07 68.8 +4.6 1.6 £0.4 61.8 £21.7 19+04 728 £3.0 24+03 68.8 £3.3
SR 40+04 708 +2.7 42+05 720+1.4 1.8+04 60.2 +10.6 23+0.2 73.6+59 28+0.3 69.6 £3.3
CPz AFz TP7 TP8 POz
P2 Component Amplitude Latency Amplitude Latency Amplitude Latency Amplitude Latency Amplitude Latency
(uVv) (ms) (V) (ms) (uVv) (ms) (uVv) (ms) (V) (ms)
LR 50+05 139.4 + 4.8 29+0.6 150.4 + 8.8 26+03 147.6 +10.9 26+04 146.4 + 12.1 33+05 137.4 £ 3.8
32to64 HR 6.1+0.6 1394 + 4.8 29+0.6 150.8 £ 8.7 20+03 150.6 + 11.2 23+03 149.0 £ 12.9 35+0.6 133.8 £5.4
SR 55+05 138.6 +5.5 29+0.7 150.6 + 8.7 1.7+£0.2 151.8 £ 12.0 24+03 147.2 £10.3 37+0.6 133.0 + 6.3
LR 48 +05 1402 + 5.2 3.0+0.6 149.6 £ 8.1 32+04 143.0 + 3.5 33+04 1374 +79 32+05 137.8 +4.4
16to64 HR 6.1+0.6 1394 + 4.8 29+0.6 150.8 £ 8.7 20+03 150.6 + 11.2 23+03 149.0 £ 12.9 35+0.6 133.8 £5.4
SR 56+ 0.6 139.4 + 4.8 29+07 1512 +94 1.6+£0.2 152.2 +11.3 23+03 1442 £10.8 36+05 132.6 +5.5
LR 47 +05 1414 + 4.8 22+05 153.8 +12.2 29+04 1432 +2.7 29+04 137.8 +8.3 22+07 1310+ 7.6
8to64 HR 6.1+0.6 1394 + 4.8 29+0.6 150.8 £ 8.7 20+03 150.6 + 11.2 23+03 149.0 £ 12.9 35+0.6 133.8 £5.4
SR 5.0+0.6 1378 £ 6.1 32+07 156.0 +12.0 1.8+0.4 153.6 + 11.4 23+04 144.0 £13.9 34+07 130.6 £ 6.2
LR 20+03 1438 £5.1 21+04 153.6 + 11.4 20+03 1434 + 4.2 20+04 136.6 +7.5 20+03 143.8 £5.1
4to64 HR 6.1+0.6 1394 + 4.8 29+0.6 150.8 £ 8.7 20+03 150.6 + 11.2 23+03 149.0 £ 12.9 35+0.6 133.8 £5.4
SR 3.6 +0.8 1374 + 4.8 2.8+0.6 149.0 + 6.2 1.8+0.3 150.2 +9.9 1.8+0.3 1454 + 6.3 3.0+0.7 132.6 +5.2
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Source localization for N1 and P2 components was performed together, and voxels activated
over the given power threshold (0.1) were estimated for each. We observed that two sources on both
auditory cortices (one on each hemisphere) were identified with the original HR experimental data,
which is believed to serve as ground truth (Figure 10). LR data without interpolation (16-channel LR)
failed to detect any correct sources, while they identified three with interpolation (64-channel LR);
however, two sources on the left hemisphere may have derived from a mismatch between LR and HR
data in all scale-ups. The correct source was detected with weaker activations than ground truth (HR).
The SR data identified the same two sources as those of the HR data, although the amplitudes of the
sources detected differed slightly. However, SR data detected several spurious sources (which may
explain noise information or even the small mismatch between SR and HR data) among some of the
five sets for cross-validation that mentioned at the Section 2.2.
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Figure 10. Source localization results for AEP data with 16—64 up-scaling factor (one representative
set of five sets).

4. Discussion

4.1. Interpretation of SR Approaches at Sensor and Source Levels

In this work, we investigated the SR approach’s effect extensively using the deep learning technique
for simulated and experimental data, and compared SR data with the conventional interpolated LR
data and original HR data. The SR data far outperformed the others in most respects with simulated
data with white Gaussian noise. Specifically, SR data reduced white Gaussian noise and improved the
SNR. We also observed a similar noise reduction effect for simulated data, even that with real brain
noise, although it was marginal.

At the sensor level, the LR data showed relatively small MSE for quite low SNRs, indicating
that the simple interpolation approach remains sufficiently good. However, MSE was zero or low
for LR channels that overlapped with HR channels, and the MSE overall may be lower than with
sophisticated SR learning depending on the SNRs. Because of MSE’s problems, we also calculated
correlations, and that of LR was lower than that of SR. However, it was clear that SR data improved at
the sensor level at all SNRs. In addition, LR with interpolation did not yield any reasonable results
at the source level, while it showed detection ability in some cases without interpolation. However,
LR without interpolation yielded weak activated sources over quite a broad area, including ground
truth, as shown in Figure 8a. It is understood that their information may have very limited ability to
yield strong sources uniformly over various SNRs, and thus, depending on cases, they either detected
sources occasionally or did not. In contrast, the sophisticated deep learning approach recovered source
information far better than did the simple interpolation approach, even HR. We observed that the
SR approach may cancel out HR data’s noise characteristics, and thus, CNN output is likely to have
higher SNRs than input data. Thus, SR data may yield more apparent sensor and source features,
including amplitude, latency, localized sources, and focality than LR data and even HR data. Based on
this observation, we expect that the SR method may make it possible to recover important features of
EEG data even from only a few sensors and potentially reduce some high frequency (>30 Hz) noise.
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4.2. Validation of Simulated and Experimental Data

We observed that SR data outperformed LR with simulated data, and even the original HR data.
However, with the experimental AEP data, SR data estimated ERP amplitudes comparably well or
only slightly better than did LR data. In the simulated data, we investigated a large number of single
trials because we knew the ground truth (noiseless signal) for various SNRs and scale-ups. However,
with the experimental AEP data, we used data averaged over trials rather than single trials because
single trial EEG data are difficult to address directly. We note that single trial data with a given SNR (9)
are approximately similar to average data with an estimated SNR (8/y/N) for N trials. According to
this reasoning, we investigated N1 and P2 ERP components (average data over all trials) at the sensor
level because these ERP components are typical characteristics of AEP.

In addition, there is no ground truth in experimental data, so alternatively, HR (original EEG data)
were considered ground truth, while noiseless EEG data were considered ground truth in simulated
data. Noise definitely may contaminate HR data severely; in fact, HR could detect neither mismatched
sources nor any sources at low SNRs because of their contamination, as shown in Figure 11. Thus,
in reality, HR training of noise information is not recommended in the SR approach. However, in this
study, we found that the SR approach may recover important characteristics of EEG data even from
a limited number of sensors.
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Figure 11. Topographic of source localization using HR, SR signal for single trial with white Gaussian
noise with SNR of 0.5, and exact source location (green dot).

As expected, we observed that SR data provided reasonable source localization in two brain
regions (auditory cortices) [45,47] in most cases. However, LR data with or without interpolation did
not yield reasonable sources except for quite high SNR cases with the simulated data. AEP sources are
known to be located farther away than are simulated sources, and the two different signals affected the
central sensors (CPz) less than did the simulated data (Figure 1). Thus, experimental AEP data may
yield slightly different results than simulated data (Figure 6a, Figure 8a).

Despite the differences between the simulated and experimental data, we compared them
according to the given SNR. Experimental data could not separate signal and noise terms, and thus,
the experimental data’s SNR was estimated as the power of the post-stimulus (0-1 s) divided by
that of the pre-stimulus (—0.3-0 s) for the sensor level. The experimental data’s estimated SNR was
approximately 1.2. Compared to simulated data with brain noise at an SNR of 1, experimental data
yielded similar MSEs of approximately 1 (log scale) and a slightly larger correlation. In addition, in source
localization, the estimated SNR was approximately 1.1, which was estimated as the power of the N1 and
P2 components (0.2-2.5 s) divided by the power of the pre-stimulus (-0.3-0 s) because we computed
an inverse operation using the N1 and P2 components for source localization. The experimental data’s
amplitude error was lower than 0.3, which is smaller than the amplitude error of simulated data with
brain noise for SR.

4.3. Source Localization Results for Experimental AEP Data

In simulated data, clear source information was reconstructed in the SR data and was more
focal than in the HR data, while LR data could not identify any reasonable sources. The SR data
detected sources well in the experimental AEP data, which were nearly identical to the sources the HR
data detected (assumed ground truth). It is interesting to note that even the LR data demonstrated
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reasonable source detection in addition to spurious and weak sources in the left hemisphere. We also
investigated the spurious sources’ origin. Based on source localization of temporal window data
between —50 to 0 ms before onset, we found sources on the left hemisphere similar to those of LR data’s
N1 and P2 components. Thus, we believe that the spurious sources may derive from noise information.
We observed that some SR data for the 4, 8, and 16—64 scale-ups demonstrated one spurious source
quite similar to one of the LR-estimated spurious sources. Thus, we determined that deep CNN learned
noise information and SR data may contain such noise in the N1 and P2 components. In addition,
we noticed that the SR data’s AEP time series showed certain other peaks than those in the LR and HR
data. We expect that our proposed CNN may be able to be tuned further, and thus, yield better results,
which will be investigated in a subsequent study:.

4.4. Enhancing EEG Spatial Resolution Methods

Surface interpolation or cortical imaging methods have been applied to improve EEG’s spatial
resolution [10-27]. However, artefacts from a single noisy sensor or eye movements influence surface
interpolation, and it also is sensitive to spline parameters [17,21]. In addition, the cortical imaging
method depends strongly on the volume conductor model [26]. Recently, compressed sensing that
recovered original data with fewer features was reported; however, the approach may be applied
only when the assumption of data redundancy is satisfied [28,29]. Thus, despite the necessity for
high-density EEG systems and conventional methods” disadvantages, virtually no new approaches
have been developed in the past several years.

In this work, we investigated the possibility that SR using CNN can enhance EEG’s spatial
resolution. SR has less model dependency attributable to its ability to learn HR data without a head
model. In addition, resolved signals are far more robust to brain noise than are simple interpolated
data, and previous work has shown that distortion in non-brain signals can be removed by applying
a pre-whitening method [33]. With improved spatial resolution, EEG signals could be obtained from
only several sensors if HR data were recorded once to construct the model. Further, SR may be very
promising when used to construct a subject-independent model using numerous subjects’ data.

4.5. Activation Functions

Conventional deep CNN applies non-linear functions as activation functions on convolutional
layers, such as the rectifier (ReLU) and hyperbolic function (tanh). However, our proposed model was
designed with a linear function (y = x). Our problem was finding the optimal fit line that minimizes
the MSE, and the rectifier function was activated with zeros for negative values. An image consists of
pixels that range from 0 to 255; however, EEG data range from negative infinite to positive infinite,
and ReLU may not cover brain signals” negative ranges. The hyperbolic function is slightly more
flexible, but its optimal line is limited to the range from —1 to 1 (Figure 12). Although a normalizing
technique could be an effective way to apply the function, we observed that it also transformed the
data covariance’s properties, and transformed data may include localization error. Thus, the EEG SR
problem should be distinguished from the classification problem, particularly when data are processed
at the source level.

4.6. Study Limitations

In this study, we demonstrated SR techniques’ feasibility and efficacy with EEG data using our
designed deep CNN. However, there were some limitations.

First, we designed a deep CNN structure for this SR purpose and considered many parameters in
its structure. We note that our CNN was designed very carefully and our kernel configuration and
other parameters were determined empirically. Seeking optimal CNN models is very compelling,
although we confirmed that our proposed CNN model works reasonably well for our purpose. Among
the parameters, we applied various stopping criteria for training (40 to 500 iterations) depending on
the SNR and spatial resolution upscaling, because the error level achievable varies over the given data.
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Thus, it was quite difficult to set a universal stopping criterion, such as the error level, error difference
between previous and present steps, iteration numbers, and so on. When the number of iterations was
fixed to 50, as in previous work [33], we observed that CNN training seemed incomplete, and some of
the SR data channels did not follow the trends of noiseless data even if they were superior to LR and
HR. More iterations (over 100) demonstrated larger MSE than the fixed iteration (50) with a low SNR;
however, over 100 iterations yielded a higher correlation with noiseless data than did 50 iterations.
Therefore, more iterations may be necessary to achieve better results, in that SR data may follow the
trends of clean data well, as well as high-frequency information, although they have larger MSEs than
do fixed iterations. In addition, there may be better CNN structures for the SR purpose, which we still
are seeking. Adding residual and dense blocks to the CNN structure considers hierarchical features [6],
and thus, may enhance SR performance.
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Figure 12. Time series of SR single trial data that were activated by linear (black), hyperbolic tangent
(blue), and ReLU (red) function at an SNR of 100. Noiseless data are shown in green.

Second, when generating simulated data, we considered two sources that are quite far apart.
This is a specific case and cannot be generalized. However, it is still sufficiently good that this
dual-source problem may mimic the experimental AEP data; thus, through our extensive investigation
with two-source simulated data, we may speculate the way the SR technique using CNN works for
AEP experimental data. Simulated data commonly are generated simply by adding the given noise
(acquired real brain noise or colored or white noise) to the EEG data computed in EEG simulation
studies. It definitely is possible to generate colored noise from numerous spurious sources distributed
randomly at the source level. However, in this work, we judged that real brain noise is more realistic
than any colored noise because real brain noise is obtainable. In any case, we are investigating various
other cases currently to identify more ways to apply the SR technique in EEG.

Third, we verified CNNs’ feasibility for EEG SR using AEP experimental data from one subject.
Thus, this work may be limited, as no statistical analysis over subjects was conducted to determine
its inter-subject variability. In practice, such variability is an important issue; thus, it is necessary to
perform statistical tests on data from a large number of subjects. However, our goal in this study was to
investigate CNNs’ feasibility through an extensive simulation study and validate it with experimental
data. Investigation of inter-subject variability and development of a subject-independent SR model by
CNN will be an interesting issue to pursue in future work.

Fourth, a CNN may capture local spatial features and apply the same weight over neighboring
spatial and temporal regions, in that the input channel order may affect output matrices used
to compute the convolution operation. Our channel ordering was set according to the Biosemi
system’s channel configuration (frontal-central-temporal-parietal-occipital in the left hemisphere,
occipital-central-frontal at the midline, and frontal-central-temporal-posterior—occipital in the right
hemisphere). Neighboring EEG sensors have similar electrical potentials because they are blurred
by the skull [26] and convolutional operator, in which channel clusters with similar values may be
learned more effectively. Wen et al., proposed an EEG channel reordering algorithm that maximizes
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adjacent information and reported that their channel ordering yielded higher classification accuracy
than did other channel ordering [48]. However, in our channel ordering, CP1, CPz, and CP2 channels
in convolution operations were computed with different weights. We expect that SR results are likely
to be enhanced when neighboring channels are considered carefully.

Lastly, when we selected channels, we chose them according to the 10-10 international EEG
system (Figure 3). In our selection, all channels were considered to be distributed evenly on the
head. There may be numerous other selections than ours. We expect that our results may not differ
very significantly if channel selection is not biased seriously in a specific region. Recently, ear-EEG
systems [49-52] and frontal EEG systems [53,54] have been developed to overcome the inconvenience
of the whole head experiment as well as reduce cost. Their feasibility has been tested with ERP
components during an auditory task or alpha-attenuations during sleep or while playing games;
however, they could not acquire EEG data from the entire scalp; thus, their applicability may be
quite limited, as they could not estimate source information and functional connectivity between two
different brain regions. With this reasoning, applying the SR technique with a biased selection of
channels (recovering the entire scalp EEG or scalp on the motor area from just a few channels around
the ears) may be quite interesting, which is now under investigation.

Although these various issues should be considered further to enhance EEG spatial resolution by
CNN, we proposed the EEG SR method using CNN firstly and demonstrated its feasibility through
simulated and experimental data. Specifically, we investigated our proposed method according to the
aspects of sensor and source analyses; thus, we believe that SR data may be useful when investigating
brain dynamics in both sensor and source spaces. Because connectivity studies have attracted more
attention in neuroscience recently, our proposed method may be quite applicable in this respect.

5. Conclusions

In this work, we investigated SR techniques’ effects using deep CNN on EEG data with white
Gaussian noise and real brain noise. In addition, we verified the deep learning models using
experimental AEP data. Our results showed that SR data demonstrated higher performance than simple
interpolated data (LR) or performance comparable to that of HR datasets, as they maintained signal
properties. Therefore, the model can be applied in an environment in which high spatial resolution
EEG data cannot be easily collected.
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