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Abstract

:

Quantitative mapping is desirable in many scientific and clinical magneric resonance imaging (MRI) applications. Recent inverse recovery-look locker sequence enables single-shot T1 mapping with a time of a few seconds but the main computational load is directed into offline reconstruction, which can take from several minutes up to few hours. In this study we proposed improvement of model-based approach for T1-mapping by introduction of two steps fitting procedure. We provided analysis of further reduction of k-space data, which lead us to decrease of computational time and perform simulation of multi-slice development. The region of interest (ROI) analysis of human brain measurements with two different initial models shows that the differences between mean values with respect to a reference approach are in white matter—0.3% and 1.1%, grey matter—0.4% and 1.78% and cerebrospinal fluid—2.8% and 11.1% respectively. With further improvements we were able to decrease the time of computational of single slice to 6.5 min and 23.5 min for different initial models, which has been already not achieved by any other algorithm. In result we obtained an accelerated novel method of model-based image reconstruction in which single iteration can be performed within few seconds on home computer.
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1. Introduction


In clinical routines, application of magnetic resonance (MR) parameters proton density and the relaxation times T1 and T2 lead to distinction of different physical tissues in parameter weighted images. These images provide only qualitative data. Quantitative evaluation such as T1 mapping, however, can give directly properties of tissues, which are independent from technical impacts. This approach offers a better comparison of different patients across different scanners, and enables classification of diseases and further analysis of pathological processes [1]. Thus, quantitative mapping is desirable in scientific and clinical MRI applications for brain studies, myocardial, T2-mapping and dynamic studies [2,3]. In conventional acquisition, especially T1 mapping, suffers from long scan time and restricted spatial resolution with limited T1 accuracy. In current practice, to face with the problem of measurement time, acquisition sequence is based on the Look-Locker (LL) concept [4,5] with former application of inversion recovery (IR) pulse and continuous readouts Steady-State Free Precession (SSFP) or Fast Low Angle Shot (FLASH). Recent IR-LL sequence enables single-shot T1 mapping with time of few seconds but in that case the main computational load is directed into reconstruction procedure, which can take from several minutes up to few hours. Hence the improvement of image reconstruction along with optimization of methods is of high interest.



In the model-based approach [6,7,8,9,10,11,12] the parameter maps are estimated directly from the undersampled k-space by iterative reinserting original k-space and model parameters fitting. Tran-Gia et al. worked on model-based methods in his publications proposing pixel-wise fitting of T1* and M0* [13] and dictionary-based approach for T1-mapping [14,15]. These effective parameters describe the T1 relaxation process under the influence of repetitive small-angle excitations, which are necessary to observe the relaxation process after a single inversion pulse. The proposed algorithms require many iterations of fitting and computational time is higher than one hour for a single slice on a home computer without central processing unit (CPU) and graphics processing unit (GPU) acceleration. The series of different methods were presented by Wang et al. in the form of regularized nonlinear inversion (NLINV), conjugate gradient (CG) along with pixel-wise fitting [16,17], the iterative regularized Gauss–Newton method (IRGNM) [18], simultaneous estimation of all parameters, L1 regularization and the fast iterative shrinkage-thresholding algorithm (FISTA) [19]. In that case, despite application of external libraries and GPU acceleration, the fastest offline calculations are still performed in 10–20 min and even more.



In order to reconstruct undersampled k-space data the methods of compressed sensing (CS) can be applied, which relies on the idea of sparsity of MR images. Further speed improvement may be achieved by combination of CS with parallel imaging, which has been already used in parametric mapping [20,21,22,23,24,25,26]. Zibetti et al. provides comparison and evaluation of 12 different types of CS sparsity for acceleration of T1 mapping [27]. More recent methods use improvements of previous algorithms by means of total-generalized-variations (TGV) based regularization and further adapted to a multiparametric setting [28] or split-slice GRAPPA and a model-based iterative algorithm for T2-mapping [29]. Different approach bases on the method of magnetic resonance fingerprinting [30,31] in which the benefit comes from simultaneous computation of T1 and T2 maps but in slightly longer acquisition time. Other methods base on under-sampled k-t space data but used mainly in cardiac application in observation of periodic changes of dynamic heart data [32]. Most of the current works operates on a single slice, which from a clinical point of view is not applicable. The limited methods of multi-slice parameter mapping have been used in few works [28,29,33] resulting in calculation time from 10 min [28] up to 7 h [29] in multi-slice analysis. In multi-channel systems the number of coils may be limited in the preprocessing step. The coil compression can be applied by singular value decomposition [34] or by evaluation of virtual channels using a principle component analysis [18,19,33].



Application of more complex methods implies efficient results but also increases the computational time showing a request for a simpler approach (such as the fitting method) with satisfactory efficiency but faster calculation time. In this study we proposed an improvement of a model-based approach for T1-mapping by introduction of a two steps fitting procedure, which for the purpose of that work we called fast inversion recovery Model-based Acceleration of Parameter mapping (FIR-MAP). This approach has one strong advantage relying on time acquisition of 6 s as well as an effective and fast fitting procedure that shortened the time of evaluation. We verified two different initial models and applied the analysis of further k-space data reduction, which lead us to decrease of computational time and to perform a simulation of multi-slice development. In result we obtained an accelerated novel method of model-based image reconstruction in which a single iteration can be performed within a few seconds on a home computer. Finally, the FIR-MAP method was compared to the IR-MAP [14] and reference segmented data basing on in vivo human brain measurements. Along with that work we provide Matlab source code in the Supplementary Materials.




2. Materials and Methods


2.1. Original Data


Original data were taken from available online source provided by Tran-Gia under [35]. All measurements were performed on a 3T whole-body scanner (MAGNETOM Trio, Siemens AG Healthcare Sector, Erlangen, Germany) applying a 12-channel phased-array head coil. The studies were performed with an inversion-recovery Look-Locker (IR-LL) sequence in order to obtain T1 measurements. Obtained T1 values were evaluated in the ROIs containing white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The dataset consists of:




	
In-vivo studies of the brains of seven healthy volunteers (aged between 23 and 30 years) for field of view (FoV) ranging from 200 × 200 to 220 × 220 mm2, slice thickness: 4 mm, TE = 2.5 ms, TR = 6 ms, flip angle: 7°, total time of scan 6 s with a golden ratio radial k-space trajectory.



	
Additionally, a fully sampled IR-LL dataset of single 2D slice was acquired using the segmented process in order to obtain reference data. A single acquisition of one segment (single IR-LL measurements) took 6 s (each of which was followed by a 15 s break) and was repeated 100 times in order to fulfill k-space with single lines of data. For in vivo measurements a total time scan was reduced to approximately 30 min.








Acquired data is organized in following way:




	
np—number of projections (i.e., 999 original projections),



	
nc—number of coils (i.e., four coils covering whole head for each projection),



	
nr—number of readout points (i.e., 256 points given in k-space for each coil and projection).









2.2. Hardware Specification


The base for comparison of the proposed FIR-MAP method was the results obtained from IR-LL segmented data treated in the original work as a reference (REF) and the IR-MAP algorithm by Tran-Gia [14], which is the map acceleration method for the interpolated first model (IFM). All calculations were performed in Matlab (The MathWorks, Natick, MA, USA) on two different home computers 2.6 GHz Inter Core i7, 16 GB RAM and 3.5 GHz 6-Core Intel Xeon E5, 64 GB RAM without any GPU acceleration, using standard Matlab libraries and six workers.




2.3. Processing Scheme


In order to match radial sampling scheme, np trajectories were generated with the golden ratio [36] radial profile order. Having radial trajectories, the nr readout points were inserted into a Cartesian grid for each projection np using GROG operation [37,38]. Original projections (radial k-space data inserted into a Cartesian grid using GROG operation) were not modified across the whole algorithm and in the reinsertion process might be used without any modifications or by taking projections fulfilling sparsity condition, which slightly improves results. In sparsity case k-space was calculated from a fully sampled image obtained from the last 200 projections of the IR-LL measurement. The following steps were performed in the FIR-MAP in the reconstruction scheme presented on Figure 1:




	
Original projections (a) for all coils were used to create the initial starting model (b) for which T1* was assumed to be equal for the sake of simplicity at the beginning.



	
The model (as imaged) was created for all coils and projections (c).



	
The consistent model (d) was generated by taking Fourier transformation (FT) of the initial starting model (b) and reinsertion of the original projections (a) in k-space. The consistent model (e) in the next steps was used in the image space.



	
The first part of pixel-wise fitting (g) was performed on the consistent model for each projection combined for all coils (f).



	
The second part of pixel-wise fitting (h) bases on the consistent model for each projection and for each coil (e) and the results of the first part of fitting (g).



	
The iteration process repeats again from evaluation of model (c).








2.3.1. Initial Starting Model for First Iteration of the FIR-MAP


The first step in the FIR-MAP algorithm can take three possible initial models given to the first iteration:




	
OFM—original first model - original projections in the Cartesian grid in the first model [13], which due to the high number of required iterations were skipped in this study,



	
IFM—interpolated first model of all acquired k-spaces points through time [14] by performing a linear interpolation in order to improve convergence of incomplete k-space not covered by any data points,



	
MFM—our proposition—mean first model, which is calculated by taking all original projections. In the evaluation of MFM only non-zero values are taken to the mean for the resulting k-space for each coil (points that are not covered by any projections are not taken to the mean). After FT the combined image for each coil is treated as    M 0 ∗    in simplified formula for    T 1 ∗    = 1000:


   M  MFM    ( t )  =  M 0 ∗   (  1 − 2  e    − t    T 1 ∗       )  .  



(1)













2.3.2. Consistent Model, Termination Criterion and Coil Combination


The iteration process starts in the next step. The model has to be generated for each inversion time (projection) and for each coil. In that step all original projections are reinserted to the initial model and the circular k-space mask can be applied. The absolute sum of difference of original k-spaces and reconstructed k-spaces was proposed for the termination criterion as well as in observing the reconstructing progress. The fixed number of iterations might be also assumed. Combined data    M  c o m b    (  j , t  )      for each coil nc and each pixel j was calculated with application of meanPhase map    φ  n c    ( j )    [14] taken at the beginning from a fully sampled image obtained from the last 200 projections of IR-LL data and the complex-valued consistent model of current iteration    M  n c    (  j , t  )   .




   θ  (  j , t  )  =   ∑   n c    [  s i g n  (  R e a l  {   M  n c    (  j , t  )  ∗    e  − i  φ  n c    ( j )     }   )  ∗      |  R e a l  {   M  n c    (  j , t  )  ∗    e  − i  φ  n c    ( j )     }   |   2  )  ]  .   



(2)






    M  c o m b    (  j , t  )  = s i g n  (  θ  (  j , t  )   )       |  θ  (  j , t  )   |    ) .   



(3)






2.3.3. Two Steps Fitting Procedure—the First Step


In the first step three parameters pixel-wise fitting was applied by the nonlinear regression using the specified model of relaxation process. The coefficients were estimated using iterative least squares estimation [39,40,41]. The initial guess of the fitting method was in the first iteration taken as a maximum value in magnetization curve for    M 0 ∗    and a minimum value for M0. Each next iteration took values from a previous iteration as the initial guess. The fitted model is given by [42]:


  M  ( t )  =    M   0 ∗  −  (   M 0  +  M 0 ∗   )   e    − t    T 1 ∗      .  



(4)







According to obtained parameters M0,    M 0 ∗    and    T 1 ∗    it is possible to calculate T1 by formula:


   T 1  =  T 1 ∗     M 0     M 0 ∗    .  



(5)








2.3.4. Two Steps Fitting Procedure—the Second Step


In the second step, in order to deal with influence of each coil, the model had to be refitted for each coil in separate iteration.    T 1 ∗    could be taken from the first step of fit (for each coil it had the same value) and the factor k (7) was introduced in order to reduce fitting procedure to one parameter    M 0 ∗    influenced by coils sensitivities. The fast one parameter linear fit could be performed by solving systems of linear equations for real and imaginary part separately:


  M    ( t )    nc   =    M   0 ∗  ( 1 −  (  k + 1  )  )  e    − t    T 1 ∗      ,  



(6)




where:


  k =    M 0     M 0 ∗    ,  



(7)




and simplified:


   T 1  =  T 1 ∗  k .  



(8)







For fitted parameters the new model was generated and original data was again reinserted, which created the consistent model and the iteration process was repeated until reaching the termination criterion.





2.4. Reduced Number of Projections


In order to improve time complexity of the FIR-MAP method the reduction of number of projections can be performed. In such a case the first initial model is calculated by taking all original projections but the iteration process works with each nth projection resulting in less data analysis. In another case the reduced number of original projections is applied for both in the step of creation of the first model as well as in the iteration process.





3. Results


3.1. Single Slice Analysis with Total Number of Projections


In the first step of comparison all projections were taken for the first model and iteration process. The IR-MAP and REF were taken as reference results and our approach the FIR-MAP was tested for two cases (1) with our initial model MFM and (2) with interpolated model IFM. Results of reconstruction of the FIR-MAP with both initial models and the reference IR-MAP and REF can be observed in Figure 2 for volunteer V3. The ROI analysis of regions WM, GM and CSF are presented for all methods in the form of boxplots in Figure 3. The total number of iterations in first case was set to 150 and in second case to 30. Introducing IFM improved highly results of reconstruction and it could be observed that spatial resolution was still better for the IFM initial model, which was reported [14] explaining that the reason lay in only 6 s of acquisition (minimizing motion artifacts). On the other side mean values of T1 in selected ROI and its deviation was more accurate for MFM.



The results of ROI analysis for all volunteers are presented in Table 1 (and Table A1 in Appendix A) calculated for the FIR-MAP and reference methods (REF and the IR-MAP). Table 1 consists of numerical results of the FIR-MAP started with an MFM initial model ran for 150 iterations. The ROI analysis of the FIR-MAP with MFM shows that the differences between mean values with respect to the REF method were WM—0.3%, GM—0.4% and CSF—2.8%, which in comparison to the IR-MAP (WM—1.4%, GM—2.1% and CSF—11.3%) gave more stable results. The values of mean/std (the relation of mean value and standard deviation in selected ROI) were also better for FIR-MAP in comparison to IR-MAP and more comparable to the REF method. Table 1 presents also numerical ROI analysis of the FIR-MAP for IFM initial model calculated for 30 iterations. The results show that the differences of the FIR-MAP with respect to REF were WM—1.1% (IR-MAP 1.4%), GM—1.78% (2.1%) and CSF—11.1% (11.3%). For all regions the FIR-MAP gave slightly better results than the IR-MAP and the mean/std values were comparable. The advantage was that FIR-MAP gave such results faster—after 30 iterations (instead of 50 iterations of the IR-MAP).




3.2. Improvement of Single Slice Analysis


The implementation of FIR-MAP had reduced time complexity of single iteration without any loss in ROI quality. In general, single iteration of the FIR-MAP was completed in approximately 30 s for 999 projections, four coils and 256 image resolution. With 30 s:




	
The reinsertion of original data into the model and calculation of combination of all coils took 20 s.



	
The first step of 3-parameter fitting of model ran 5.5 s in parallel (20 s sequentially).



	
The second step of one parameter linearized fit required 4.5 s.








The only one part in which the parallel for loop was introduced was the place of three-parameter fitting, which took 5.5 s for six workers on a desktop computer. In contrast the same part run sequentially would take 20 s. The time complexity of the FIR-MAP can be decreased by taking each nth projection in the iterative reconstruction process. At the beginning after data acquisition all projections were taken in order to compute the (1) MFM model and (2) IFM model. However, in each iteration process each nth projection was used in reconstruction. Here some compromise should be achieved between decreasing quality of the ROI values and run time of a single iteration, which after each fifth projection changed slightly (Table 2).



Two initial models MFM and IFM were verified for the FIR-MAP in order to check the influence of taking each second and sixth projection in iteration process. For MFM (Table 3 and Table A2 in Appendix A) with higher reduction the loss in mean/std was increasing while the quality of T1 values in ROI analysis was decreasing. For the same data IFM (Table 3 and Table A2 in Appendix A) showed slightly smaller changes. The reason of such situation lies in the way of evaluation of IFM, which after taking all projections in model generation required less iterations to get better results even if a smaller number of projections were taken to the reconstruction process. In this situation the iteration process influences mainly the values of single pixels and not the structure and resolution.



Figure 4 shows the influence of further reduction of projections on the quality of T1 maps. By decreasing the number of projections taken to the iteration process the quality of the FIR-MAP with MFM decreased, however, by considering only each sixth projection the contrast and resolution was comparable to the reference results. For IFM the spatial resolution was still better due to the way of evaluation of model for all projections. Due to that feature it was possible to decrease the time of computation of single iteration even for 9 s (for each sixth projection).




3.3. Simulation of Using a Reduced Number of Projections


It was shown that an appropriate T1 evaluation was possible in reduced processing time using a strongly reduced number of projections, while the initial model was still calculated using all projections. If a reduction of projections was also possible in this first part of the data processing, the acquisition of the skipped projections could be omitted and data from parallel slices could be acquired in this time. A multi slice measurement in only 6 s would be then possible. For the IFM model the reconstruction scheme and evaluation of first model was possible for up to each second projection—for a higher number the initial model was noisy and the reconstruction generated a lower value of the mean/std. The power of the IFM model was connected to the number of points for which the interpolation could be performed. In the case of decreasing the number of projections, the number of interpolated points was also limited and the higher spatial resolution, which was the main advantage of the approach was not visible. In contrast to IFM, application of our MFM model gave more promising T1 maps. Table 4 (and Table A3 in Appendix A) and Figure 5 show results of MFM with each second and sixth projection proving that even after taking each sixth projection it was possible to reconstruct the final T1 map. For each second projection the change in ROI values (WM—1.4%, GM—0.2% and CSF—1.38%) and mean/std was still comparable to reference data, for each sixth projection differences increased (WM—1.4%, GM—2.14% and CSF—6.24%) but the results were still comparable showing that it was possible to use the FIR-MAP for multi-slice of five simultaneous slices for 999 time stamps.





4. Discussion


4.1. Two Steps Fitting


The original work of Tran-Gia et al. [14] deals with the time-consuming dictionary-based approach, which depends on the size of dictionary entries, instead of a mono-exponential fit. The iterative fitting procedure was highly improved by application of interpolation within undersampled original data. In contrast in our work we proposed a two steps model fitting—in the first step using the nonlinear regression we were able to fit the T1 relaxation curve for the combined image while in the second step we applied a time efficient linear fit in order to calculate the M0 values weighted by the coil sensitivities. The benefit of this approach is that there is no additional need of measurement in which coil sensitivities will be evaluated and the coil influence is updated in each iteration ensuring correctness of data. Such a procedure allowed us to decrease run time and obtain comparable T1 values. With this two steps fitting procedure of the FIR-MAP we were able, by mono-exponential fit, to obtain similar T1 values in selected ROI to the reference IR-MAP. In the FIR-MAP we used two initial models basing on the idea of projection interpolation (IFM) proposed by Tran-Gia et al. [14] and our proposition based on the mean of projection (MFM). The IR-MAP algorithm was able to finish reconstruction within 50 iterations while in contrast our FIR-MAP with IFM could finish with similar T1 values after 30 iterations. The disadvantage of IFM was related also to some outstanding data, which was present due to imperfection of the interpolation process and a lack of undersampled projections. Application of the MFM model requires more iterations (we used 150) but it has one strong advantage—by further reduction of the number of projections, the comparable T1 values in selected ROI are still possible after taking each sixth projection, which will be useful in further multi-slice analysis for 999 time stamps. The FIR-MAP-MFM gives T1 values in selected structures with lower resolution but not worse than the REF method, while the higher spatial resolution can be observed for the FIR-MAP-IFM and the IR-MAP. The spatial resolution of the FIR-MAP-MFM can be improved by application of a higher number of iterations (Figure A1 in Appendix A). The advantage of T1 maps in clinical application lies in the possibility of tissue characterization within a certain region of interest and not in discrimination between tissues. Therefore, our intension was to apply T1 maps and observe the influence of algorithm on mean values and standard deviations of selected ROI. Other work [33] assumes 1492 time stamps—which could in future increase further undersampling.




4.2. Time Complexity


Tran-Gia et al. [14] showed that undersampled data can be acquired within 6 s due to the IR-LL sequence but the reconstruction algorithms require minutes and hours to obtain full results. In our work we stated two main assumptions—(1) to improve computational time of image reconstruction by decreasing the number of iterations and run time of single iteration and (2) to obtain comparable quality of T1 maps by means of ROI analysis. The FIR-MAP—our contribution—fulfilled those conditions. Few approaches in T1-mapping reconstruction have been already presented. In order to get better time of computational we decided to choose a simple and efficient method of model fitting. Other solutions, in some cases are more efficient but are also numerically advanced, and require more time to reconstruct the final image [16,17,18,19,27,28,29,33]. In the literature we did not find any benchmark that enables us to compare methods of T1 mapping reconstruction and quality of results of different works for similar data. Instead for that purpose, we used the available real data provided by Tran-Gia et al. along with the results of their work and reference data [14]. It was also difficult to analyze time complexity of other works due to different image resolution, number of coils and time stamps. The basic IR-MAP algorithm [14] requires approximately 100 s (reported 90 s for fitting procedure and remaining part for reinserting) to evaluate a single iteration, which for an assumed 50 iterations gives approximately 85 min of the whole iteration process and data preparation for a single slice. Acceleration using GPU and implementation of some methods in C/CUDA (Compute Unified Device Architecture) generates a time complexity of 10–20 min [19,33] and in the range from minutes to hours depending on data size [18]. Fast multi-slice method for T2 mapping [29] calculates 50 slices on an office computer within 7 h, which gives approximately 9 min per slice or alternatively rapid T1 quantification [28] reports reconstruction time of approximately 10 min per slice. We showed that a single iteration of the FIR-MAP for all projections could take 30 s. The data preparation of initial model for all projections took an additional 2 min for IFM and 1 min for MFM. In that case a full T1 map reconstruction of a single slice would take 17 min for IFM and 76 min for MFM in comparison to 85 min of the original IR-MAP. We proved also that in the iteration procedure it was possible to obtain comparable results of ROI and mean/std even by taking each sixth projection. With that assumption we were able to decrease the time of computational of single slice to 6.5 min for IFM and 23.5 min for MFM, which has not already been achieved by any other algorithm. All calculations of our method were performed on standard Matlab libraries without any GPU acceleration. The only one part of the FIR-MAP: the three-parameter fitting procedure was done in parallel on six workers by application of a home computer.




4.3. Further Development


The crucial point of the FIR-MAP stands in the initial model. We could observe that introduction of IFM gave from the beginning good starting points, which required 30 iterations to get acceptable ROI values. On the other hand, IFM suffered from a lack of a number of points given to the interpolation procedure, which eliminates that solution in further data reduction. MFM in our case was developed for a simplified model, which could be improved in future works. In our future works we planned sequence modification in order to collect multi-slice data as well as introduction of parallel imaging. Our code would be reimplemented in a more efficient environment with parallel and GPU acceleration.





5. Conclusions


In this work we introduced the FIR-MAP model-based reconstruction method based on IR-LL sequence. We proposed an efficient and faster two steps fitting procedure tested for two initial models—IFM and MFM. The validation of our method was performed on data available online for in vivo brain studies for seven healthy volunteers compared to a segmented inversion recovery T1 mapping experiment and the IR-MAP. In both cases we got similar T1 values to the reference methods within selected ROI and high improvement in run-time of single iteration. We analyzed further reduction of number of projections, which decreased computational time into 6.5 min in the best case. Promising results were obtained by reduction of considered projections for the T1 mapping, which will allow us to proceed to multi-slice measurements within 6 s measurement time.
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Table A1. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations of FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in initial step and iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.






Table A1. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations of FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in initial step and iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.





	

	
V1

	
V2

	
V3

	
V4

	
V5

	
V6

	
V7

	
Mean

	
Mean/Std




	
White Matter (WM)






	
FIR-MAP-IFM

	
733

	
700

	
740

	
685

	
677

	
725

	
778

	
720

	
9




	

	
82

	
78

	
68

	
77

	
81

	
100

	
66

	
79

	




	
FIR-MAP-MFM

	
725

	
706

	
722

	
674

	
684

	
705

	
755

	
710

	
23




	

	
32

	
28

	
30

	
37

	
34

	
35

	
24

	
31

	




	
IR-MAP

	
738

	
706

	
740

	
688

	
679

	
726

	
779

	
722

	
9




	

	
82

	
76

	
68

	
78

	
82

	
99

	
63

	
78

	




	
REF

	
734

	
709

	
712

	
695

	
693

	
698

	
744

	
712

	
32




	

	
16

	
42

	
21

	
31

	
17

	
17

	
11

	
22

	




	
Grey Matter (GM)




	
FIR-MAP-IFM

	
1435

	
1407

	
1454

	
1447

	
1426

	
1401

	
1420

	
1427

	
9




	

	
131

	
84

	
160

	
207

	
273

	
89

	
170

	
159

	




	
FIR-MAP-MFM

	
1415

	
1365

	
1438

	
1419

	
1415

	
1401

	
1394

	
1407

	
12




	

	
89

	
63

	
113

	
154

	
246

	
45

	
94

	
115

	




	
IR-MAP

	
1447

	
1405

	
1459

	
1453

	
1429

	
1400

	
1430

	
1432

	
9




	

	
127

	
85

	
159

	
207

	
286

	
90

	
178

	
162

	




	
REF

	
1436

	
1385

	
1402

	
1378

	
1401

	
1400

	
1409

	
1402

	
12




	

	
94

	
98

	
158

	
147

	
192

	
58

	
71

	
117

	




	
Cerebrospinal Fluid (CSF)




	
FIR-MAP-IFM

	
4598

	
4508

	
4466

	
4043

	
4364

	
4056

	
4343

	
4340

	
7




	

	
586

	
633

	
702

	
450

	
874

	
304

	
667

	
602

	




	
FIR-MAP-MFM

	
4295

	
4106

	
4142

	
3772

	
4083

	
3704

	
4009

	
4016

	
9




	

	
424

	
559

	
562

	
344

	
738

	
167

	
486

	
469

	




	
IR-MAP

	
4603

	
4585

	
4473

	
3990

	
4387

	
4057

	
4360

	
4351

	
7




	

	
646

	
669

	
720

	
506

	
925

	
364

	
726

	
651

	




	
REF

	
4296

	
4082

	
3877

	
3924

	
4061

	
3236

	
3878

	
3908

	
7




	

	
494

	
620

	
700

	
348

	
911

	
249

	
564

	
555
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Table A2. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations and initial model IFM calculated for 30 iterations of FIR-MAP by taking each second (FIR-MAP-MFM-2, FIR-MAP-IFM-2) and sixth (FIR-MAP-MFM-6, FIR-MAP-IFM-6) projection in iteration process. Each method consists of mean value in ROI (each upper row) and standard deviation (each lower row). Additionally, results of all volunteers are presented in the mean value and corresponding mean/std is calculated.
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V1

	
V2

	
V3

	
V4

	
V5

	
V6

	
V7

	
Mean

	
Mean/Std




	
White Matter (WM)






	
FIR-MAP-MFM-2

	
704

	
699

	
710

	
673

	
671

	
721

	
731

	
701

	
17




	

	
34

	
49

	
37

	
47

	
39

	
44

	
35

	
41

	




	
FIR-MAP-IFM-2

	
721

	
697

	
737

	
683

	
674

	
732

	
773

	
717

	
9




	

	
81

	
79

	
68

	
75

	
82

	
100

	
66

	
79

	




	
FIR-MAP-MFM-6

	
674

	
743

	
679

	
691

	
687

	
738

	
696

	
701

	
10




	

	
72

	
58

	
78

	
73

	
61

	
55

	
81

	
68

	




	
FIR-MAP-IFM-6

	
694

	
710

	
718

	
676

	
662

	
751

	
756

	
710

	
9




	

	
81

	
80

	
67

	
75

	
85

	
105

	
70

	
80

	




	
Grey Matter (GM)




	
FIR-MAP-MFM-2

	
1426

	
1368

	
1409

	
1403

	
1401

	
1414

	
1393

	
1402

	
12




	

	
89

	
67

	
105

	
153

	
241

	
58

	
92

	
115

	




	
FIR-MAP-IFM-2

	
1444

	
1409

	
1446

	
1439

	
1421

	
1406

	
1417

	
1426

	
9




	

	
134

	
85

	
164

	
206

	
274

	
92

	
173

	
161

	




	
FIR-MAP-MFM-6

	
1398

	
1348

	
1359

	
1347

	
1336

	
1394

	
1405

	
1370

	
11




	

	
104

	
83

	
175

	
155

	
218

	
60

	
104

	
128

	




	
FIR-MAP-IFM-6

	
1447

	
1389

	
1453

	
1422

	
1369

	
1400

	
1432

	
1416

	
9




	

	
132

	
84

	
173

	
206

	
267

	
93

	
174

	
161

	




	
Cerebrospinal Fluid (CSF)




	
FIR-MAP-MFM-2

	
4298

	
4038

	
4088

	
3743

	
3965

	
3623

	
3956

	
3959

	
9




	

	
467

	
551

	
538

	
314

	
689

	
155

	
496

	
459

	




	
FIR-MAP-IFM-2

	
4602

	
4504

	
4467

	
4047

	
4337

	
4035

	
4330

	
4332

	
7




	

	
593

	
628

	
695

	
443

	
864

	
287

	
668

	
597

	




	
FIR-MAP-MFM-6

	
3940

	
3778

	
3902

	
3506

	
3749

	
3537

	
3722

	
3733

	
9




	

	
343

	
513

	
511

	
181

	
657

	
203

	
450

	
408

	




	
FIR-MAP-IFM-6

	
4575

	
4480

	
4454

	
4034

	
4311

	
4024

	
4288

	
4309

	
7




	

	
562

	
623

	
672

	
429

	
869

	
312

	
654

	
589
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Table A3. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations of FIR-MAP by taking each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in initial step and iteration process. Each method consists of mean value in ROI (each upper row) and standard deviation (each lower row). Additionally, results of all volunteers are presented in the mean value and corresponding mean/std is calculated.
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V1

	
V2

	
V3

	
V4

	
V5

	
V6

	
V7

	
Mean

	
Mean/Std




	
White Matter (WM)






	
FIR-MAP-MFM-2

	
705

	
698

	
708

	
675

	
670

	
725

	
731

	
702

	
18




	

	
31

	
50

	
34

	
47

	
39

	
44

	
36

	
40

	




	
FIR-MAP-MFM-6

	
668

	
740

	
681

	
687

	
700

	
745

	
702

	
703

	
11




	

	
66

	
55

	
66

	
68

	
56

	
55

	
83

	
64

	




	
Grey Matter (GM)




	
FIR-MAP-MFM-2

	
1431

	
1374

	
1407

	
1406

	
1401

	
1418

	
1398

	
1405

	
12




	

	
93

	
72

	
101

	
153

	
233

	
55

	
92

	
114

	




	
FIR-MAP-MFM-6

	
1395

	
1349

	
1370

	
1349

	
1344

	
1392

	
1406

	
1372

	
10




	

	
117

	
90

	
201

	
156

	
217

	
61

	
104

	
135

	




	
Cerebrospinal Fluid (CSF)




	
FIR-MAP-MFM-2

	
4305

	
4042

	
4078

	
3756

	
3974

	
3620

	
3960

	
3962

	
9




	

	
455

	
563

	
527

	
324

	
692

	
190

	
495

	
464

	




	
FIR-MAP-MFM-6

	
3931

	
3653

	
3810

	
3480

	
3668

	
3446

	
3662

	
3664

	
9




	

	
327

	
566

	
535

	
214

	
636

	
252

	
440

	
424
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Figure A1. T1 maps of volunteer 1 calculated by the FIR-MAP-MFM after (a) 50, (b) 150, (c) 300, (d) 450, (e) 600 and (f) 750 numbers of iterations. 
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Figure 1. General scheme of the fast IR-MAP (FIR-MAP) proposed for acceleration of the IR-MAP. Each step of the algorithm is placed in separated column from (a) to (h). Multiple rows (two rows with dots) correspond to multiple projections that can be present in dataset (a single row is understood as a combined image for all projections—in that case MFM—mean first model). In general, each projection consists of multiple coils (one image after another) and in f) all coils are combined for all coils resulting in single image for all projections. 
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Figure 2. Exemplary results for volunteer V3 of T1 map estimation with (1) our initial model FIR-MAP-MFM (a) after termination of 150 iterations and (2) interpolated model FIR-MAP-interpolated first model (IFM; b) after termination of 30 iterations and corresponding results for reference methods REF (c) and IR-MAP (d). The FIR-MAP-MFM (a) gives similar T1 map to the REF method (c), while the higher spatial resolution can be observed for the FIR-MAP-IFM (b) and the IR-MAP (d). 
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Figure 3. Exemplary results of ROI analysis for white matter (WM; a), grey matter (GM; b) and cerebrospinal fluid (CSF; c) in the form of boxplots for volunteer V3 of T1 map estimation for (1) our initial model MFM (FIR-MAP-MFM) after termination of 150 iterations and (2) interpolated model IFM (FIR-MAP-IFM) after termination of 30 iterations and corresponding results for reference methods (REF and IR-MAP). The FIR-MAP with two different initial models (MFM and IFM) gives similar results to reference methods REF and IR-MAP. 






Figure 3. Exemplary results of ROI analysis for white matter (WM; a), grey matter (GM; b) and cerebrospinal fluid (CSF; c) in the form of boxplots for volunteer V3 of T1 map estimation for (1) our initial model MFM (FIR-MAP-MFM) after termination of 150 iterations and (2) interpolated model IFM (FIR-MAP-IFM) after termination of 30 iterations and corresponding results for reference methods (REF and IR-MAP). The FIR-MAP with two different initial models (MFM and IFM) gives similar results to reference methods REF and IR-MAP.



[image: Sensors 19 05371 g003a][image: Sensors 19 05371 g003b]







[image: Sensors 19 05371 g004 550] 





Figure 4. T1 maps results of FIR-MAP for MFM for each projection (a), for each sixth projection (b), IFM for each projection (c) and by taking each sixth projection (d) in the iteration process for volunteer V2. The spatial resolution and image quality decreases for both initial models for each sixth projection (right column b and d) with respect to each projection (left column a and c). 
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Figure 5. T1 maps of FIR-MAP for MFM taking each second (a), sixth (b) and seventh (c) projection in initial step and iteration process for volunteer V7. The spatial resolution and image quality decreases with the number of projections (from a to c). 
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Table 1. Results of T1 values (in ms) of ROI analysis (WM, GM and CSF) of all volunteers for initial model MFM calculated for 150 iterations of FIR-MAP, IFM calculated for 30 iterations of FIR-MAP in comparison to reference methods (REF and IR-MAP). Each method consists of a mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the corresponding mean/std.
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REF

	
IR-MAP

	
FIR-MAP-MFM

	
FIR-MAP-IFM




	

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF






	
Mean

	
712

	
1402

	
3908

	
722

	
1432

	
4351

	
710

	
1407

	
4016

	
720

	
1427

	
4340




	
Std

	
22

	
117

	
555

	
78

	
162

	
651

	
31

	
115

	
469

	
79

	
159

	
602




	
Mean/Std

	
32

	
12

	
7

	
9

	
9

	
7

	
23

	
12

	
9

	
9

	
9

	
7
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Table 2. Mean run time of single iteration with respect to each n-projection.
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	Number of Each n Projection
	1
	2
	3
	4
	5
	6
	7
	8



	Mean Run Time of Single Iteration (s)
	30
	17.5
	13.3
	10.6
	9.5
	9
	8.3
	8
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Table 3. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations and initial model IFM calculated for 30 iterations of FIR-MAP by taking all projections (FIR-MAP-MFM, FIR-MAP-IFM), each second (FIR-MAP-MFM-2, FIR-MAP-IFM-2) and sixth (FIR-MAP-MFM-6, FIR-MAP-IFM-6) projection in iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.






Table 3. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations and initial model IFM calculated for 30 iterations of FIR-MAP by taking all projections (FIR-MAP-MFM, FIR-MAP-IFM), each second (FIR-MAP-MFM-2, FIR-MAP-IFM-2) and sixth (FIR-MAP-MFM-6, FIR-MAP-IFM-6) projection in iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.





	

	
FIR-MAP-MFM

	
FIR-MAP-MFM-2

	
FIR-MAP-MFM-6




	

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF






	
Mean

	
710

	
1407

	
4016

	
701

	
1402

	
3959

	
701

	
1370

	
3733




	
Std

	
31

	
115

	
469

	
41

	
115

	
459

	
68

	
128

	
408




	
Mean/Std

	
23

	
12

	
9

	
17

	
12

	
9

	
10

	
11

	
9




	

	
FIR-MAP-IFM

	
FIR-MAP-IFM-2

	
FIR-MAP-IFM-6




	

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF




	
Mean

	
720

	
1427

	
4340

	
717

	
1426

	
4332

	
710

	
1416

	
4309




	
Std

	
79

	
159

	
602

	
79

	
161

	
597

	
80

	
161

	
589




	
Mean/Std

	
9

	
9

	
7

	
9

	
9

	
7

	
9

	
9

	
7











[image: Table] 





Table 4. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations of the FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in the initial step and iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.






Table 4. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations of the FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in the initial step and iteration process. Each method consists of mean value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.





	

	
FIR-MAP-MFM

	
FIR-MAP-MFM-2

	
FIR-MAP-MFM-6




	

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF

	
WM

	
GM

	
CSF






	
Mean

	
710

	
1407

	
4016

	
702

	
1405

	
3962

	
703

	
1372

	
3664




	
Std

	
31

	
115

	
469

	
40

	
114

	
464

	
64

	
135

	
424




	
Mean/Std

	
23

	
12

	
9

	
18

	
12

	
9

	
11

	
10

	
9
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