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Abstract: Quantitative mapping is desirable in many scientific and clinical magneric resonance
imaging (MRI) applications. Recent inverse recovery-look locker sequence enables single-shot T1

mapping with a time of a few seconds but the main computational load is directed into offline
reconstruction, which can take from several minutes up to few hours. In this study we proposed
improvement of model-based approach for T1-mapping by introduction of two steps fitting procedure.
We provided analysis of further reduction of k-space data, which lead us to decrease of computational
time and perform simulation of multi-slice development. The region of interest (ROI) analysis of
human brain measurements with two different initial models shows that the differences between mean
values with respect to a reference approach are in white matter—0.3% and 1.1%, grey matter—0.4%
and 1.78% and cerebrospinal fluid—2.8% and 11.1% respectively. With further improvements we
were able to decrease the time of computational of single slice to 6.5 min and 23.5 min for different
initial models, which has been already not achieved by any other algorithm. In result we obtained
an accelerated novel method of model-based image reconstruction in which single iteration can be
performed within few seconds on home computer.

Keywords: constrained and sparsity reconstruction; model-based approach; inversion-recovery
Look-Locker; undersampled T1 mapping; optimization; medical imaging

1. Introduction

In clinical routines, application of magnetic resonance (MR) parameters proton density and the
relaxation times T1 and T2 lead to distinction of different physical tissues in parameter weighted images.
These images provide only qualitative data. Quantitative evaluation such as T1 mapping, however,
can give directly properties of tissues, which are independent from technical impacts. This approach
offers a better comparison of different patients across different scanners, and enables classification of
diseases and further analysis of pathological processes [1]. Thus, quantitative mapping is desirable
in scientific and clinical MRI applications for brain studies, myocardial, T2-mapping and dynamic
studies [2,3]. In conventional acquisition, especially T1 mapping, suffers from long scan time and
restricted spatial resolution with limited T1 accuracy. In current practice, to face with the problem of
measurement time, acquisition sequence is based on the Look-Locker (LL) concept [4,5] with former
application of inversion recovery (IR) pulse and continuous readouts Steady-State Free Precession
(SSFP) or Fast Low Angle Shot (FLASH). Recent IR-LL sequence enables single-shot T1 mapping
with time of few seconds but in that case the main computational load is directed into reconstruction
procedure, which can take from several minutes up to few hours. Hence the improvement of image
reconstruction along with optimization of methods is of high interest.
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In the model-based approach [6–12] the parameter maps are estimated directly from the
undersampled k-space by iterative reinserting original k-space and model parameters fitting. Tran-Gia
et al. worked on model-based methods in his publications proposing pixel-wise fitting of T1

* and
M0

* [13] and dictionary-based approach for T1-mapping [14,15]. These effective parameters describe
the T1 relaxation process under the influence of repetitive small-angle excitations, which are necessary
to observe the relaxation process after a single inversion pulse. The proposed algorithms require many
iterations of fitting and computational time is higher than one hour for a single slice on a home computer
without central processing unit (CPU) and graphics processing unit (GPU) acceleration. The series
of different methods were presented by Wang et al. in the form of regularized nonlinear inversion
(NLINV), conjugate gradient (CG) along with pixel-wise fitting [16,17], the iterative regularized
Gauss–Newton method (IRGNM) [18], simultaneous estimation of all parameters, L1 regularization
and the fast iterative shrinkage-thresholding algorithm (FISTA) [19]. In that case, despite application of
external libraries and GPU acceleration, the fastest offline calculations are still performed in 10–20 min
and even more.

In order to reconstruct undersampled k-space data the methods of compressed sensing (CS) can
be applied, which relies on the idea of sparsity of MR images. Further speed improvement may be
achieved by combination of CS with parallel imaging, which has been already used in parametric
mapping [20–26]. Zibetti et al. provides comparison and evaluation of 12 different types of CS
sparsity for acceleration of T1 mapping [27]. More recent methods use improvements of previous
algorithms by means of total-generalized-variations (TGV) based regularization and further adapted
to a multiparametric setting [28] or split-slice GRAPPA and a model-based iterative algorithm for
T2-mapping [29]. Different approach bases on the method of magnetic resonance fingerprinting [30,31]
in which the benefit comes from simultaneous computation of T1 and T2 maps but in slightly longer
acquisition time. Other methods base on under-sampled k-t space data but used mainly in cardiac
application in observation of periodic changes of dynamic heart data [32]. Most of the current works
operates on a single slice, which from a clinical point of view is not applicable. The limited methods of
multi-slice parameter mapping have been used in few works [28,29,33] resulting in calculation time
from 10 min [28] up to 7 h [29] in multi-slice analysis. In multi-channel systems the number of coils
may be limited in the preprocessing step. The coil compression can be applied by singular value
decomposition [34] or by evaluation of virtual channels using a principle component analysis [18,19,33].

Application of more complex methods implies efficient results but also increases the computational
time showing a request for a simpler approach (such as the fitting method) with satisfactory efficiency
but faster calculation time. In this study we proposed an improvement of a model-based approach
for T1-mapping by introduction of a two steps fitting procedure, which for the purpose of that
work we called fast inversion recovery Model-based Acceleration of Parameter mapping (FIR-MAP).
This approach has one strong advantage relying on time acquisition of 6 s as well as an effective and
fast fitting procedure that shortened the time of evaluation. We verified two different initial models
and applied the analysis of further k-space data reduction, which lead us to decrease of computational
time and to perform a simulation of multi-slice development. In result we obtained an accelerated
novel method of model-based image reconstruction in which a single iteration can be performed within
a few seconds on a home computer. Finally, the FIR-MAP method was compared to the IR-MAP [14]
and reference segmented data basing on in vivo human brain measurements. Along with that work
we provide Matlab source code in the Supplementary Materials.

2. Materials and Methods

2.1. Original Data

Original data were taken from available online source provided by Tran-Gia under [35].
All measurements were performed on a 3T whole-body scanner (MAGNETOM Trio, Siemens AG
Healthcare Sector, Erlangen, Germany) applying a 12-channel phased-array head coil. The studies
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were performed with an inversion-recovery Look-Locker (IR-LL) sequence in order to obtain T1

measurements. Obtained T1 values were evaluated in the ROIs containing white matter (WM),
grey matter (GM) and cerebrospinal fluid (CSF). The dataset consists of:

1. In-vivo studies of the brains of seven healthy volunteers (aged between 23 and 30 years) for field
of view (FoV) ranging from 200 × 200 to 220 × 220 mm2, slice thickness: 4 mm, TE = 2.5 ms, TR = 6
ms, flip angle: 7◦, total time of scan 6 s with a golden ratio radial k-space trajectory.

2. Additionally, a fully sampled IR-LL dataset of single 2D slice was acquired using the segmented
process in order to obtain reference data. A single acquisition of one segment (single IR-LL
measurements) took 6 s (each of which was followed by a 15 s break) and was repeated 100 times
in order to fulfill k-space with single lines of data. For in vivo measurements a total time scan
was reduced to approximately 30 min.

Acquired data is organized in following way:

• np—number of projections (i.e., 999 original projections),
• nc—number of coils (i.e., four coils covering whole head for each projection),
• nr—number of readout points (i.e., 256 points given in k-space for each coil and projection).

2.2. Hardware Specification

The base for comparison of the proposed FIR-MAP method was the results obtained from
IR-LL segmented data treated in the original work as a reference (REF) and the IR-MAP algorithm
by Tran-Gia [14], which is the map acceleration method for the interpolated first model (IFM).
All calculations were performed in Matlab (The MathWorks, Natick, MA, USA) on two different home
computers 2.6 GHz Inter Core i7, 16 GB RAM and 3.5 GHz 6-Core Intel Xeon E5, 64 GB RAM without
any GPU acceleration, using standard Matlab libraries and six workers.

2.3. Processing Scheme

In order to match radial sampling scheme, np trajectories were generated with the golden ratio [36]
radial profile order. Having radial trajectories, the nr readout points were inserted into a Cartesian grid
for each projection np using GROG operation [37,38]. Original projections (radial k-space data inserted
into a Cartesian grid using GROG operation) were not modified across the whole algorithm and in
the reinsertion process might be used without any modifications or by taking projections fulfilling
sparsity condition, which slightly improves results. In sparsity case k-space was calculated from a
fully sampled image obtained from the last 200 projections of the IR-LL measurement. The following
steps were performed in the FIR-MAP in the reconstruction scheme presented on Figure 1:

1. Original projections (a) for all coils were used to create the initial starting model (b) for which T1
*

was assumed to be equal for the sake of simplicity at the beginning.
2. The model (as imaged) was created for all coils and projections (c).
3. The consistent model (d) was generated by taking Fourier transformation (FT) of the initial

starting model (b) and reinsertion of the original projections (a) in k-space. The consistent model
(e) in the next steps was used in the image space.

4. The first part of pixel-wise fitting (g) was performed on the consistent model for each projection
combined for all coils (f).

5. The second part of pixel-wise fitting (h) bases on the consistent model for each projection and for
each coil (e) and the results of the first part of fitting (g).

6. The iteration process repeats again from evaluation of model (c).
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Figure 1. General scheme of the fast IR-MAP (FIR-MAP) proposed for acceleration of the IR-MAP.
Each step of the algorithm is placed in separated column from (a) to (h). Multiple rows (two rows with
dots) correspond to multiple projections that can be present in dataset (a single row is understood as a
combined image for all projections—in that case MFM—mean first model). In general, each projection
consists of multiple coils (one image after another) and in f) all coils are combined for all coils resulting
in single image for all projections.

2.3.1. Initial Starting Model for First Iteration of the FIR-MAP

The first step in the FIR-MAP algorithm can take three possible initial models given to the first
iteration:

1. OFM—original first model - original projections in the Cartesian grid in the first model [13],
which due to the high number of required iterations were skipped in this study,

2. IFM—interpolated first model of all acquired k-spaces points through time [14] by performing a
linear interpolation in order to improve convergence of incomplete k-space not covered by any
data points,

3. MFM—our proposition—mean first model, which is calculated by taking all original projections.
In the evaluation of MFM only non-zero values are taken to the mean for the resulting k-space for
each coil (points that are not covered by any projections are not taken to the mean). After FT the
combined image for each coil is treated as M∗0 in simplified formula for T∗1 = 1000:

MMFM(t) = M∗0

(
1− 2e

−t
T∗1

)
. (1)

2.3.2. Consistent Model, Termination Criterion and Coil Combination

The iteration process starts in the next step. The model has to be generated for each inversion time
(projection) and for each coil. In that step all original projections are reinserted to the initial model
and the circular k-space mask can be applied. The absolute sum of difference of original k-spaces
and reconstructed k-spaces was proposed for the termination criterion as well as in observing the
reconstructing progress. The fixed number of iterations might be also assumed. Combined data
Mcomb( j, t) for each coil nc and each pixel j was calculated with application of meanPhase map
ϕnc( j) [14] taken at the beginning from a fully sampled image obtained from the last 200 projections of
IR-LL data and the complex-valued consistent model of current iteration Mnc( j, t).
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θ( j, t) =
∑

nc

[
sign

(
Real

{
Mnc( j, t) ∗ e−iϕnc( j)

})
∗

∣∣∣∣Real
{
Mnc( j, t) ∗ e−iϕnc( j)

}∣∣∣∣2)]. (2)

Mcomb( j, t) = sign(θ( j, t))
√∣∣∣θ( j, t)

∣∣∣). (3)

2.3.3. Two Steps Fitting Procedure—the First Step

In the first step three parameters pixel-wise fitting was applied by the nonlinear regression using
the specified model of relaxation process. The coefficients were estimated using iterative least squares
estimation [39–41]. The initial guess of the fitting method was in the first iteration taken as a maximum
value in magnetization curve for M∗0 and a minimum value for M0. Each next iteration took values
from a previous iteration as the initial guess. The fitted model is given by [42]:

M(t) = M∗0 −
(
M0 + M∗0

)
e
−t
T∗1 . (4)

According to obtained parameters M0, M∗0 and T∗1 it is possible to calculate T1 by formula:

T1 = T∗1
M0

M∗0
. (5)

2.3.4. Two Steps Fitting Procedure—the Second Step

In the second step, in order to deal with influence of each coil, the model had to be refitted for each
coil in separate iteration. T∗1 could be taken from the first step of fit (for each coil it had the same value)
and the factor k (7) was introduced in order to reduce fitting procedure to one parameter M∗0 influenced
by coils sensitivities. The fast one parameter linear fit could be performed by solving systems of linear
equations for real and imaginary part separately:

M(t)nc = M∗0(1− (k + 1))e
−t
T∗1 , (6)

where:
k =

M0

M∗0
, (7)

and simplified:
T1 = T∗1k. (8)

For fitted parameters the new model was generated and original data was again reinserted,
which created the consistent model and the iteration process was repeated until reaching the
termination criterion.

2.4. Reduced Number of Projections

In order to improve time complexity of the FIR-MAP method the reduction of number of projections
can be performed. In such a case the first initial model is calculated by taking all original projections
but the iteration process works with each nth projection resulting in less data analysis. In another case
the reduced number of original projections is applied for both in the step of creation of the first model
as well as in the iteration process.

3. Results

3.1. Single Slice Analysis with Total Number of Projections

In the first step of comparison all projections were taken for the first model and iteration process.
The IR-MAP and REF were taken as reference results and our approach the FIR-MAP was tested for two



Sensors 2019, 19, 5371 6 of 17

cases (1) with our initial model MFM and (2) with interpolated model IFM. Results of reconstruction of
the FIR-MAP with both initial models and the reference IR-MAP and REF can be observed in Figure 2
for volunteer V3. The ROI analysis of regions WM, GM and CSF are presented for all methods in the
form of boxplots in Figure 3. The total number of iterations in first case was set to 150 and in second
case to 30. Introducing IFM improved highly results of reconstruction and it could be observed that
spatial resolution was still better for the IFM initial model, which was reported [14] explaining that the
reason lay in only 6 s of acquisition (minimizing motion artifacts). On the other side mean values of T1

in selected ROI and its deviation was more accurate for MFM.
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Figure 2. Exemplary results for volunteer V3 of T1 map estimation with (1) our initial model
FIR-MAP-MFM (a) after termination of 150 iterations and (2) interpolated model FIR-MAP-interpolated
first model (IFM; b) after termination of 30 iterations and corresponding results for reference methods
REF (c) and IR-MAP (d). The FIR-MAP-MFM (a) gives similar T1 map to the REF method (c), while the
higher spatial resolution can be observed for the FIR-MAP-IFM (b) and the IR-MAP (d).

The results of ROI analysis for all volunteers are presented in Table 1 (and Table A1 in Appendix A)
calculated for the FIR-MAP and reference methods (REF and the IR-MAP). Table 1 consists of numerical
results of the FIR-MAP started with an MFM initial model ran for 150 iterations. The ROI analysis
of the FIR-MAP with MFM shows that the differences between mean values with respect to the REF
method were WM—0.3%, GM—0.4% and CSF—2.8%, which in comparison to the IR-MAP (WM—1.4%,
GM—2.1% and CSF—11.3%) gave more stable results. The values of mean/std (the relation of mean
value and standard deviation in selected ROI) were also better for FIR-MAP in comparison to IR-MAP
and more comparable to the REF method. Table 1 presents also numerical ROI analysis of the FIR-MAP
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for IFM initial model calculated for 30 iterations. The results show that the differences of the FIR-MAP
with respect to REF were WM—1.1% (IR-MAP 1.4%), GM—1.78% (2.1%) and CSF—11.1% (11.3%).
For all regions the FIR-MAP gave slightly better results than the IR-MAP and the mean/std values were
comparable. The advantage was that FIR-MAP gave such results faster—after 30 iterations (instead of
50 iterations of the IR-MAP).
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Figure 3. Exemplary results of ROI analysis for white matter (WM; a), grey matter (GM; b) and
cerebrospinal fluid (CSF; c) in the form of boxplots for volunteer V3 of T1 map estimation for (1) our
initial model MFM (FIR-MAP-MFM) after termination of 150 iterations and (2) interpolated model IFM
(FIR-MAP-IFM) after termination of 30 iterations and corresponding results for reference methods (REF
and IR-MAP). The FIR-MAP with two different initial models (MFM and IFM) gives similar results to
reference methods REF and IR-MAP.
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Table 1. Results of T1 values (in ms) of ROI analysis (WM, GM and CSF) of all volunteers for initial
model MFM calculated for 150 iterations of FIR-MAP, IFM calculated for 30 iterations of FIR-MAP
in comparison to reference methods (REF and IR-MAP). Each method consists of a mean value in
ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the
corresponding mean/std.

REF IR-MAP FIR-MAP-MFM FIR-MAP-IFM

WM GM CSF WM GM CSF WM GM CSF WM GM CSF

Mean 712 1402 3908 722 1432 4351 710 1407 4016 720 1427 4340
Std 22 117 555 78 162 651 31 115 469 79 159 602

Mean/Std 32 12 7 9 9 7 23 12 9 9 9 7

3.2. Improvement of Single Slice Analysis

The implementation of FIR-MAP had reduced time complexity of single iteration without any
loss in ROI quality. In general, single iteration of the FIR-MAP was completed in approximately 30 s
for 999 projections, four coils and 256 image resolution. With 30 s:

1. The reinsertion of original data into the model and calculation of combination of all coils took 20 s.
2. The first step of 3-parameter fitting of model ran 5.5 s in parallel (20 s sequentially).
3. The second step of one parameter linearized fit required 4.5 s.

The only one part in which the parallel for loop was introduced was the place of three-parameter
fitting, which took 5.5 s for six workers on a desktop computer. In contrast the same part run
sequentially would take 20 s. The time complexity of the FIR-MAP can be decreased by taking each nth
projection in the iterative reconstruction process. At the beginning after data acquisition all projections
were taken in order to compute the (1) MFM model and (2) IFM model. However, in each iteration
process each nth projection was used in reconstruction. Here some compromise should be achieved
between decreasing quality of the ROI values and run time of a single iteration, which after each fifth
projection changed slightly (Table 2).

Table 2. Mean run time of single iteration with respect to each n-projection.

Number of Each n Projection 1 2 3 4 5 6 7 8

Mean Run Time of Single Iteration (s) 30 17.5 13.3 10.6 9.5 9 8.3 8

Two initial models MFM and IFM were verified for the FIR-MAP in order to check the influence of
taking each second and sixth projection in iteration process. For MFM (Tables 3 and A2 in Appendix A)
with higher reduction the loss in mean/std was increasing while the quality of T1 values in ROI analysis
was decreasing. For the same data IFM (Tables 3 and A2 in Appendix A) showed slightly smaller
changes. The reason of such situation lies in the way of evaluation of IFM, which after taking all
projections in model generation required less iterations to get better results even if a smaller number of
projections were taken to the reconstruction process. In this situation the iteration process influences
mainly the values of single pixels and not the structure and resolution.

Figure 4 shows the influence of further reduction of projections on the quality of T1 maps.
By decreasing the number of projections taken to the iteration process the quality of the FIR-MAP
with MFM decreased, however, by considering only each sixth projection the contrast and resolution
was comparable to the reference results. For IFM the spatial resolution was still better due to the way
of evaluation of model for all projections. Due to that feature it was possible to decrease the time of
computation of single iteration even for 9 s (for each sixth projection).
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Table 3. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations
and initial model IFM calculated for 30 iterations of FIR-MAP by taking all projections (FIR-MAP-MFM,
FIR-MAP-IFM), each second (FIR-MAP-MFM-2, FIR-MAP-IFM-2) and sixth (FIR-MAP-MFM-6,
FIR-MAP-IFM-6) projection in iteration process. Each method consists of mean value in ROI (mean) and
standard deviation (std). Additionally, results of all volunteers are presented in the form of mean/std.

FIR-MAP-MFM FIR-MAP-MFM-2 FIR-MAP-MFM-6

WM GM CSF WM GM CSF WM GM CSF

Mean 710 1407 4016 701 1402 3959 701 1370 3733
Std 31 115 469 41 115 459 68 128 408

Mean/Std 23 12 9 17 12 9 10 11 9

FIR-MAP-IFM FIR-MAP-IFM-2 FIR-MAP-IFM-6

WM GM CSF WM GM CSF WM GM CSF

Mean 720 1427 4340 717 1426 4332 710 1416 4309
Std 79 159 602 79 161 597 80 161 589

Mean/Std 9 9 7 9 9 7 9 9 7
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Figure 4. T1 maps results of FIR-MAP for MFM for each projection (a), for each sixth projection (b),
IFM for each projection (c) and by taking each sixth projection (d) in the iteration process for volunteer
V2. The spatial resolution and image quality decreases for both initial models for each sixth projection
(right column b and d) with respect to each projection (left column a and c).

3.3. Simulation of Using a Reduced Number of Projections

It was shown that an appropriate T1 evaluation was possible in reduced processing time using a
strongly reduced number of projections, while the initial model was still calculated using all projections.
If a reduction of projections was also possible in this first part of the data processing, the acquisition of
the skipped projections could be omitted and data from parallel slices could be acquired in this time.
A multi slice measurement in only 6 s would be then possible. For the IFM model the reconstruction
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scheme and evaluation of first model was possible for up to each second projection—for a higher
number the initial model was noisy and the reconstruction generated a lower value of the mean/std.
The power of the IFM model was connected to the number of points for which the interpolation could
be performed. In the case of decreasing the number of projections, the number of interpolated points
was also limited and the higher spatial resolution, which was the main advantage of the approach
was not visible. In contrast to IFM, application of our MFM model gave more promising T1 maps.
Table 4 (and Table A3 in Appendix A) and Figure 5 show results of MFM with each second and sixth
projection proving that even after taking each sixth projection it was possible to reconstruct the final T1

map. For each second projection the change in ROI values (WM—1.4%, GM—0.2% and CSF—1.38%)
and mean/std was still comparable to reference data, for each sixth projection differences increased
(WM—1.4%, GM—2.14% and CSF—6.24%) but the results were still comparable showing that it was
possible to use the FIR-MAP for multi-slice of five simultaneous slices for 999 time stamps.
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Figure 5. T1 maps of FIR-MAP for MFM taking each second (a), sixth (b) and seventh (c) projection in
initial step and iteration process for volunteer V7. The spatial resolution and image quality decreases
with the number of projections (from a to c).
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Table 4. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations
of the FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth
(FIR-MAP-MFM-6) projection in the initial step and iteration process. Each method consists of mean
value in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented
in the form of mean/std.

FIR-MAP-MFM FIR-MAP-MFM-2 FIR-MAP-MFM-6

WM GM CSF WM GM CSF WM GM CSF

Mean 710 1407 4016 702 1405 3962 703 1372 3664
Std 31 115 469 40 114 464 64 135 424

Mean/Std 23 12 9 18 12 9 11 10 9

4. Discussion

4.1. Two Steps Fitting

The original work of Tran-Gia et al. [14] deals with the time-consuming dictionary-based approach,
which depends on the size of dictionary entries, instead of a mono-exponential fit. The iterative
fitting procedure was highly improved by application of interpolation within undersampled original
data. In contrast in our work we proposed a two steps model fitting—in the first step using the
nonlinear regression we were able to fit the T1 relaxation curve for the combined image while in the
second step we applied a time efficient linear fit in order to calculate the M0 values weighted by the
coil sensitivities. The benefit of this approach is that there is no additional need of measurement in
which coil sensitivities will be evaluated and the coil influence is updated in each iteration ensuring
correctness of data. Such a procedure allowed us to decrease run time and obtain comparable T1

values. With this two steps fitting procedure of the FIR-MAP we were able, by mono-exponential fit,
to obtain similar T1 values in selected ROI to the reference IR-MAP. In the FIR-MAP we used two
initial models basing on the idea of projection interpolation (IFM) proposed by Tran-Gia et al. [14]
and our proposition based on the mean of projection (MFM). The IR-MAP algorithm was able to
finish reconstruction within 50 iterations while in contrast our FIR-MAP with IFM could finish with
similar T1 values after 30 iterations. The disadvantage of IFM was related also to some outstanding
data, which was present due to imperfection of the interpolation process and a lack of undersampled
projections. Application of the MFM model requires more iterations (we used 150) but it has one strong
advantage—by further reduction of the number of projections, the comparable T1 values in selected
ROI are still possible after taking each sixth projection, which will be useful in further multi-slice
analysis for 999 time stamps. The FIR-MAP-MFM gives T1 values in selected structures with lower
resolution but not worse than the REF method, while the higher spatial resolution can be observed for
the FIR-MAP-IFM and the IR-MAP. The spatial resolution of the FIR-MAP-MFM can be improved by
application of a higher number of iterations (Figure A1 in Appendix A). The advantage of T1 maps in
clinical application lies in the possibility of tissue characterization within a certain region of interest
and not in discrimination between tissues. Therefore, our intension was to apply T1 maps and observe
the influence of algorithm on mean values and standard deviations of selected ROI. Other work [33]
assumes 1492 time stamps—which could in future increase further undersampling.

4.2. Time Complexity

Tran-Gia et al. [14] showed that undersampled data can be acquired within 6 s due to the IR-LL
sequence but the reconstruction algorithms require minutes and hours to obtain full results. In our
work we stated two main assumptions—(1) to improve computational time of image reconstruction by
decreasing the number of iterations and run time of single iteration and (2) to obtain comparable quality
of T1 maps by means of ROI analysis. The FIR-MAP—our contribution—fulfilled those conditions.
Few approaches in T1-mapping reconstruction have been already presented. In order to get better time
of computational we decided to choose a simple and efficient method of model fitting. Other solutions,
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in some cases are more efficient but are also numerically advanced, and require more time to reconstruct
the final image [16–19,27–29,33]. In the literature we did not find any benchmark that enables us to
compare methods of T1 mapping reconstruction and quality of results of different works for similar
data. Instead for that purpose, we used the available real data provided by Tran-Gia et al. along with
the results of their work and reference data [14]. It was also difficult to analyze time complexity of
other works due to different image resolution, number of coils and time stamps. The basic IR-MAP
algorithm [14] requires approximately 100 s (reported 90 s for fitting procedure and remaining part
for reinserting) to evaluate a single iteration, which for an assumed 50 iterations gives approximately
85 min of the whole iteration process and data preparation for a single slice. Acceleration using GPU
and implementation of some methods in C/CUDA (Compute Unified Device Architecture) generates
a time complexity of 10–20 min [19,33] and in the range from minutes to hours depending on data
size [18]. Fast multi-slice method for T2 mapping [29] calculates 50 slices on an office computer within
7 h, which gives approximately 9 min per slice or alternatively rapid T1 quantification [28] reports
reconstruction time of approximately 10 min per slice. We showed that a single iteration of the FIR-MAP
for all projections could take 30 s. The data preparation of initial model for all projections took an
additional 2 min for IFM and 1 min for MFM. In that case a full T1 map reconstruction of a single
slice would take 17 min for IFM and 76 min for MFM in comparison to 85 min of the original IR-MAP.
We proved also that in the iteration procedure it was possible to obtain comparable results of ROI and
mean/std even by taking each sixth projection. With that assumption we were able to decrease the time
of computational of single slice to 6.5 min for IFM and 23.5 min for MFM, which has not already been
achieved by any other algorithm. All calculations of our method were performed on standard Matlab
libraries without any GPU acceleration. The only one part of the FIR-MAP: the three-parameter fitting
procedure was done in parallel on six workers by application of a home computer.

4.3. Further Development

The crucial point of the FIR-MAP stands in the initial model. We could observe that introduction
of IFM gave from the beginning good starting points, which required 30 iterations to get acceptable ROI
values. On the other hand, IFM suffered from a lack of a number of points given to the interpolation
procedure, which eliminates that solution in further data reduction. MFM in our case was developed
for a simplified model, which could be improved in future works. In our future works we planned
sequence modification in order to collect multi-slice data as well as introduction of parallel imaging.
Our code would be reimplemented in a more efficient environment with parallel and GPU acceleration.

5. Conclusions

In this work we introduced the FIR-MAP model-based reconstruction method based on IR-LL
sequence. We proposed an efficient and faster two steps fitting procedure tested for two initial
models—IFM and MFM. The validation of our method was performed on data available online for
in vivo brain studies for seven healthy volunteers compared to a segmented inversion recovery T1

mapping experiment and the IR-MAP. In both cases we got similar T1 values to the reference methods
within selected ROI and high improvement in run-time of single iteration. We analyzed further
reduction of number of projections, which decreased computational time into 6.5 min in the best case.
Promising results were obtained by reduction of considered projections for the T1 mapping, which will
allow us to proceed to multi-slice measurements within 6 s measurement time.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5371/s1:
Source codes of all scripts written in Matlab and manual with full explanation of steps required in application
of scripts.
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Appendix A

Table A1. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations
of FIR-MAP by taking all projections (FIR-MAP-MFM), each second (FIR-MAP-MFM-2) and sixth
(FIR-MAP-MFM-6) projection in initial step and iteration process. Each method consists of mean value
in ROI (mean) and standard deviation (std). Additionally, results of all volunteers are presented in the
form of mean/std.

V1 V2 V3 V4 V5 V6 V7 Mean Mean/Std

White Matter (WM)

FIR-MAP-IFM 733 700 740 685 677 725 778 720 9
82 78 68 77 81 100 66 79

FIR-MAP-MFM 725 706 722 674 684 705 755 710 23
32 28 30 37 34 35 24 31

IR-MAP 738 706 740 688 679 726 779 722 9
82 76 68 78 82 99 63 78

REF 734 709 712 695 693 698 744 712 32
16 42 21 31 17 17 11 22

Grey Matter (GM)

FIR-MAP-IFM 1435 1407 1454 1447 1426 1401 1420 1427 9
131 84 160 207 273 89 170 159

FIR-MAP-MFM 1415 1365 1438 1419 1415 1401 1394 1407 12
89 63 113 154 246 45 94 115

IR-MAP 1447 1405 1459 1453 1429 1400 1430 1432 9
127 85 159 207 286 90 178 162

REF 1436 1385 1402 1378 1401 1400 1409 1402 12
94 98 158 147 192 58 71 117

Cerebrospinal Fluid (CSF)

FIR-MAP-IFM 4598 4508 4466 4043 4364 4056 4343 4340 7
586 633 702 450 874 304 667 602

FIR-MAP-MFM 4295 4106 4142 3772 4083 3704 4009 4016 9
424 559 562 344 738 167 486 469

IR-MAP 4603 4585 4473 3990 4387 4057 4360 4351 7
646 669 720 506 925 364 726 651

REF 4296 4082 3877 3924 4061 3236 3878 3908 7
494 620 700 348 911 249 564 555

Table A2. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150
iterations and initial model IFM calculated for 30 iterations of FIR-MAP by taking each second
(FIR-MAP-MFM-2, FIR-MAP-IFM-2) and sixth (FIR-MAP-MFM-6, FIR-MAP-IFM-6) projection in
iteration process. Each method consists of mean value in ROI (each upper row) and standard
deviation (each lower row). Additionally, results of all volunteers are presented in the mean value and
corresponding mean/std is calculated.

V1 V2 V3 V4 V5 V6 V7 Mean Mean/Std

White Matter (WM)

FIR-MAP-MFM-2 704 699 710 673 671 721 731 701 17
34 49 37 47 39 44 35 41

FIR-MAP-IFM-2 721 697 737 683 674 732 773 717 9
81 79 68 75 82 100 66 79

FIR-MAP-MFM-6 674 743 679 691 687 738 696 701 10
72 58 78 73 61 55 81 68

FIR-MAP-IFM-6 694 710 718 676 662 751 756 710 9
81 80 67 75 85 105 70 80
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Table A2. Cont.

V1 V2 V3 V4 V5 V6 V7 Mean Mean/Std

Grey Matter (GM)

FIR-MAP-MFM-2 1426 1368 1409 1403 1401 1414 1393 1402 12
89 67 105 153 241 58 92 115

FIR-MAP-IFM-2 1444 1409 1446 1439 1421 1406 1417 1426 9
134 85 164 206 274 92 173 161

FIR-MAP-MFM-6 1398 1348 1359 1347 1336 1394 1405 1370 11
104 83 175 155 218 60 104 128

FIR-MAP-IFM-6 1447 1389 1453 1422 1369 1400 1432 1416 9
132 84 173 206 267 93 174 161

Cerebrospinal Fluid (CSF)

FIR-MAP-MFM-2 4298 4038 4088 3743 3965 3623 3956 3959 9
467 551 538 314 689 155 496 459

FIR-MAP-IFM-2 4602 4504 4467 4047 4337 4035 4330 4332 7
593 628 695 443 864 287 668 597

FIR-MAP-MFM-6 3940 3778 3902 3506 3749 3537 3722 3733 9
343 513 511 181 657 203 450 408

FIR-MAP-IFM-6 4575 4480 4454 4034 4311 4024 4288 4309 7
562 623 672 429 869 312 654 589

Table A3. Results of T1 values (in ms) of ROI analysis for initial model MFM calculated for 150 iterations
of FIR-MAP by taking each second (FIR-MAP-MFM-2) and sixth (FIR-MAP-MFM-6) projection in initial
step and iteration process. Each method consists of mean value in ROI (each upper row) and standard
deviation (each lower row). Additionally, results of all volunteers are presented in the mean value and
corresponding mean/std is calculated.

V1 V2 V3 V4 V5 V6 V7 Mean Mean/Std

White Matter (WM)

FIR-MAP-MFM-2 705 698 708 675 670 725 731 702 18
31 50 34 47 39 44 36 40

FIR-MAP-MFM-6 668 740 681 687 700 745 702 703 11
66 55 66 68 56 55 83 64

Grey Matter (GM)

FIR-MAP-MFM-2 1431 1374 1407 1406 1401 1418 1398 1405 12
93 72 101 153 233 55 92 114

FIR-MAP-MFM-6 1395 1349 1370 1349 1344 1392 1406 1372 10
117 90 201 156 217 61 104 135

Cerebrospinal Fluid (CSF)

FIR-MAP-MFM-2 4305 4042 4078 3756 3974 3620 3960 3962 9
455 563 527 324 692 190 495 464

FIR-MAP-MFM-6 3931 3653 3810 3480 3668 3446 3662 3664 9
327 566 535 214 636 252 440 424
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Figure A1. T1 maps of volunteer 1 calculated by the FIR-MAP-MFM after (a) 50, (b) 150, (c) 300, (d) 450,
(e) 600 and (f) 750 numbers of iterations.
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