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Abstract: As mobile mapping systems become a mature technology, there are many applications for the
process of the measured data. One interesting application is the use of driving simulators that can be
used to analyze the data of tire vibration or vehicle simulations. In previous research, we presented
our proposed method that can create a precise three-dimensional point cloud model of road surface
regions and trajectory points. Our data sets were obtained by a vehicle-mounted mobile mapping system
(MMS). The collected data were converted into point cloud data and color images. In this paper, we
utilize the previous results as input data and present a solution that can generate an elevation grid for
building an OpenCRG model. The OpenCRG project was originally developed to describe road surface
elevation data, and also defined an open file format. As it can be difficult to generate a regular grid from
point cloud directly, the road surface is first divided into straight lines, circular arcs, and and clothoids.
Secondly, a non-regular grid which contains the elevation of road surface points is created for each road
surface segment. Then, a regular grid is generated by accurately interpolating the elevation values from
the non-regular grid. Finally, the curved regular grid (CRG) model files are created based on the above
procedures, and can be visualized by OpenCRG tools. The experimental results on real-world data show
that the proposed approach provided a very-high-resolution road surface elevation model.

Keywords: road surface; point cloud; mobile mapping system; bilinear interpolation; curved regular
grid; OpenCRG

1. Introduction

The modeling of road scenes has become an increasingly important topic in academia and industry.
While various techniques have been developed to handle different types of issues, it is recognized that
efficiency and reliability are both key considerations in the assessment of systems. However, to help
with vehicle development and evaluation, a high-accuracy and high-precision three-dimensional model
of the road surface is necessary and very valuable. There are multiple methods of building detailed
representations for the road model, and they can result in different models based on various purposes.
For example, in [1,2], the authors presented approaches for grid-based road model estimation for advanced
driver assistance systems. Their measurements from sensors are transformed into a grid-based road model
and a geometrical description is extracted out of this model by the use of a path-planning based method.
In [3], a modeling of the road with geometric parameter representation was proposed, which contained
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three parts of road: straight line, circular arc, and clothoid. The relationship between trajectory curvature
and velocity was established, and then a simulation was carried out to verify the road model. It proved that
the model could be used to control a four-wheeled robot. For other uses, some authors proposed methods
using the elevation information to building road models [4–7]. It has been proven that the elevation-based
methods are suitable for detection techniques.

However, precise 3D road surface measurements and efficient 3D road data representation are two
essential requirements for building high-precision 3D road models. To fulfill the requirement of precise
road surface measurements, we use a point cloud as input data. Point cloud data is comprised of a
set of measured points in three-dimensional space. The point cloud is one of the most widely used
data types in three-dimensional image processing. Point clouds are already having a huge impact on
different industries, especially on road-related projects (e.g., road surveys, road modeling, and autonomous
vehicles). Mobile mapping systems are one of the most widely used surveying devices for capturing
large-scale point clouds and digital images. Authors in [8] provided a recently available review of mobile
mapping system (MMS) and surveying technologies. Some of the newly developed and presented systems
are described in [9–12]. These systems produce large-scale 3D point clouds and very-high-precision
geometric measurements. The produced point clouds are used for many road-related research tasks,
including missing road point regions detection [13], road damage information detection [14,15], road
segmentation and recognition [16,17], etc.

Since the geometric relationships between road segments are normally assumed as straight line
segments and curved arc segments, there are many different approaches that are available, dealing
with various situations. Examples can be found in [18–21]. In geometric road design, G2 continuity is
demanded, which means that not only the tangent vectors between different road segments are lying along
the same direction, but also have the same curvature at the joint point. The commonly used algorithms
for straight line and circular arc detection are the random sample consensus (RANSAC) and the Hough
transform. A comprehensive overview of recent research in RANSAC-based estimation methods is given
in [22]. Therefore, most strategies focus on the transition curves. In [23,24], the authors demonstrate a
workflow for representing point cloud data in a curved regular grid model. The input laser-scanned point
clouds and geometric description of the road both need strong manual intervention in the preparation
phase. The selected pilot road has a near perpendicular segment, and the elevation values are calculated by
a fixed-radius nearest-neighbour search algorithm from the input point cloud directly. The mean elevation
values of points inside the circle are stored in the curved regular grid (CRG) cells. This also causes the
problem that the resolution of the generated CRG model is limited by the density of the input point
cloud. However, the performance and accuracy of the two key steps—road segmentation and elevation
estimation—can be further enhanced. In our previous work [25–27], we presented a workflow which can
produce a high-precision three-dimensional point cloud model of a road surface region and trajectory
points. In this paper, we extend the method based on our previous results for representing the mobile
mapping data in the CRG model efficiently.

In this work, the goal was to build a road model that contains geographic information of the road
surface and use elevation information to show the shape of the road surface. We first apply a robust and
effective method that can divide the road into three road segment categories: straight line, circular arc,
and clothoid curve. For the straight line and circular arc solutions, we utilize the RANSAC algorithm.
Then, we adopt a G2 interpolation method [28] to estimate the transitions between road segments, that is,
the clothoid curves. To create a CRG model file, a regular grid which provides elevation values is needed.
To effectively and accurately accomplish this, we use a two-step method to generate the regular grid. In the
first step, for finding the regular grid, a non-regular grid is initially created from the input point cloud and
trajectory points. In the next step, we estimate the regular grid from the non-regular grid by applying a
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bilinear interpolation method. Finally, the presented process is applied to our real-world point cloud data
collected from the Japanese highway network.

In sum, the main contributions of this work are as follows. First, in the data preparation phase,
the whole process operates without any human intervention. To enhance the accuracy of elevation
estimation, with the two-step method, the bilinear interpolation ensures the elevation values are
precisely computed. It can also provide a guarantee of high resolution, where the grid resolution
can be selected by the user. Secondly, to improve the time and space efficiency compared with the
nearest-neighbour search approach used in [23], the two-step method can decrease the storage and
query execution time. Furthermore, our previous work results provide precise road surface region point
cloud and trajectory points. Precision data can be used to create a more accurate elevation regular
grid for the purpose of building the CRG model. Finally, with the help of OpenCRG, we can represent
three-dimensional (3D) road data in CRG models.

1.1. Overview of OpenCRG

In 2005, a project called OpenDRIVE [29] was started by a team of driving simulation experts from
Daimler AG and VIRES Simulationstechnologie GmbH. This project aimed to standardize road description
in order to facilitate the data exchange between various driving simulators. This is the first member
of the OpenSolutions family. After the debut of OpenDRIVE in 2006, other big companies joined in
(e.g., BMW, Audi AG, Porsche AG, and Volkswagen Group). Thus, OpenDRIVE is now being managed
by an international board. OpenDRIVE provides a road evaluation library which can make the data
exchange between different servers and applications easier. It is also available for vehicle dynamics, traffic
simulation, and sensor simulation via the library.

As a complementary project, the OpenCRG project was established in October 2008 [30]. CRG stands
for curved regular grid. Its objective is to provide open file formats and tools for the representation of
high-precision 3D road surfaces. The predecessor of OpenCRG is a format called CRG, which has been
used internally for several years by Daimler AG. OpenCRG is designed to represent road surfaces in very
high resolution, so that the CRG files can be used for tire, vibration, and driving simulation.

In order to present the road data in a CRG model, the road parameters must be defined (e.g., start
position, end position, road width, slope, heading angle, and elevation). Start position and end position are
actually the start and end points of a road segment. As shown in Figure 1, a curved regular grid represents
road elevation data close to a road center line. A CRG model consists of two major parts: a reference
line and a regular elevation grid. The reference line is defined by a start position, an end position, and
consecutive heading angles. The u-axis lies on the reference line and the v-axis is orthogonal to the reference
line. The regular elevation grid is a special form of regular grid which is locally orthogonal. Columns are
longitudinal cuts that are parallel to the reference line, and rows are lateral cuts that are orthogonal to the
reference line. The grid nodes contain elevation information of the road surface. A MATLAB and C-API
toolbox was developed for the handling, evaluation, and generation of CRG data.

In addition, the OpenSolutions family has expanded with a new member OpenSCENARIO [31].
It was formally presented in 2016 and is still in the development stage. The purpose of the project is to
establish a standard for dynamic content in vehicle simulations, such as traffic models, driver models,
infrastructure event models, etc.
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(a) Curved reference line. (b) Lateral cuts are orthogonal to the reference line.

(c) Regular elevation grid.

Figure 1. The basic idea of the curved regular grid (CRG).

1.2. Structure of the Paper

This paper is structured as follows. In Section 2, we give a brief review of our previous work.
The proposed method is then described in detail. Experimental results are illustrated in Section 3,
and Section 4 concludes this paper.

2. Method

2.1. Input Data Preparation

The point cloud data and images used in our work were captured using a 3D laser line scanner and
charge-coupled device (CCD) camera. The benefit of a 3D laser line scanner is that the vehicle position is
known and can be used for information on the road’s location and orientation. Each point not only has
three-dimensional coordinates, but also laser irradiation angle and GPS time. This information can be used
to structurize the points. From this information, we use the laser irradiation angle in order to separate
the point cloud into scan lines. Moreover, we order points in a scan line and find neighborhood elements
by laser irradiation angle information. The point cloud data and color images used in our research are
illustrated in Figure 2.
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(a) Point cloud data collected by laser scanner. (b) Color image collected by camera.

Figure 2. Dataset obtained by mobile mapping system.

However, the interval of measured points along the direction in which the MMS travels depends on
the rotation speed of the laserirradiation part and the speed with which the MMS travels. The rotation
period of the laser irradiation part is much longer than the laser irradiation period. The measurement
interval along the direction of MMS travel is often about a few hundred millimeters. Thus, the density of
the point distribution is greatly unbalanced with the direction (Figure 3).

Figure 3. The difference of point density according to the direction.

This situation causes the problem in the method with creating regular grids of elevation values onto
raw point cloud data directly. In such a case, a manual process is always involved, and this kind of method
is very time-consuming. For example, in [32], the authors presented an algorithm for local gridding where
the elevation values are computed based on local binning geometry. The accuracy and time complexity of
this algorithm were not suitable for creating the CRG model.

In [27], in oeder to find the location of the boundary points precisely, we used a line-based
region-growing method to extract the road surface region from the point cloud. Following this method,
the input to our algorithm is a set of line segments. We first create line segments from a point sequence
using the angle of laser irradiation. We then use the line segments as processing elements for the road
surface region extraction. For searching neighborhood line segments, we use the laser irradiation angle
associated directly with sampled points. If two points on two consecutive scanning lines have a similar
laser irradiation angle, these points are considered to be located near each other. Next, we extract lane
marks and their midpoints [25]. The road surface points are projected onto a color image to find the precise
lane mark region. Then, we perform an inverse projection to recover the 3D coordinates of the detected 2D
lane mark points. For the missing points between broken white lines, we describe the three-dimensional
points in a length-angle space to fill the gap, considering that the road trajectories are sequences consisting
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of centerline points. Finally, we generate a 3D point sequence to represent the trajectory points [26], and
hence we can use the trajectory of the road as the reference line in road surface modeling.

Figure 4a,b shows examples of the results in our previous work. Figure 4a is an example of an
extracted road surface region by line-based region growing. We painted the road surface points and
non-road points in red and black, respectively. We can see that the line-based region growing method
precisely extracted the road surface region. Figure 4b shows an example of 3D road trajectory points,
which are colored in red.

(a) The result of extracted road surface region (upper: perspective
view; lower: top view).

(b) The result of trajectory points shown in 3D (top view).

Figure 4. The results of our previous work.

2.2. Overview of the Method

In the first step, we divide the input trajectory point into three types: straight line, circular arc, and
clothoid. Naturally, the curvature of a straight line is nearly zero, a circular arc has constant curvature,
and the curvature of a clothoid varies linearly along the arc. The straight and circular road segments are
both extracted by the RANSAC algorithm, which is not only able to give accurate detection result, but
also maintain speed and stability. The straight lines are extracted first, then circular road segments are
extracted from the rest of the data. Points between straight line and circular segments should be fitted by a
clothoid curve.
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In the CRG model, the left and right road widths must be fixed. In the real world, there is an
emergency lane on the side of the road, which means the width is not ideally equal. In our case, we are
analyzing a symmetric road, which means that the width values are the same. Figure 5 illustrates the
definitions of left width, right width, and emergency lane.

Figure 5. A road image of left width, right width, and emergency lane.

Elevation values are indicated by the z-values of each point. The regular grid of elevation is the
most important component of the CRG file. Thus, we create a non-regular grid of elevation for each
road segment in order to acquire a regular grid of elevation due to varied distance between points and
sparse scanlines. A bilinear interpolation method is used here to compute the elevation of the regular grid
point from surrounding non-regular grid points. Finally, we make the CRG file according to the format
specification of OpenCRG model. The complete workflow used in this paper is illustrated in Figure 6.

Figure 6. Processing workflow.

2.3. Road Segmentation Process

To find straight lines and circular arcs, among many mature algorithms, the RANSAC algorithm
is widely used because of its reliability and accuracy. Since the trajectory is a point sequence with
continuous-curvature profile, we apply a common RANSAC strategy for straight line and circular arc
detection. The x and y coordinates of trajectory points are used as input. A minimal subset of the trajectory
points is chosen randomly and model parameters are estimated from this subset. The estimated model is
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then checked by the entire dataset and all data points are classified as inliers or outliers by calculating the
residuals to the model. In each iteration, the algorithm performs the same actions until the best model is
determined. The straight lines are first estimated and the circular arcs are detected from the remaining
data points.

To deal with the transitions between road segments, we use the G2 interpolation method in [28] to
estimate the clothoid curve. Given a start point (x0, y0) and an end point (x1, y1) of a transition clothoid
curve, the heading angle and curvature are also calculated. In general, it is not possible to estimate a
transition curve with only one clothoid. Considering two clothoid segments that have to join with G2
continuity, an intermediate point M = (xM, yM) that joins the two arcs with a G2 hypothesis is introduced
here. Assume the two segments are starting respectively from the start and the end point, matching at M.
Given two points (x0, y0) and (x1, y1), two angles ν0 and ν1, and two curvatures κ0 and κ1, let s0 and s1

be the lengths of the two matching arcs, and the curvature change rates are κ′0 and κ′1. We can define two
arcs by

s0 = αL, s1 = (1− α)L, κ′0 =
A(α, L)

α2L2 , κ′1 =
A(α− 1, L)
(1− α)2L2 , (1)

where

A(α, L) = α2L∆κ + α(2∆ν− L(κ0 + κ1)),

∆κ = κ1 − κ0, ∆ν = ν1 − ν0,
(2)

and α, Lare the solution of the smaller nonlinear system:

∆x/L = αX0(A(α, L), αLκ0, ν0)+

(1− α)X0(A(α− 1, L), (α− 1)Lκ1, ν1)
(3)

∆y/L = αY0(A(α, L), αLκ0, ν0)+

(1− α)Y0(A(α− 1, L), (α− 1)Lκ1, ν1),
(4)

where ∆x = x1 − x0 and ∆y = y1 − y0.
Figure 7 shows examples of finding straight lines, circular arcs, and clothoid curves. Figure 7a is an

example of a RANSAC algorithm result. The example of clothoid estimation is shown in Figure 7b.
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(a) Straight line and circular arc detection.

(b) Clothoid curve estimation.

Figure 7. Example of straight line and circular arc detection (top), and clothoid curve estimation (bottom).

2.4. Creating a Non-Regular Grid

After dividing trajectory points into road segments by three categories, to create a non-regular grid
for each road segment, we separate the input point cloud into scanlines using laser irradiation angle, and
we also find the ordering for the points on each scanline. Then, we assign a corresponding grid point in
the non-regular grid for each point in the point cloud by the order of points on each scanline. Figure 8
shows the idea, where pa, pb, and pc are trajectory points, and horizontal and vertical distance values
between measured points are adopted to non-regular grid points. For example, along both length and
width axes, the distances between two grid points are calculated by two adjacent trajectory points and
two neighbor points lying on the same scanline, respectively. In other words, horizontal distance means
the length along the vehicle heading direction, and vertical distance means the width along the scanline.
Based on the input road surface point cloud, we extract elevation by the z-value of each point.
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Figure 8. Approach for finding corresponding non-regular grid points (distance values in the figure are the
unit distances).

2.5. Creating the Regular Grid

According to the format specification of the OpenCRG model [33], in order to create an OpenCRG
file, a regular grid which contains the elevation values of the points is needed. A bilinear interpolation is
applied here to estimate a regular grid from a non-regular grid with a predefined resolution. In Figure 9
we illustrate the bilinear interpolation process.

Figure 9. Bilinear interpolation.
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For each interpolated point p(x, y), we find four surrounding non-regular grid points. The elevation
value h at an interpolated regular grid point is defined as

h =
1

(x2 − x1)(y2 − y1)
((x2 − x)(y2 − y)h11+

(x− x1)(y2 − y)h21 + (x2 − x)(y− y1)h12+

(x− x1)(y− y1)h22),

(5)

where h is the elevation at an interpolated point p(x, y), and h11, h12, h21, and h22 are the elevation values
at four surrounding points.

2.6. Building CRG Model

Since the regular grid of elevation is created, we follow the specification of OpenCRG to make the
file for each road segment. Start position, end position, and consecutive heading angles allow us to build
a CRG model for the road data. Increments on reference line and spacing on the left and right of the
reference line are both fixed by the user-defined resolution.

3. Results

In this paper, the input point cloud was measured by the MMS equipped with the Z+F IMAGER
5010 laser scanning system. The color images were taken by the same MMS during the data collection.
The datasets were collected on a toll road in Yokohama, Japan. Considering the density of the input point
cloud and [34], in order to find the straight line and circular arcs, the minimum and maximum length of a
road segment were set to 20 m and 1000 m, respectively. The number of iterations of RANSAC was set to
2000 in order to ensure a reliable result.

3.1. Comparison of Non-Regular and Regular Grids

The proposed method creates the non-regular grid first in order to find the regular grid. Considering
that the expressway road is in good condition, a regular grid with a longitudinal and lateral resolution of
5 cm × 5 cm was estimated by our method. A magnified view of a sample of the generated non-regular
and regular grids are shown in Figure 10. The black points represent the non-regular grid points in the
road segment. The red points represent the estimated regular grid points. As can be seen, the spacing
between non-regular grid points is uneven, and regular grid points were accordingly estimated from
surrounding points. The elevation values of each grid were estimated from four optimal surrounding
measured points by bilinear interpolation. To better observe the result, we created a mesh for the regular
grid points. Figure 10b is a close-up view of the grid points, showing the relationship of two kinds of grid
points. Consequently, the created regular grid can generate a uniform mesh, which means each grid cell
has the same structure.
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(a) Part of the generated grid points.

(b) A close-up view of the grid points.

Figure 10. Comparison of non-regular and regular grids. Black dots are the non-regular grid points; red
points are the estimated regular grid points.
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3.2. Building the CRG Model

The CRG model was visualized by the OpenCRG MATLAB tools. The results consist of a reference
line XY overview map, a road XYZ map, and a road UVZ map. The CRG road XYZ map represents the
road segment in a curved XY grid with the Z axis as elevation. The road UVZ map shows the road in an
uncurved UV grid with the Z axis as elevation. A 5 cm resolution CRG model was built in this experiment.
Figure 11 provides an example of a clothoid road segment. The length of this clothoid segment was 2.5 m
with 2.94 m width on both sides of the road center line, symmetrically. As we can observe clearly, the
road had a slight height difference. The minimum height of the road was −4.04 m and the maximum
height was −3.99 m. Here, the term “height” refers to the distance above (or below) mean sea level. The
curvature changes were too small to see because the input data was obtained from a highway environment.
Figure 12 illustrates a circular road segment CRG model. The length and width of the sample circular
point cloud data were 173.45 m and 5.88 m, respectively. The height value changes are shown intuitively.
The minimum and maximum height were 4.12 m and 11.08 m, respectively.

In our case, the generated regular elevation grid was denser than the input point cloud. It is difficult
to evaluate the accuracy of the resultant model by numerical analysis, because there is no ground truth
data. Since this method finds optimal measured points for estimation of the elevation of each grid
by bilinear interpolation, the elevation values were estimated with reasonable accuracy. We assumed
that the estimated elevation values by the proposed method were the ground truth data. One way to
evaluate the effectiveness and accuracy is calculate the root-mean-square error (RMSE) to measure the
differences of elevation values between the proposed method and a nearest-neighbor search (NNS) method.
A subsampled grid was created from the non-regular grid by the distance between grid points. In our
experiment, two subsets of points were obtained by assigning the distances of 0.05 m and 0.10 m. For each
regular grid point Pi, we used the obtained elevation Zi as the reference elevation. The elevation Zbi of
the point Pi was calculated by the proposed method, and the closest grid point was used to obtain the
elevation value Znn by the NNS method. Then, we compared the elevation Zbi and Znn with the reference
elevation Zi and calculated the RMSE. The RMSE of residuals is defined by the following formula:

RMSE =

√
∑n

i=1(Zti − Zi)2

n
, (6)

where n represents the grid point number of the generated regular grid and Zti is the elevation determined
by the proposed method and the NNS method. The quantitative evaluation result is shown in Table 1.

Table 1. Root-mean-square error (RMSE) of residuals in the proposed method and nearest-neighbor search
(NNS) method.

Subsampling Spacing (m) RMSE of the Proposed Method (m) RMSE of NNS Method (m)

0.05 0.001062611 0.005046622
0.10 0.001433533 0.01131894

Table 1 shows that the RMSEs of the 0.05 m spacing dataset for our method and the NNS method
were 0.001062611 m and 0.005046622 m, respectively. The RMSE values for the 0.10 m spacing dataset were
0.001433533 m and 0.01131894 m, respectively. Our method achieved better accuracy on both datasets. In
addition, it can be seen that the accuracy of the proposed method could maintain a high precision even
when a sparse dataset was used as input.

The execution times for the two example CRG models were 4.75 s and 38.91 s on a PC with Intel Core
i5-9600k at 3.70 GHz and 16 GB RAM. The preprocessing time cost for extracting the reference line by
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our previously presented method was less than 20 min. For comparison, a 259.55 m pilot site is used in
the experiment in [23]. Their computational time for building the CRG model was 3 h. Since there is no
detailed explanation on the composition of computational time, we assumed that the running time during
the data preprocessing phase was also counted in this (e.g., manually finding the road surface region,
manually finding the reference line, etc.).

Figure 11. Example of a clothoid road segment visualization.

(a) The circular road segment input point cloud. The green points are the reference line points.

Figure 12. Cont.
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(b) Results of circular road segment visualization.

Figure 12. Example of a circular road segment visualization.

4. Conclusions

Self-driving car techniques have advanced very quickly in recent years, and it is foreseeable that
autonomous vehicles will become a common feature in the near future. Since autonomous vehicles
have high demand on high-precision road models with detailed information about the surrounding
environment, we propose an improved approach to create CRG models from mobile mapping data.

Based on our previous work, precise road surface region point cloud and trajectory are used to define
the road surface. Therefore we can set accurate reference line parameters in the process of building the
CRG model. To represent a hig-accuracy road surface model, a two-step approach was used to create the
regular grid of elevation for the CRG model instead of creating a regular grid from the point cloud directly.
The elevation values were more accurately estimated by using bilinear interpolation. The experimental
results show that the proposed method could create a CRG model of the road in a very high resolution,
and the resolution could also be customized. The visualized CRG model contains a microscopic view of
the road surface. It could play an important role in the design and development of vehicles. Moreover, the
proposed method is able to build road model without any manual intervention throughout the process. As
a next step in future development, we may further build the road network database with the support of
OpenCRG and OpenDRIVE, and hence we may establish a connection to the vehicle dynamics simulators.
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