
sensors

Article

Efficient CORDIC Iteration Design of LiDAR Sensors’
Point-Cloud Map Reconstruction Technology †

Yu-Cheng Fan 1,* , Yi-Cheng Liu 1 and Chiao-An Chu 2

1 Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
a0910102082@gmail.com

2 Sunplus Technology Co., Ltd., Hsinchu 30076, Taiwan; alice.chu@sunplus.com
* Correspondence: skystar@ntut.edu.tw; Tel.: +886-930-974-056
† This paper is an extended version of Fan, Y.-C., Liu, Y.-C., Chu, C.-A. Efficient CORDIC Iteration Design of

LiDAR Point Cloud Map Reconstruction Technology, Proceedings of the IEEE International Conference on
Consumer Electronics–Taiwan (IEEE 2019 ICCE-TW) (20–22 May 2019).

Received: 4 November 2019; Accepted: 6 December 2019; Published: 9 December 2019
����������
�������

Abstract: In this paper, we propose an efficient COordinate Rotation DIgital Computer (CORDIC)
iteration circuit design for Light Detection and Ranging (LiDAR) sensors. A novel CORDIC architecture
that achieves the goal of pre-selecting angles and reduces the number of iterations is presented for
LiDAR sensors. The value of the trigonometric functions can be found in seven rotations regardless of
the number of input N digits. The number of iterations are reduced by more than half. The experimental
results show the similarity value to be all 1 and prove that the LiDAR decoded packet results are
exactly the same as the ground truth. The total chip area is 1.93 mm × 1.93 mm and the core area is
1.32 mm × 1.32 mm, separately. The number of logic gates is 129,688. The designed chip only takes
0.012 ms and 0.912 ms to decode a packet and a 3D frame of LiDAR sensors, respectively. The throughput
of the chip is 8.2105 × 108 bits/sec. The average power consumption is 237.34 mW at a maximum
operating frequency of 100 MHz. This design can not only reduce the number of iterations and the
computing time but also reduce the chip area. This paper provides an efficient CORDIC iteration design
and solution for LiDAR sensors to reconstruct the point-cloud map for autonomous vehicles.

Keywords: autonomous car; CORDIC; LiDAR; point cloud

1. Introduction

Technology is constantly changing and evolving to make human life more convenient and
comfortable, and automation will be a major trend in future evolutions of technology. In the area of
automation, a major development trend in the next few years will be autonomous cars [1].

Because autonomous driving is the future trend and Light Detection and Ranging (LiDAR) is
the core of autonomous driving, one of the key themes in autonomous car research in LiDAR [2–5].
Dimitrievski considers that LiDAR is 360 degrees surround sensor while the camera is a single
view frontal view sensor [2]. Therefore, a LiDAR sensor can detect objects that are located on the
sides and back of the ego vehicle [2]. Dimitrievski uses the results of 3D LiDAR measurements in
the data association function, resulting in a notable increase in robustness to person-to-person and
person-to-background occlusions [2]. Moreover, Zhang adopts LiDAR sensors to perform “vehicle
detection using probability hypothesis density filter [3].” Zhang considers that LiDAR is robust
against light intensities and widely used in vehicle detection [3]. LiDAR provides a large number
of measurements and tracks the potential objects without any association information or cluster
process [3]. In addition, Shahian Jahromi explains that LiDAR measures the surrounding environment
containing the position (x, y, z coordinates) and intensity information of the objects [4]. LiDAR adds

Sensors 2019, 19, 5412; doi:10.3390/s19245412 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9599-6415
http://www.mdpi.com/1424-8220/19/24/5412?type=check_update&version=1
http://dx.doi.org/10.3390/s19245412
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5412 2 of 28

angular resolution (horizontal azimuth and vertical) for better measurement accuracy compared to the
camera and radar sensors by measuring range [4]. Therefore, LiDAR is a core sensor that is used for
autonomous vehicles [4]. Furthermore, LiDAR is a very powerful sensor with wide scanning range that
can capture the depth value, distance and contour information of objects precisely [5]. At the same time,
LiDAR is not easily affected by environmental interference and provides fast and accurate measured
results [5]. For these reasons, many developers use this for autonomous vehicles. LiDAR-scanned
packet information can provide distance, angle, and reflectivity information, and such information can
be reassembled to construct a point-cloud map [2–5]. In decoding the LiDAR sensor packet, the 3D
coordinates must be calculated and the COordinate Rotation DIgital Computer (CORDIC) algorithm
must be used to solve the sine (SIN) and cosine (COS) values. However, the traditional CORDIC
algorithm requires a large number of iterations and entails a long delay time. If accuracy of N bits is
required, N iterations must be performed. Such an algorithm is not suitable for autonomous-driving
circuits, which require high-speed processing. However, if we use the look-up table (LUT) scheme [6],
the circuit area will become larger. Therefore, the number of CORDIC iterations and the area of the
CORDIC circuit need to be reduced for LiDAR sensors. To solve the above problems, this paper
proposes an efficient CORDIC iteration circuit design for LiDAR sensors to reconstruct a point-cloud
map application to autonomous driving.

This paper is composed as follows. Section 2 describes the related work on LiDAR sensors
and CORDIC circuits. Section 3 presents the LiDAR sensing system, LiDAR packet decoding, 3D
point-cloud map reconstruction and the CORDIC iterative reduction algorithm. Then the mobile
LiDAR sensing circuit and chip design are addressed in Section 4. In Section 5, experimental results
are presented, and conclusions are stated in Section 6.

2. Related Work

Three-dimensional LiDAR [7–17] sensors mainly use pulsed laser light emitted by a laser emitter
to detect the environment or measure an object. The working principle is that laser light is emitted by
LiDAR and hits the object. The resulting scattering and reflection phenomena are due to the reflection
of light, and LiDAR sensors receive the signal [9]. The distance information is obtained from the
known speed of light. Through the reflection phenomenon of light, the smoothness and color of the
surface of the object hit by the beam can be known. In general, objects have a reflectivity of 0 and 1 for
light, but the reflectivity can be subdivided into 256 levels (0–255) in a LiDAR packet. In LiDAR, the
reflectance can be divided into diffuse reflection and total reflection.

Diffuse reflection is defined as the phenomenon wherein light is reflected out of order when light
hits the surface of a rough object. When the light hits a rough black surface, the reflectance is 0 because
a black surface absorbs light. When the light hits a rough white surface, the reflectance is 1 to 100.

Total reflection is defined as the light being reflected directly back when the light hits a smooth
surface, such as a mirror. When the light hits a reflector without any coverage, the reflectivity is 255.
When the light hits a translucent covered reflector, the reflectivity is 101 to 254.

In this paper, the data receiving method of the LiDAR sensor is divided into three modes. The first
is the Strongest Return Mode, which is the information returned when the beam hits a near object,
which is equivalent to receiving the strongest beam of infrared light. The second type is Last Return
Mode; when the beam hits a far object, the information is returned. The third type is the Dual Return
Mode, which means that the information includes both last return and strongest return information.

After LiDAR detects the environmental information, a circuit needs to decode the collected
LiDAR packet data and then decode the packet into 3D coordinates using the CORDIC algorithm [18].
The relevant literature on the CORDIC algorithm and circuit design and the explain the problems that
exist in the current relevant research are described below.

Traditional CORDIC algorithms use basic addition, subtraction and shifting to apply trigonometric
functions and other basic arithmetic, such as multiplication and division [1].

Sensors 2019, 19, 5412 3 of 28

The CORDIC algorithm was first proposed by J.E. Volder in 1959 mainly for trigonometric
functions [19]. In 1971, J.S. Walther applied the algorithm to hyperbolic and exponential functions, to
multiplication and logarithms, and other functions. In 1974, A.M. Despain used the CORDIC iterative
principle to perform the Fourier transform [20].

The principle of a CORDIC algorithm [21] is to use the rotation of a two-dimensional coordinate
plane to complete many complicated operations. The hybrid adaptive CORDIC algorithm (HA
CORDIC) [21–24] is mainly used to reduce the number of iterations of traditional CORDIC rotation [1].
We assume that any point of the two-dimensional plane coordinates is the origin (X0, Y0) rotated to
(X, Y), and the angle of rotation is θ. We can write the rotated matrix. We decompose the angle of
rotation θ into a number of small associated angles and set these small angles as α angles. If the sum of
all the α angles is equal to the original rotation angle θ, then in the rotated matrix the θ angle can be
replaced with the α angle. [1]

When the coordinate rotation angle is equal to some specific rotation angle, then to realize the
simple displacement operation in the digital circuit design, let tanαi = σi2−i and K =

∏n−1
i=0 cosαi. After

the substitution, Formula (1) can be obtained.[
X′

Y′

]
= K
[

1 σi2−i

σi2−i 1

][
X0

Y0

]
(1)

Zn= θ

n−1∑
i=0

σi tan−1 2−i (2)

Finally, the matrix of Equation (1) is expanded, and from Equation (2), then Equations (3)–(5) can
be obtained.

Zi+1= Zi − σi tan−1 2−i (3)

Xi+1= Xi − σi Yi 2−i (4)

Yi+1= Yi − σi Xi 2−i (5)

In the above formula, σ is the direction of the selected rotation angle, clockwise rotation is a positive
sign, and counterclockwise rotation is a negative sign. Z is the sum of the angular rotation operations.
The final calculation results need to make the angle of the sum after Z rotation approach zero.

The number of iterations is determined by the number of bits. For example, if the input angle Z is
16 bits, it needs to be rotated 16 times. X represents the result of the COS operation and Y represents
the result of the SIN operation. Assuming the input angle is 30 degrees, Z will approach zero after the
rotation. X will approach 0.866 and Y will approach 0.5.

After a series of rotations, the rotated vector will be different from the original vector. To make
the rotated vector equal to the original vector, it is necessary to multiply the vector factor K of the
corrected length.

Let tanαi= σi2−i and K =
∏n−1

i=0 cosαi. With the Pythagorean theorem, we can calculate
cos = 1√

1+2−2i
and bring it into the K related formula. Finally, after expanding the infinite series of K,

the approximate constant value is 1.64676, as shown in Equation (6).

K =
∏n−1

i=0

 1√
1 + 2−2i

 = 1.64676 (6)

For the calculation of CORDIC, many iterations are required. In the literature, many papers
propose ways to reduce the number of iterations.

Sensors 2019, 19, 5412 4 of 28

HA CORDIC [22–24] is mainly used to reduce the number of iterations of a traditional coordinate
rotation digital computer. The principle is to use the traditional coordinate rotation system to fix the
angle between the two angles. The angle θ is a fixed angle, and c(0) is 45 degrees plus 26.565051177
degrees. After addition, the value is divided by 2 to 35.782525588 degrees, and the values of c(0) to
c(15) are obtained in this way. Z(i) represents the input rotation angle, and N represents the value of
inputting a few bits, indicating that the maximum number of rotations is only N. The two variables are
set to i and j, respectively, and the initial value is set to zero. When the first input angle Z(0) is greater
than c(15) and j is less than N, the condition is established and the loop is established. Finally, i will be
equal to i plus 1. If the condition is not established, it will not jump to the loop. j will be equal to j
plus 1. By changing the two variables i and j into Formulas (7)–(9), the pre-selected iteration angle can
be achieved.

Zi+1= Zi − diθj (7)

Xi+1= Xi − di Yi 2−j (8)

Yi+1= Yi − di Xi 2−j (9)

The HA CORDIC algorithm uses the angle between the two intermediate values of the fixed
angles to compare the comparison values, and the input angle is compared to the intermediate values,
thus achieving the function of pre-rotation angle.

In [25], Qi and Cabe proposed a CORDIC processor with three computation modes. The CORDIC
core uses 16-bit fixed point numbers. Qi and Cabe performed one iteration per bit of the input
data. In this circuit, 16 vector rotations are needed and 16 stages are constructed in the CORDIC
pipeline circuit. Wu and Shiue [26] proposed a field programmable gate array (FPGA) prototype of a
CORDIC operation. The circular and linear rotation of the unified CORDIC are proposed to fulfill the
derotator [26]. Ray and Dhar presented a CORDIC-based unified Very Large Scale Integration (VLSI)
architecture that uses a parallel pipeline architecture with latency equal to twice the CORDIC length
plus three extra cycles [27]. It includes a linear CORDIC and circular CORDIC with first in and first
out register (FIFO) [27].

Meng and Wang proposed a rotary encoder using the CORDIC algorithm to calculate the arctangent
with an iterative technique to compute hyperbolic and trigonometric functions. The modified CORDIC
algorithm reduces the iteration time. However, the changes of the error margin are similar [28].

Xia and Yu designed a CORDIC algorithm to compute trigonometric functions [29]. This method
conserves resources and reduces the power dissipation in FPGA [29]. The design makes full use of
the CORDIC algorithm in rotation mode to obtain the sin θ and cos θ values [29]. A 16-level pipeline
structure CORDIC is realized in FPGA, which uses 16 layers of modules [29]. The inner CORDIC
module is serially cascaded [29].

However, the traditional CORDIC algorithm is tedious and time consuming. The area will become
larger if a look-up table is used. The schemes in the literature are not suitable for small-sized or fast
circuit designs.

3. Proposed Method

The mobile LiDAR sensor circuit design is mainly used in autonomous vehicles and environmental
sensing. Due to the trend of autonomous vehicles development in the future, the main goal of this
paper is to design a high-performance mobile LiDAR sensing circuit to realize LiDAR packet decoding
and improve the traditional CORDIC architecture to simplify the operation of 3D LiDAR point-cloud
map reconstruction. In this section, we propose an algorithm that simplifies the number of CORDIC
rotation iterations. We explain in turn how the packet is decoded and how the features of CORDIC are
employed to reduce the iterative operation.

Sensors 2019, 19, 5412 5 of 28

3.1. Light Detection and Ranging (LiDAR) Sensing System Overview

We use LiDAR to scan environmental information in a 3D space. After the LiDAR scan, the packet
is taken out, and the information such as distance, angle and reflectivity can be obtained after the
packet is decoded. We use the packet information to construct a three-dimensional point-cloud map.

3.2. Three-Dimensional (3D) Mobile LiDAR Packet Decoding

In the process of converting the packet information into a three-dimensional point-cloud image
and improving the rotation angle of the algorithm, we first need to decode the packet information
scanned by LiDAR. From the decoding step, we obtain the angle, distance, reflectivity and other
information of the three-dimensional space in the environment. According to the angel information,
we calculate the values of SIN and COS through the proposed CORDIC iterative reduction algorithm.
The X, Y, and Z values are calculated by using the three-dimensional space construction formula and
then converted to construct a three-dimensional point-cloud map.

In the case of a packet, the first data block will be Last Return data, and the second data block will
be Strongest Return data. Selecting the Dual Return Mode will return two reflectance information at
the same horizontal angle for every two blocks. Therefore, for the same horizontal angle, different
data-receiving modes are selected, and the amounts of data received will be different. Selecting
Dual Return Mode will double the amount of information returned by the Strongest Return and Last
Return modes.

Table 1 shows the packet rate for a single packet data received by the Strongest Return Mode or
Last Return Mode. When the single-return method is selected, the data volume receives 754 packets
and 8 Megabits per second. If we the select Strongest Return and Last Return Modes at the same time,
twice the amount of data will be received.

Table 1. Mobile Light Detection and Ranging (LiDAR) packet rate.

Mode Packets/Sec Mbits/Sec

Strongest Return Mode 754 8
Last Return Mode 754 8
Dual Return Mode 1508 16

LiDAR’s data packet uses the user datagram protocol (UDP) to transmit data. A packet will have
a total of 1248 bytes and contain 42 bytes of header files. The 12 Data Blocks have a total of 1200 bytes
and record information such as angle, distance, and reflectivity. An additional 4 bytes of timestamp
record Global Positioning System (GPS) information. Finally, the 2 bytes of factory data are used to
record which mode is used and the LiDAR model. A Data Block can be divided into 2 bytes of Flag, 2
bytes of horizontal angle information, and two sets of 0 to 15 channel data. One channel data is 3 bytes,
which contains the information of the first 2 bytes of distance, and the reflectivity information of the
last 1 byte, as shown in Figure 1.

Sensors 2019, 19, 5412 6 of 28Sensors 2019, 19, x FOR PEER REVIEW 6 of 28

Figure 1. Mobile LiDAR data packet.

The LiDAR horizontal angle information is contained in the Data Block, and each Data Block
contains two different horizontal angles. The first set of horizontal angles can be derived from the
packet information before the first Channel 0 Data. The second set of horizontal angles, also known
as drift angles, is taken before the second Channel 0 Data. To calculate the second set of drift angles,
we use the first Data Block plus the horizontal angle of the second Data Block and divide by two, as
shown in Equation (10).

Angular Drift = Data Block 0 + Data Block 1
2

 (10)

The vertical angle of the LiDAR is fixed. When the light is rotated, it will continuously rotate the
horizontal angle by 360 degrees at 10 times per second and emit 16 rays at the same time, as shown
in Figure 2. The vertical angle corresponding mode starts from Channel 0 and goes down to Channel
15, corresponding to the LiDAR vertical angles in Table 2. The laser beam from the zeroth pass is −15°,
the first laser beam is +1°, the fifteenth laser beam is +15°, and each vertical laser beam is separated
by 2 degrees.

Figure 2. Mobile LiDAR horizontal and vertical angle.

Table 2. LiDAR vertical angle.

Laser ID (Channel) Vertical Angle Laser ID (Channel) Vertical Angle
0 −15° 8 −7°
1 +1° 9 +9°
2 −13° 10 −5°
3 +3° 11 +11°
4 −11° 12 −3°
5 +5° 13 +13°
6 −9° 14 −1°
7 +7° 15 +15°

Figure 1. Mobile LiDAR data packet.

The LiDAR horizontal angle information is contained in the Data Block, and each Data Block
contains two different horizontal angles. The first set of horizontal angles can be derived from the
packet information before the first Channel 0 Data. The second set of horizontal angles, also known
as drift angles, is taken before the second Channel 0 Data. To calculate the second set of drift angles,
we use the first Data Block plus the horizontal angle of the second Data Block and divide by two, as
shown in Equation (10).

Angular Drift =
Data Block 0 + Data Block 1

2
(10)

The vertical angle of the LiDAR is fixed. When the light is rotated, it will continuously rotate the
horizontal angle by 360 degrees at 10 times per second and emit 16 rays at the same time, as shown in
Figure 2. The vertical angle corresponding mode starts from Channel 0 and goes down to Channel 15,
corresponding to the LiDAR vertical angles in Table 2. The laser beam from the zeroth pass is −15◦, the
first laser beam is +1◦, the fifteenth laser beam is +15◦, and each vertical laser beam is separated by
2 degrees.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 28

Figure 1. Mobile LiDAR data packet.

The LiDAR horizontal angle information is contained in the Data Block, and each Data Block
contains two different horizontal angles. The first set of horizontal angles can be derived from the
packet information before the first Channel 0 Data. The second set of horizontal angles, also known
as drift angles, is taken before the second Channel 0 Data. To calculate the second set of drift angles,
we use the first Data Block plus the horizontal angle of the second Data Block and divide by two, as
shown in Equation (10).

Angular Drift = Data Block 0 + Data Block 1
2

 (10)

The vertical angle of the LiDAR is fixed. When the light is rotated, it will continuously rotate the
horizontal angle by 360 degrees at 10 times per second and emit 16 rays at the same time, as shown
in Figure 2. The vertical angle corresponding mode starts from Channel 0 and goes down to Channel
15, corresponding to the LiDAR vertical angles in Table 2. The laser beam from the zeroth pass is −15°,
the first laser beam is +1°, the fifteenth laser beam is +15°, and each vertical laser beam is separated
by 2 degrees.

Figure 2. Mobile LiDAR horizontal and vertical angle.

Table 2. LiDAR vertical angle.

Laser ID (Channel) Vertical Angle Laser ID (Channel) Vertical Angle
0 −15° 8 −7°
1 +1° 9 +9°
2 −13° 10 −5°
3 +3° 11 +11°
4 −11° 12 −3°
5 +5° 13 +13°
6 −9° 14 −1°
7 +7° 15 +15°

Figure 2. Mobile LiDAR horizontal and vertical angle.

Table 2. LiDAR vertical angle.

Laser ID (Channel) Vertical Angle Laser ID (Channel) Vertical Angle

0 −15◦ 8 −7◦

1 +1◦ 9 +9◦

2 −13◦ 10 −5◦

3 +3◦ 11 +11◦

4 −11◦ 12 −3◦

5 +5◦ 13 +13◦

6 −9◦ 14 −1◦

7 +7◦ 15 +15◦

The decoding process is shown in Figure 3. The LiDAR sensor circuit sequentially solves the
information such as the header, flag, horizontal angle, distance, and reflectivity. The data input is a

Sensors 2019, 19, 5412 7 of 28

continuous 2 bytes of information. After the correctness of the header at the beginning of the packet
is checked, the packet decoding will begin. First, the circuit confirms that each block’s flag is FFEE
information of 4 bytes in succession. After confirmation that the information is correct, the horizontal
angles of 4 consecutive bytes are calculated, followed by calculation of the distance information,
reflectivity information, and 3D point XYZ, and then confirmation of whether a Data Block has two sets
of 0 to 15 channels. The process will not continue to calculate the Channel information of the current
Data Block. After a complete calculation of a set of Data Blocks, the process will confirm whether 12
sets of Data Blocks have been calculated and finally check the GPS and LiDAR model information.Sensors 2019, 19, x FOR PEER REVIEW 7 of 28

Figure 3. LiDAR decoding flow chart.

The decoding process is shown in Figure 3. The LiDAR sensor circuit sequentially solves the
information such as the header, flag, horizontal angle, distance, and reflectivity. The data input is a
continuous 2 bytes of information. After the correctness of the header at the beginning of the packet
is checked, the packet decoding will begin. First, the circuit confirms that each block’s flag is FFEE
information of 4 bytes in succession. After confirmation that the information is correct, the horizontal
angles of 4 consecutive bytes are calculated, followed by calculation of the distance information,
reflectivity information, and 3D point XYZ, and then confirmation of whether a Data Block has two
sets of 0 to 15 channels. The process will not continue to calculate the Channel information of the
current Data Block. After a complete calculation of a set of Data Blocks, the process will confirm
whether 12 sets of Data Blocks have been calculated and finally check the GPS and LiDAR model
information.

3.3. Three-Dimensional Point-Cloud Map Reconstruction

The 3D point-cloud map consists of a number of points of the 3D vector coordinate Data Point.
Therefore, we can obtain the R-distance and the α-horizontal angle after decoding the LiDAR packet,
and find the corresponding Channel Data to know directly that ω is the vertical angle. With this
information, the XYZ coordinates are calculated and the location of the Data Point is known, and the
point-cloud map information is reconstructed according to the Data Point of each point.

LiDAR is an adjustable design with 5–20 turns per second. This paper uses 10 rotations per
second and obtaining a complete frame requires 75 packets of information, each having a horizontal
angle of 4.8 degrees. After all the packet information is decoded, a complete picture can be obtained.
Figure 4 shows the 3D point-cloud image information obtained after 75 packets are decoded.

Figure 3. LiDAR decoding flow chart.

3.3. Three-Dimensional Point-Cloud Map Reconstruction

The 3D point-cloud map consists of a number of points of the 3D vector coordinate Data Point.
Therefore, we can obtain the R-distance and the α-horizontal angle after decoding the LiDAR packet,
and find the corresponding Channel Data to know directly that ω is the vertical angle. With this
information, the XYZ coordinates are calculated and the location of the Data Point is known, and the
point-cloud map information is reconstructed according to the Data Point of each point.

LiDAR is an adjustable design with 5–20 turns per second. This paper uses 10 rotations per second
and obtaining a complete frame requires 75 packets of information, each having a horizontal angle of
4.8 degrees. After all the packet information is decoded, a complete picture can be obtained. Figure 4
shows the 3D point-cloud image information obtained after 75 packets are decoded.

Sensors 2019, 19, 5412 8 of 28

Sensors 2019, 19, x FOR PEER REVIEW 8 of 28

Figure 4. Three-dimensional point-cloud map.

3.4. COordinate Rotation DIgital Computer (CORDIC) Iterative Reduction Algorithm

The traditional CORDIC algorithm is tedious and time consuming. However, if the look-up table
method is used, the area will become larger. A larger area is less suitable for circuits that require a
small size or high speed. In this paper, a new method of angle selection is proposed. We use the
rotation input angle in the formula to rotate to the end, which must be close to zero to pre-select the
desired iteration angle to reduce the number of iterations.

From the last formula derived from the traditional algorithm, it can be known that X and Y
represent the values of COS and SIN, respectively. The angle to be searched for is the input angle Z,
and each rotation will use a fixed angle of θ. For example, the first input angle will increase or
decrease the angle by 45 degrees. The second time will increase or decrease the angle by 26 degrees.
To select the desired angle, we use the angle Z that we are looking for, and the result of the final sum
needs to approach zero, as shown in Figure 5. Table 3 shows a list of traditional CORDIC algorithm
rules. The traditional CORDIC algorithm has a number of rotations i, and the degree of addition and
subtraction angles is θ. X and Y are closer to the values of the angle sought after each operation. That
is to say, the rotation angle selection of Z is the key to the number of iterations. Therefore, the number
of iterations i can be changed by changing the addition and subtraction angle calculation of the angle
Z at the beginning.

Figure 5. The rotation direction of the traditional COordinate Rotation DIgital Computer (CORDIC)
algorithm.

Table 3. The rotation angle of the traditional CORDIC algorithm.

i θ i θ
0 45.000000000 8 0.223810500
1 26.565051177 9 0.111905677
2 14.036243468 10 0.055952892
3 7.125016349 11 0.027976453
4 3.576334375 12 0.013988227
5 1.789910608 13 0.006994114
6 0.895173710 14 0.003497057
7 0.447614171 15 0.001748528

Figure 4. Three-dimensional point-cloud map.

3.4. COordinate Rotation DIgital Computer (CORDIC) Iterative Reduction Algorithm

The traditional CORDIC algorithm is tedious and time consuming. However, if the look-up table
method is used, the area will become larger. A larger area is less suitable for circuits that require a small
size or high speed. In this paper, a new method of angle selection is proposed. We use the rotation
input angle in the formula to rotate to the end, which must be close to zero to pre-select the desired
iteration angle to reduce the number of iterations.

From the last formula derived from the traditional algorithm, it can be known that X and Y
represent the values of COS and SIN, respectively. The angle to be searched for is the input angle
Z, and each rotation will use a fixed angle of θ. For example, the first input angle will increase or
decrease the angle by 45 degrees. The second time will increase or decrease the angle by 26 degrees.
To select the desired angle, we use the angle Z that we are looking for, and the result of the final sum
needs to approach zero, as shown in Figure 5. Table 3 shows a list of traditional CORDIC algorithm
rules. The traditional CORDIC algorithm has a number of rotations i, and the degree of addition and
subtraction angles is θ. X and Y are closer to the values of the angle sought after each operation. That is
to say, the rotation angle selection of Z is the key to the number of iterations. Therefore, the number of
iterations i can be changed by changing the addition and subtraction angle calculation of the angle Z at
the beginning.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 28

Figure 4. Three-dimensional point-cloud map.

3.4. COordinate Rotation DIgital Computer (CORDIC) Iterative Reduction Algorithm

The traditional CORDIC algorithm is tedious and time consuming. However, if the look-up table
method is used, the area will become larger. A larger area is less suitable for circuits that require a
small size or high speed. In this paper, a new method of angle selection is proposed. We use the
rotation input angle in the formula to rotate to the end, which must be close to zero to pre-select the
desired iteration angle to reduce the number of iterations.

From the last formula derived from the traditional algorithm, it can be known that X and Y
represent the values of COS and SIN, respectively. The angle to be searched for is the input angle Z,
and each rotation will use a fixed angle of θ. For example, the first input angle will increase or
decrease the angle by 45 degrees. The second time will increase or decrease the angle by 26 degrees.
To select the desired angle, we use the angle Z that we are looking for, and the result of the final sum
needs to approach zero, as shown in Figure 5. Table 3 shows a list of traditional CORDIC algorithm
rules. The traditional CORDIC algorithm has a number of rotations i, and the degree of addition and
subtraction angles is θ. X and Y are closer to the values of the angle sought after each operation. That
is to say, the rotation angle selection of Z is the key to the number of iterations. Therefore, the number
of iterations i can be changed by changing the addition and subtraction angle calculation of the angle
Z at the beginning.

Figure 5. The rotation direction of the traditional COordinate Rotation DIgital Computer (CORDIC)
algorithm.

Table 3. The rotation angle of the traditional CORDIC algorithm.

i θ i θ
0 45.000000000 8 0.223810500
1 26.565051177 9 0.111905677
2 14.036243468 10 0.055952892
3 7.125016349 11 0.027976453
4 3.576334375 12 0.013988227
5 1.789910608 13 0.006994114
6 0.895173710 14 0.003497057
7 0.447614171 15 0.001748528

Figure 5. The rotation direction of the traditional COordinate Rotation DIgital Computer
(CORDIC) algorithm.

Table 3. The rotation angle of the traditional CORDIC algorithm.

i θ i θ

0 45.000000000 8 0.223810500
1 26.565051177 9 0.111905677
2 14.036243468 10 0.055952892
3 7.125016349 11 0.027976453
4 3.576334375 12 0.013988227
5 1.789910608 13 0.006994114
6 0.895173710 14 0.003497057
7 0.447614171 15 0.001748528

It can be known from the traditional algorithm formula that the number of iterations can be
changed by changing the angle selection mode of Z. This paper uses this feature to compare the input

Sensors 2019, 19, 5412 9 of 28

angle Z to the highest bit of the fixed input θ angle. When the highest bit of the Z angle is greater than
or equal to the highest bit, the Z angle will subtract the θ angle. If this condition is not true, it will
continue to compare the highest bit of the θ angle of the next fixed input. It will first compare the
maximum specific angle of the input and the highest bit of 4, and then compare the highest level of the
input angle of the next order, and compare them sequentially (Table 3). When the angle is input and
compared, the input angle and the fixed angle are added and subtracted. If the remaining residual
value is less than the minimum angle of the fixed θ angle after the calculation, the loop is jumped out.
If the final residual value is 0.001, then the loop is jumped out of. If the condition is not met, the angle
comparison will be restarted until the residual value is less than 0.001.

Taking the actual input angle as an example, suppose that there is an input angle Z of 30 degrees,
and under this condition, the result of Z must approach zero. According to the flow chart, first, the
highest bit value of the input angle is 3, and the highest bit value of the fixed θ angle is 4. Because the
highest bit value 3 of the input angle is less than the highest bit value of the fixed comparison angle 4,
the condition is not true. Therefore, the highest value of the input angle will be compared to the highest
value of the next input fixed θ angle value 2. After the angle comparison condition is true, the input
angle of 30 degrees will be reduced by the fixed angle of 26.565051177 degrees, and the remainder is
3.343948823 degrees. At this time, the input angle value 3 will be re-compared with the fixed angles of
45 degrees, 26 degrees, and 14 degrees. Since these values are all tens of decimals, the condition will
not be true. Then we continue to compare the value 7, because the residual value 3 of the input angle is
smaller than the value 7 of the fixed comparison angle, the condition is not true. Then we continue to
compare the fixed angle value 3; the input angle residual value 3 is equal to the fixed input angle 3, so
the angle will do the subtraction action. After the subtraction, the residual value is negative 0.1, so we
continue to find a fixed input angle equal to or less than 0.1. Finding a fixed input angle of 0.111905677
will add up. The main principle of the traditional rotation angle is that the input angle must approach
zero. Therefore, the last residual value is a negative value, the next search will be added, and the input
angle will gradually approach the condition. When the final calculation is performed, whether the
positive or negative residual value is not less than 0.001, the angle will continue to be compared until
the residual value is less than 0.001 to jump out of the loop, as shown in Figure 6. In this way, the input
angle Z is 30 degrees, and only five iterations are needed to find the required value.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 28

It can be known from the traditional algorithm formula that the number of iterations can be
changed by changing the angle selection mode of Z. This paper uses this feature to compare the input
angle Z to the highest bit of the fixed input θ angle. When the highest bit of the Z angle is greater
than or equal to the highest bit, the Z angle will subtract the θ angle. If this condition is not true, it
will continue to compare the highest bit of the θ angle of the next fixed input. It will first compare
the maximum specific angle of the input and the highest bit of 4, and then compare the highest level
of the input angle of the next order, and compare them sequentially (Table 3). When the angle is input
and compared, the input angle and the fixed angle are added and subtracted. If the remaining
residual value is less than the minimum angle of the fixed θ angle after the calculation, the loop is
jumped out. If the final residual value is 0.001, then the loop is jumped out of. If the condition is not
met, the angle comparison will be restarted until the residual value is less than 0.001.

Taking the actual input angle as an example, suppose that there is an input angle Z of 30 degrees,
and under this condition, the result of Z must approach zero. According to the flow chart, first, the
highest bit value of the input angle is 3, and the highest bit value of the fixed θ angle is 4. Because the
highest bit value 3 of the input angle is less than the highest bit value of the fixed comparison angle
4, the condition is not true. Therefore, the highest value of the input angle will be compared to the
highest value of the next input fixed θ angle value 2. After the angle comparison condition is true,
the input angle of 30 degrees will be reduced by the fixed angle of 26.565051177 degrees, and the
remainder is 3.343948823 degrees. At this time, the input angle value 3 will be re-compared with the
fixed angles of 45 degrees, 26 degrees, and 14 degrees. Since these values are all tens of decimals, the
condition will not be true. Then we continue to compare the value 7, because the residual value 3 of
the input angle is smaller than the value 7 of the fixed comparison angle, the condition is not true.
Then we continue to compare the fixed angle value 3; the input angle residual value 3 is equal to the
fixed input angle 3, so the angle will do the subtraction action. After the subtraction, the residual
value is negative 0.1, so we continue to find a fixed input angle equal to or less than 0.1. Finding a
fixed input angle of 0.111905677 will add up. The main principle of the traditional rotation angle is
that the input angle must approach zero. Therefore, the last residual value is a negative value, the
next search will be added, and the input angle will gradually approach the condition. When the final
calculation is performed, whether the positive or negative residual value is not less than 0.001, the
angle will continue to be compared until the residual value is less than 0.001 to jump out of the loop,
as shown in Figure 6. In this way, the input angle Z is 30 degrees, and only five iterations are needed
to find the required value.

Figure 6. Example of angle selection.

Figure 6. Example of angle selection.

The rotated vector will be different from the original vector. To make the vector length the same,
the vector needs to be multiplied by the vector length correction factor. However, if the pre-angle
selection method is used, the original value needs to be set to X = 1, Y = 0, so the vector correction
factor must wait for the X and Y rotations before the K total product is multiplied after each iteration.
In the traditional CORDIC algorithm, it can be known that for some specific angles, a simple shift

Sensors 2019, 19, 5412 10 of 28

instruction can be used, so let tanαi = 2−i and K =
∏n−1

i=0 cosαi. Through the Pythagorean theorem in
the trigonometric function, we get cosαi =

1√
1+2−2i

. The total product of K has an iteration coefficient

i for each iteration. Substituting i into Equation (11), we can obtain the vector length correction factor.
Finally, the total product of K can be calculated as the sum of the number of iterations corrected each
time. Taking the input angle of 30 degrees as an example, the selection angle selects the iteration angles
of i = 1, 4, 9, 11, and 15, respectively, so the correction length factor K is K1 × K4 × K9 × K11 × K15.
The K value of each iteration is shown in Table 4.

K =
∏n−1

i=0

 1√
1 + 2−2i

 (11)

Table 4. Correction factor for different iterations.

i K i K

0 0.707106781 8 0.999992371
1 0.894427191 9 0.999998093
2 0.970142500 10 0.999999523
3 0.992277877 11 0.999999881
4 0.998052578 12 0.999999970
5 0.999512076 13 0.999999993
6 0.999877952 14 0.999999998
7 0.999969484 15 0.999999999

4. Mobile LiDAR Sensing Circuit and Chip Design

In this section, we present the design of the LiDAR sensing circuit and chip. We will describe
in detail the function of each block, including LiDAR packet decoding, the CORDIC calculation
architecture, and the chip design. At the same time, the algorithm for reducing the CORDIC iteration
is used in the CORDIC block to calculate the values of COS and SIN, and finally the XYZ coordinate
value of the 3D point-cloud image is calculated.

4.1. System Architecture

The mobile LiDAR sensing architecture can be divided into four parts, namely the Main Controller,
CORDIC Vertical Angle Calculator, CORDIC Horizontal Angle Calculator, and Coordinate Conversion
Calculation (Figure 7).

The main controller is primarily used to classify and decode input data. The Main Controller
receives 8-bit LiDAR input signals, and outputs 2-bit packets, 4-bit blocks, 8-bit reflection information,
and 16-bit distance information to the coordinate conversion calculator. The vertical angle and
horizontal angle calculators are trigonometric operations.

The CORDIC algorithm is used to approximate the values to be obtained, the horizontal and
vertical angles of SIN and COS are calculated, and the final output 17 bits is transmitted to the
coordinate conversion calculator.

The final module coordinate conversion calculator is to receive the 16-bit distance information, the
17-bit SIN and COS values of the vertical angle, and the 17-bit SIN and COS values of the horizontal
angle. The final XYZ coordinates are obtained by the formula operation.

Sensors 2019, 19, 5412 11 of 28
Sensors 2019, 19, x FOR PEER REVIEW 11 of 28

Figure 7. System architecture.

4.2. Main Controller

The Main Controller begins counting the data when it receives the LiDAR data. First, the header
file starts counting from 0 to 41. When the count reaches 41, the flag Flag 1 state is started. When
cnt_b starts counting 1, it will notify Flag 1 to move to the state of Flag 2. When the cnt_b count is 2,
Flag 2 will be notified to move to the horizontal angle 1 (Az1). When the horizontal angle receives a
cnt_b count of 3, it will move to the horizontal angle 2 (Az2). The horizontal angle 2 will start to
calculate the horizontal angle information. The horizontal angle output is an 8-bit Az1 signal
combined with an 8-bit Az2 signal equal to a 16-bit horizontal angle, as shown in Equation (12).

Azimuth = {Az1,Az2} (12)

When the horizontal angle 2 (Az2) is calculated and the next step of cnt_b is received, it is moved
to the distance 1 (Dist1) for calculation. When cnt_b changes again, cnt_b moves to distance 2 (Dist2)
for calculation. After the calculation, the 8-bit distance 1 (Dist1) information is combined with the 8-
bit distance 2 (Dist2) information and multiplied by 2 to be the 16-bit distance information, as shown
in Equation (13).

Distance ={Dist1,Dist2} × 2 (13)

When the operation of distance information is completed, the cnt_b changes again to the Reflect
state for calculation. If the cnt_b count value is less than 100, the main controller returns to the
distance 1 (Dist1) state. If the cnt_b count value is 100 and the Iblock value is less than 11, then it
returns to the flag 1 (Flag1). If the cnt_b count value is 100 and the Iblock value is equal to 11, then it
returns to the LiDAR receiving information state until all information is received. Therefore, the main
controller needs about 1716 cycles to decode one packet, as shown in Figure 8.

Figure 7. System architecture.

4.2. Main Controller

The Main Controller begins counting the data when it receives the LiDAR data. First, the header
file starts counting from 0 to 41. When the count reaches 41, the flag Flag 1 state is started. When cnt_b
starts counting 1, it will notify Flag 1 to move to the state of Flag 2. When the cnt_b count is 2, Flag 2
will be notified to move to the horizontal angle 1 (Az1). When the horizontal angle receives a cnt_b
count of 3, it will move to the horizontal angle 2 (Az2). The horizontal angle 2 will start to calculate the
horizontal angle information. The horizontal angle output is an 8-bit Az1 signal combined with an
8-bit Az2 signal equal to a 16-bit horizontal angle, as shown in Equation (12).

Azimuth = {Az1,Az2} (12)

When the horizontal angle 2 (Az2) is calculated and the next step of cnt_b is received, it is moved
to the distance 1 (Dist1) for calculation. When cnt_b changes again, cnt_b moves to distance 2 (Dist2)
for calculation. After the calculation, the 8-bit distance 1 (Dist1) information is combined with the 8-bit
distance 2 (Dist2) information and multiplied by 2 to be the 16-bit distance information, as shown in
Equation (13).

Distance ={Dist1,Dist2} × 2 (13)

When the operation of distance information is completed, the cnt_b changes again to the Reflect
state for calculation. If the cnt_b count value is less than 100, the main controller returns to the distance
1 (Dist1) state. If the cnt_b count value is 100 and the Iblock value is less than 11, then it returns to the
flag 1 (Flag1). If the cnt_b count value is 100 and the Iblock value is equal to 11, then it returns to the
LiDAR receiving information state until all information is received. Therefore, the main controller
needs about 1716 cycles to decode one packet, as shown in Figure 8.

Sensors 2019, 19, 5412 12 of 28Sensors 2019, 19, x FOR PEER REVIEW 12 of 28

.

Figure 8. Finite state machine of main controller.

4.3. CORDIC Angle Calculator

The CORDIC angle calculator is the most occupied part of the hardware, and it also consumes
the most power. According to the architecture designed in this paper, it can be divided into a
CORDIC horizontal angle calculator and a CORDIC vertical angle calculator. The vertical angle input
is a fixed input angle and the horizontal angle input is 360 degrees.

4.3.1. CORDIC Horizontal Angle Calculator

LiDAR is a circular scanner with a horizontal angle of 360 degrees, so the horizontal input angle
will be 0 to 360 degrees. There will be two horizontal angles in a block. The first horizontal angle can
be determined from the packet information. The second horizontal angle is the horizontal drift angle.
The entire packet has a total horizontal angle scan range of 4.8 degrees, and a packet has a total of 12
blocks, so each block has a horizontal angle of 0.4 degrees and a horizontal drift angle of 0.2 degrees.

Figure 9. CORDIC horizontal angle calculator.

The CORDIC horizontal angle calculator is shown in Figure 9. When the 16-bit horizontal angle
information is received, it will be compensated first for 17 bits. The Yi input information is 0. The Xi
input information is 1. θi is a fixed comparison angle compared to the horizontal angle of the input.
After the information is compared, the signal will be transmitted to shift and subtract the Xi and Yi
signals. The most significant bit (MSB) is used to determine whether it is a 2′s complement.

Figure 8. Finite state machine of main controller.

4.3. CORDIC Angle Calculator

The CORDIC angle calculator is the most occupied part of the hardware, and it also consumes the
most power. According to the architecture designed in this paper, it can be divided into a CORDIC
horizontal angle calculator and a CORDIC vertical angle calculator. The vertical angle input is a fixed
input angle and the horizontal angle input is 360 degrees.

4.3.1. CORDIC Horizontal Angle Calculator

LiDAR is a circular scanner with a horizontal angle of 360 degrees, so the horizontal input angle
will be 0 to 360 degrees. There will be two horizontal angles in a block. The first horizontal angle can
be determined from the packet information. The second horizontal angle is the horizontal drift angle.
The entire packet has a total horizontal angle scan range of 4.8 degrees, and a packet has a total of 12
blocks, so each block has a horizontal angle of 0.4 degrees and a horizontal drift angle of 0.2 degrees.

The CORDIC horizontal angle calculator is shown in Figure 9. When the 16-bit horizontal angle
information is received, it will be compensated first for 17 bits. The Yi input information is 0. The Xi

input information is 1. θi is a fixed comparison angle compared to the horizontal angle of the input.
After the information is compared, the signal will be transmitted to shift and subtract the Xi and Yi

signals. The most significant bit (MSB) is used to determine whether it is a 2′s complement.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 28

.

Figure 8. Finite state machine of main controller.

4.3. CORDIC Angle Calculator

The CORDIC angle calculator is the most occupied part of the hardware, and it also consumes
the most power. According to the architecture designed in this paper, it can be divided into a
CORDIC horizontal angle calculator and a CORDIC vertical angle calculator. The vertical angle input
is a fixed input angle and the horizontal angle input is 360 degrees.

4.3.1. CORDIC Horizontal Angle Calculator

LiDAR is a circular scanner with a horizontal angle of 360 degrees, so the horizontal input angle
will be 0 to 360 degrees. There will be two horizontal angles in a block. The first horizontal angle can
be determined from the packet information. The second horizontal angle is the horizontal drift angle.
The entire packet has a total horizontal angle scan range of 4.8 degrees, and a packet has a total of 12
blocks, so each block has a horizontal angle of 0.4 degrees and a horizontal drift angle of 0.2 degrees.

Figure 9. CORDIC horizontal angle calculator.

The CORDIC horizontal angle calculator is shown in Figure 9. When the 16-bit horizontal angle
information is received, it will be compensated first for 17 bits. The Yi input information is 0. The Xi
input information is 1. θi is a fixed comparison angle compared to the horizontal angle of the input.
After the information is compared, the signal will be transmitted to shift and subtract the Xi and Yi
signals. The most significant bit (MSB) is used to determine whether it is a 2′s complement.

Figure 9. CORDIC horizontal angle calculator.

Sensors 2019, 19, 5412 13 of 28

4.3.2. CORDIC Vertical Angle Calculator

The vertical angle input is from positive 15 degrees to minus 15 degrees. The corresponding
channel from LiDAR determines the degrees of vertical angle. However, since the angle is 15 degrees,
the input will not be compared to the fixed angles of 45 and 26 degrees. Therefore, the angle selection
can be directly reduced by 45 degrees and 26 degrees, and the relative iteration is also relatively fast.

The CORDIC vertical angle calculator is shown in Figure 10. When receiving the 5-bit angle
information of the vertical angle, it will be compensated first for 17 bits. The Yi input information is 0.
The Xi input information is 1. θi is a fixed comparison angle that will be compared with the vertical
angle of the input. After the information is compared, the signal will be transmitted to shift and
subtract the Xi and Yi signals. The highest bit MSB is used to determine whether it is a 2′s complement.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 28

4.3.2. CORDIC Vertical Angle Calculator

The vertical angle input is from positive 15 degrees to minus 15 degrees. The corresponding
channel from LiDAR determines the degrees of vertical angle. However, since the angle is 15 degrees,
the input will not be compared to the fixed angles of 45 and 26 degrees. Therefore, the angle selection
can be directly reduced by 45 degrees and 26 degrees, and the relative iteration is also relatively fast.

The CORDIC vertical angle calculator is shown in Figure 10. When receiving the 5-bit angle
information of the vertical angle, it will be compensated first for 17 bits. The Yi input information is
0. The Xi input information is 1. θi is a fixed comparison angle that will be compared with the vertical
angle of the input. After the information is compared, the signal will be transmitted to shift and
subtract the Xi and Yi signals. The highest bit MSB is used to determine whether it is a 2′s complement.

Figure 10. CORDIC vertical angle calculator.

4.3.3. Angle Normalization

Using characteristics of SIN and COS in four quadrants, all input angles are first standardized
from 0 to 90 degrees. When the input angle is 0 to 90 degrees, the output is positive COS and positive
SIN. When the input angle is 90 to 180 degrees, the input angle is subtracted by 180 degrees, and the
output is negative COS and positive SIN. When the input angle is 180 to 270 degrees, the input angle
is used to subtract 180 degrees, and the output is negative COS and negative SIN. When the input
angle is 270 to 360 degrees, the input angle is subtracted by 360 degrees, and the output is positive
COS and negative SIN. To normalize the angle to 0 to 90 degrees, the final result of the outputted
COS and SIN must be plus or minus. Therefore, the output angle information is originally 16 bits,
and one bit is added to the front of the 16-bit number. The output information is a total of 17 bits.

4.3.4. XYZ Iteration Architecture

This architecture is a pipelined operation. When the operation proceeds from outputting values
to the next iteration level, the data will be input at the same time. The number of layers in the iterative
architecture is determined by selecting the angle of Table 3 and then determining the number of
layers. However, since the hardware architecture cannot be different every time, the maximum
number of rotations is fixed, at seven layers. Xi is the origin of the COS and substitutes 1. Yi is the
origin of the SIN and is substituted for 0. Zi is the input angle, or the angle at which the SIN and COS
values need to be found, and θi is the angle to be compared for input fixation. The highest bit of the
input angle of Zi and the highest bit of the fixed input angle of θi are used as the ratio. This will
determine the initial comparison input angle, After the comparison, we select the number of
displacements i, and determine the operation of the addition and subtraction of Xi and Yi. After the
calculation, the values Xi, Yi and Zi continue to be substituted into the next-order iterative generation
to repeat the operation until the value of the input angle Zi is less than 0.001, and the iterative
operation is ended. When Xi, Yi and Zi are converted into the second-order iterative generation from

Figure 10. CORDIC vertical angle calculator.

4.3.3. Angle Normalization

Using characteristics of SIN and COS in four quadrants, all input angles are first standardized
from 0 to 90 degrees. When the input angle is 0 to 90 degrees, the output is positive COS and positive
SIN. When the input angle is 90 to 180 degrees, the input angle is subtracted by 180 degrees, and the
output is negative COS and positive SIN. When the input angle is 180 to 270 degrees, the input angle is
used to subtract 180 degrees, and the output is negative COS and negative SIN. When the input angle
is 270 to 360 degrees, the input angle is subtracted by 360 degrees, and the output is positive COS and
negative SIN. To normalize the angle to 0 to 90 degrees, the final result of the outputted COS and SIN
must be plus or minus. Therefore, the output angle information is originally 16 bits, and one bit is
added to the front of the 16-bit number. The output information is a total of 17 bits.

4.3.4. XYZ Iteration Architecture

This architecture is a pipelined operation. When the operation proceeds from outputting values
to the next iteration level, the data will be input at the same time. The number of layers in the iterative
architecture is determined by selecting the angle of Table 3 and then determining the number of layers.
However, since the hardware architecture cannot be different every time, the maximum number of
rotations is fixed, at seven layers. Xi is the origin of the COS and substitutes 1. Yi is the origin of the
SIN and is substituted for 0. Zi is the input angle, or the angle at which the SIN and COS values need
to be found, and θi is the angle to be compared for input fixation. The highest bit of the input angle
of Zi and the highest bit of the fixed input angle of θi are used as the ratio. This will determine the
initial comparison input angle, After the comparison, we select the number of displacements i, and
determine the operation of the addition and subtraction of Xi and Yi. After the calculation, the values
Xi, Yi and Zi continue to be substituted into the next-order iterative generation to repeat the operation
until the value of the input angle Zi is less than 0.001, and the iterative operation is ended. When

Sensors 2019, 19, 5412 14 of 28

Xi, Yi and Zi are converted into the second-order iterative generation from the first-order iterative
generation, the data will be re-substituted into the first-order iterative generation to achieve timely
operation, as shown in Figures 11 and 12.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 28

the first-order iterative generation, the data will be re-substituted into the first-order iterative
generation to achieve timely operation, as shown in Figures 11 and 12.

Figure 11. Horizontal angle iteration architecture.

The CORDIC hardware circuit data processing is presented in Tables 5 and 6 When the vertical
angle or horizontal angle is input into the system, Xi and Yi will input the initial rotation value at the
same time, and the data will be input continuously.

Figure 11. Horizontal angle iteration architecture.

The CORDIC hardware circuit data processing is presented in Tables 5 and 6 When the vertical
angle or horizontal angle is input into the system, Xi and Yi will input the initial rotation value at the
same time, and the data will be input continuously.

Sensors 2019, 19, 5412 15 of 28
Sensors 2019, 19, x FOR PEER REVIEW 15 of 28

Figure 12. Vertical angle iteration architecture.

Table 5. CORDIC horizontal angle architecture data flow.

Clock
Cycle

Data Sequences
Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2399995 inXt-1inXt-2inXt-3inXt-4 inXt-5inXt-6inYt-1 inYt-2inYt-3inYt-4inYt-5inYt-6

2399996 inXt-1inXt-2inXt-3 inXt-4inXt-5 inYt-1inYt-2inYt-3inYt-4inYt-5

2399997 inXt-1inXt-2 inXt-3inXt-4 inYt-1inYt-2inYt-3inYt-4

2399998 inXt-1 inXt-2inXt-3 inYt-1inYt-2inYt-3

2399999 inXt-1inXt-2 inYt-1inYt-2

2400000 inXt-1 inYt-1

Figure 12. Vertical angle iteration architecture.

Table 5. CORDIC horizontal angle architecture data flow.

Clock
Cycle

Data Sequences

Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

2399995 inXt-1 inXt-2 inXt-3 inXt-4 inXt-5 inXt-6 inYt-1 inYt-2 inYt-3 inYt-4 inYt-5 inYt-6
2399996 inXt-1 inXt-2 inXt-3 inXt-4 inXt-5 inYt-1 inYt-2 inYt-3 inYt-4 inYt-5
2399997 inXt-1 inXt-2 inXt-3 inXt-4 inYt-1 inYt-2 inYt-3 inYt-4
2399998 inXt-1 inXt-2 inXt-3 inYt-1 inYt-2 inYt-3
2399999 inXt-1 inXt-2 inYt-1 inYt-2
2400000 inXt-1 inYt-1

Sensors 2019, 19, 5412 16 of 28

Table 6. CORDIC vertical angle architecture data flow.

Clock
Cycle

Data Sequences

Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

2399995 inXt-1 inXt-2 inXt-3 inXt-4 inXt-5 inXt-6 inYt-1 inYt-2 inYt-3 inYt-4 inYt-5 inYt-6
2399996 inXt-1 inXt-2 inXt-3 inXt-4 inXt-5 inYt-1 inYt-2 inYt-3 inYt-4 inYt-5
2399997 inXt-1 inXt-2 inXt-3 inXt-4 inYt-1 inYt-2 inYt-3 inYt-4
2399998 inXt-1 inXt-2 inXt-3 inYt-1 inYt-2 inYt-3
2399999 inXt-1 inXt-2 inYt-1 inYt-2
2400000 inXt-1 inYt-1

4.3.5. Corrected Bit-Length Factor

Since the angle of rotation is not fixed, the corrected bit-length factor will be different for each
angle selection. According to the selection angle, the i is substituted into the formula, and the K value
to be corrected for the current angle rotation is calculated (Figure 13). Finally, we multiply all the
variables K and multiply the last rotated SIN and COS values to complete all angular rotations and
obtain the correct SIN and COS values (Figures 14 and 15). Each level multiplier uses a cycle so, in
total, five cycles are used to calculate the total product of the K values.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 28

Table 6. CORDIC vertical angle architecture data flow.

Clock
Cycle

Data Sequences
Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2399995 inXt-1inXt-2inXt-3inXt-4 inXt-5inXt-6inYt-1 inYt-2inYt-3inYt-4inYt-5inYt-6

2399996 inXt-1inXt-2inXt-3 inXt-4inXt-5 inYt-1inYt-2inYt-3inYt-4inYt-5

2399997 inXt-1inXt-2 inXt-3inXt-4 inYt-1inYt-2inYt-3inYt-4

2399998 inXt-1 inXt-2inXt-3 inYt-1inYt-2inYt-3

2399999 inXt-1inXt-2 inYt-1inYt-2

2400000 inXt-1 inYt-1

4.3.5. Corrected Bit-Length Factor

Since the angle of rotation is not fixed, the corrected bit-length factor will be different for each
angle selection. According to the selection angle, the i is substituted into the formula, and the K value
to be corrected for the current angle rotation is calculated (Figure 13). Finally, we multiply all the
variables K and multiply the last rotated SIN and COS values to complete all angular rotations and
obtain the correct SIN and COS values (Figures 14 and 15). Each level multiplier uses a cycle so, in
total, five cycles are used to calculate the total product of the K values.

Figure 13. The total product of the K values.

Figure 14. K value is multiplied by COS (cosine).

Figure 15. K value is multiplied by SIN (sine).

Figure 13. The total product of the K values.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 28

Table 6. CORDIC vertical angle architecture data flow.

Clock
Cycle

Data Sequences
Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2399995 inXt-1inXt-2inXt-3inXt-4 inXt-5inXt-6inYt-1 inYt-2inYt-3inYt-4inYt-5inYt-6

2399996 inXt-1inXt-2inXt-3 inXt-4inXt-5 inYt-1inYt-2inYt-3inYt-4inYt-5

2399997 inXt-1inXt-2 inXt-3inXt-4 inYt-1inYt-2inYt-3inYt-4

2399998 inXt-1 inXt-2inXt-3 inYt-1inYt-2inYt-3

2399999 inXt-1inXt-2 inYt-1inYt-2

2400000 inXt-1 inYt-1

4.3.5. Corrected Bit-Length Factor

Since the angle of rotation is not fixed, the corrected bit-length factor will be different for each
angle selection. According to the selection angle, the i is substituted into the formula, and the K value
to be corrected for the current angle rotation is calculated (Figure 13). Finally, we multiply all the
variables K and multiply the last rotated SIN and COS values to complete all angular rotations and
obtain the correct SIN and COS values (Figures 14 and 15). Each level multiplier uses a cycle so, in
total, five cycles are used to calculate the total product of the K values.

Figure 13. The total product of the K values.

Figure 14. K value is multiplied by COS (cosine).

Figure 15. K value is multiplied by SIN (sine).

Figure 14. K value is multiplied by COS (cosine).

Sensors 2019, 19, x FOR PEER REVIEW 16 of 28

Table 6. CORDIC vertical angle architecture data flow.

Clock
Cycle

Data Sequences
Xi(i=1) Xi(i=2) Xi(i=3) Xi(i=4) Xi(i=5) Xi(i=6) Yi(i=1) Yi(i=2) Yi(i=3) Yi(i=4) Yi(i=5) Yi(i=6)

0 inX1 inY1
1 inX2 inX1 inY2 inY1
2 inX3 inX2 inX1 inY3 inY2 inY1
3 inX4 inX3 inX2 inX1 inY4 inY3 inY2 inY1
4 inX5 inX4 inX3 inX2 inX1 inY5 inY4 inY3 inY2 inY1
5 inX6 inX5 inX4 inX3 inX2 inX1 inY6 inY5 inY4 inY3 inY2 inY1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2399995 inXt-1inXt-2inXt-3inXt-4 inXt-5inXt-6inYt-1 inYt-2inYt-3inYt-4inYt-5inYt-6

2399996 inXt-1inXt-2inXt-3 inXt-4inXt-5 inYt-1inYt-2inYt-3inYt-4inYt-5

2399997 inXt-1inXt-2 inXt-3inXt-4 inYt-1inYt-2inYt-3inYt-4

2399998 inXt-1 inXt-2inXt-3 inYt-1inYt-2inYt-3

2399999 inXt-1inXt-2 inYt-1inYt-2

2400000 inXt-1 inYt-1

4.3.5. Corrected Bit-Length Factor

Since the angle of rotation is not fixed, the corrected bit-length factor will be different for each
angle selection. According to the selection angle, the i is substituted into the formula, and the K value
to be corrected for the current angle rotation is calculated (Figure 13). Finally, we multiply all the
variables K and multiply the last rotated SIN and COS values to complete all angular rotations and
obtain the correct SIN and COS values (Figures 14 and 15). Each level multiplier uses a cycle so, in
total, five cycles are used to calculate the total product of the K values.

Figure 13. The total product of the K values.

Figure 14. K value is multiplied by COS (cosine).

Figure 15. K value is multiplied by SIN (sine).
Figure 15. K value is multiplied by SIN (sine).

Since the K value is multiplied and there is truncation of the bit, the original output value will be
different from the original one (Figure 16). Therefore, we calculate and analyze this difference. The K
value has a total of 68 bits of truncation, the final error rate is 6.82 × 10−6, and the final output SIN
and COS values are multiplied by the K value, respectively, so the truncation of the bits is 17 bits.
The error rate of SIN is 5.72 × 10−4, and the error rate of COS is 8.32 × 10−4. Since the XYZ coordinate

Sensors 2019, 19, 5412 17 of 28

values output in this paper are only taken to the last three decimal places, they do not affect the
post-coordinate values (Figures 17 and 18).

Sensors 2019, 19, x FOR PEER REVIEW 17 of 28

Since the K value is multiplied and there is truncation of the bit, the original output value will
be different from the original one (Figure 16). Therefore, we calculate and analyze this difference. The
K value has a total of 68 bits of truncation, the final error rate is 6.82E-6, and the final output SIN and
COS values are multiplied by the K value, respectively, so the truncation of the bits is 17 bits. The
error rate of SIN is 5.72E-04, and the error rate of COS is 8.32E-04. Since the XYZ coordinate values
output in this paper are only taken to the last three decimal places, they do not affect the post-
coordinate values (Figures 17 and 18).

Figure 16. Truncated bit error rate-K value.

Figure 17. Truncated bit error rate-COS value.

-1.00E-06

3.00E-21

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

40 45 50 55 60 65 70 75 80 85

Er
ro

r R
at

e(
%

)

Truncation Bits

The Error of Truncation (K)

-1.00E-08

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

20 22 24 26 28 30 32 34

Er
ro

r R
at

e(
%

)

Truncation Bits

The Error of Truncation (COS)

Figure 16. Truncated bit error rate-K value.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 28

Since the K value is multiplied and there is truncation of the bit, the original output value will
be different from the original one (Figure 16). Therefore, we calculate and analyze this difference. The
K value has a total of 68 bits of truncation, the final error rate is 6.82E-6, and the final output SIN and
COS values are multiplied by the K value, respectively, so the truncation of the bits is 17 bits. The
error rate of SIN is 5.72E-04, and the error rate of COS is 8.32E-04. Since the XYZ coordinate values
output in this paper are only taken to the last three decimal places, they do not affect the post-
coordinate values (Figures 17 and 18).

Figure 16. Truncated bit error rate-K value.

Figure 17. Truncated bit error rate-COS value.

-1.00E-06

3.00E-21

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

40 45 50 55 60 65 70 75 80 85

Er
ro

r R
at

e(
%

)

Truncation Bits

The Error of Truncation (K)

-1.00E-08

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

20 22 24 26 28 30 32 34

Er
ro

r R
at

e(
%

)

Truncation Bits

The Error of Truncation (COS)

Figure 17. Truncated bit error rate-COS value.

Sensors 2019, 19, 5412 18 of 28
Sensors 2019, 19, x FOR PEER REVIEW 18 of 28

Figure 18. Truncated bit error rate-SIN value.

4.3.6. Coordinate Calculator

After the distance transmitted by the main controller and the values of SIN and COS calculated
by the angle calculator are received, the information of the X-axis, the Y-axis, and the Z-axis is
outputted in the coordinate calculator. Since the input timings of the horizontal angle, vertical angle,
and distance are different, the final output timings of the X-axis, Y-axis, and Z-axis can be made
uniform by the delay in the coordinate conversion calculator.

In the X-axis circuit of the coordinate conversion calculator, the COS value of the vertical angle,
the SIN value of the horizontal angle, and the value of the distance are used as inputs (Figure 19).
After truncation, the number of bits is 14 bits. The COS value of the vertical angle is multiplied by
the value of the distance and then by the COS value of the vertical angle to obtain 42 bits. Since only
the integer part of the three digits after the decimal is taken, it is necessary to divide the X axis by 107.
However, the because divider area is large, the displacement method can be used to achieve an
approximate result, as shown in Equation (14).

(20 + 2-1+ 2-3 + 2-4) × 2-24 = 1.0058 × 10-7 (14)

In the Y-axis circuit of the coordinate conversion calculator, the input signal is the COS value of
the vertical angle, the value of the COS value and the distance in the horizontal angle (Figure 20).
After truncation, the number of bits is 14 bits. The COS value of the vertical angle is multiplied by
the value of the distance and by the COS value of the vertical angle to obtain 42 bits. Since only the
integer part of the three digits after the decimal is taken, it is necessary to divide the Y axis by 10.
To reduce the divider, we use a shift instruction to achieve an approximate result, as shown in
Equation (15).

(20 + 2-1+ 2-3 + 2-4) × 2-24 = 1.0058 × 10-7 (15)

In the Z-axis circuit of the coordinate conversion calculator, the SIN value of the vertical angle
and the value of the distance are used as inputs (Figure 21). After truncation, the number of bits is 14
bits. The COS value of the vertical angle is multiplied by the value of the distance to obtain 28 bits,
and the Z axis is divided by 103. Approximate results can be achieved using the adder and shifting,
as shown in Equation (16).

(20+ 2-6+ 2 -7 + 2-8) × 2-10 = 1.0032 × 10-3 (16)

-1.00E-09

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

15 17 19 21 23 25 27 29 31 33 35

Er
ro

r R
at

e(
%

)
Truncation Bits

The Error of Truncation (SIN)

Figure 18. Truncated bit error rate-SIN value.

4.3.6. Coordinate Calculator

After the distance transmitted by the main controller and the values of SIN and COS calculated by
the angle calculator are received, the information of the X-axis, the Y-axis, and the Z-axis is outputted
in the coordinate calculator. Since the input timings of the horizontal angle, vertical angle, and distance
are different, the final output timings of the X-axis, Y-axis, and Z-axis can be made uniform by the
delay in the coordinate conversion calculator.

In the X-axis circuit of the coordinate conversion calculator, the COS value of the vertical angle,
the SIN value of the horizontal angle, and the value of the distance are used as inputs (Figure 19). After
truncation, the number of bits is 14 bits. The COS value of the vertical angle is multiplied by the value
of the distance and then by the COS value of the vertical angle to obtain 42 bits. Since only the integer
part of the three digits after the decimal is taken, it is necessary to divide the X axis by 107. However,
the because divider area is large, the displacement method can be used to achieve an approximate
result, as shown in Equation (14).

(2 0 + 2−1+ 2−3 + 2−4) × 2−24 = 1.0058 × 10−7 (14)

In the Y-axis circuit of the coordinate conversion calculator, the input signal is the COS value of
the vertical angle, the value of the COS value and the distance in the horizontal angle (Figure 20). After
truncation, the number of bits is 14 bits. The COS value of the vertical angle is multiplied by the value
of the distance and by the COS value of the vertical angle to obtain 42 bits. Since only the integer part
of the three digits after the decimal is taken, it is necessary to divide the Y axis by 107. To reduce the
divider, we use a shift instruction to achieve an approximate result, as shown in Equation (15).

(2 0 + 2−1+ 2−3 + 2−4) × 2−24 = 1.0058 × 10−7 (15)

In the Z-axis circuit of the coordinate conversion calculator, the SIN value of the vertical angle
and the value of the distance are used as inputs (Figure 21). After truncation, the number of bits is
14 bits. The COS value of the vertical angle is multiplied by the value of the distance to obtain 28 bits,
and the Z axis is divided by 103. Approximate results can be achieved using the adder and shifting, as
shown in Equation (16).

Sensors 2019, 19, 5412 19 of 28

(2 0+ 2−6+ 2 −7 + 2−8) × 2−10 = 1.0032 × 10−3 (16)
Sensors 2019, 19, x FOR PEER REVIEW 19 of 28

Figure 19. The X-axis circuit of the coordinate conversion calculator.

Figure 20. The Y-axis circuit of the coordinate conversion calculator.

Figure 19. The X-axis circuit of the coordinate conversion calculator.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 28

Figure 19. The X-axis circuit of the coordinate conversion calculator.

Figure 20. The Y-axis circuit of the coordinate conversion calculator.

Figure 20. The Y-axis circuit of the coordinate conversion calculator.

Sensors 2019, 19, 5412 20 of 28

Sensors 2019, 19, x FOR PEER REVIEW 20 of 28

Figure 21. The Z-axis circuit of the coordinate conversion calculator.

In this section, we introduce the LiDAR decoding circuit to detail the role of each module and
implement the digital hardware architecture. Here we introduce the data transmission and operation
process of each module, including the horizontal angle and vertical angle calculation. For the
calculation of the distance, the trigonometric function reduces the iterative conversion method to the
final coordinate, uses the reduced iteration method in the operation, and allows the data to be input
into the new data at the same time during processing to achieve immediate processing.

5. Experimental Results

To prove the performance of the LiDAR sensing circuit designed in this paper, we have
completed a series of experiments. We used LiDAR to sense different scenes and further decode the
measured packet data. Then we performed point-cloud map conversion to verify the decoding results.

5.1. Experimental Environment

The hardware used in this experiment was a 16-channel LiDAR sensor, as shown in Table 7. The
LiDAR sensor has a horizontal scanning angle of 360 degrees and a vertical scanning angle of +15
degrees to −15 degrees. The LiDAR sensor emits 16 infrared rays at a horizontal angle. According to
the speed of the LiDAR sensor, the resolution of the horizontal angle is determined. The speed of the
light is adjustable from 5 Hz to 20 Hz, and the corresponding horizontal angle is 0.1 to 0.4 degrees.
Our experiment used the initial setting to simulate a rotational speed of 10 Hz and a horizontal
resolution of 0.2 degrees. The LiDAR sensor can measure distances up to 100 m and sweep out 300,000
points per second.

Figure 21. The Z-axis circuit of the coordinate conversion calculator.

In this section, we introduce the LiDAR decoding circuit to detail the role of each module
and implement the digital hardware architecture. Here we introduce the data transmission and
operation process of each module, including the horizontal angle and vertical angle calculation. For the
calculation of the distance, the trigonometric function reduces the iterative conversion method to the
final coordinate, uses the reduced iteration method in the operation, and allows the data to be input
into the new data at the same time during processing to achieve immediate processing.

5. Experimental Results

To prove the performance of the LiDAR sensing circuit designed in this paper, we have completed
a series of experiments. We used LiDAR to sense different scenes and further decode the measured
packet data. Then we performed point-cloud map conversion to verify the decoding results.

5.1. Experimental Environment

The hardware used in this experiment was a 16-channel LiDAR sensor, as shown in Table 7.
The LiDAR sensor has a horizontal scanning angle of 360 degrees and a vertical scanning angle of
+15 degrees to −15 degrees. The LiDAR sensor emits 16 infrared rays at a horizontal angle. According
to the speed of the LiDAR sensor, the resolution of the horizontal angle is determined. The speed of
the light is adjustable from 5 Hz to 20 Hz, and the corresponding horizontal angle is 0.1 to 0.4 degrees.
Our experiment used the initial setting to simulate a rotational speed of 10 Hz and a horizontal resolution
of 0.2 degrees. The LiDAR sensor can measure distances up to 100 m and sweep out 300,000 points
per second.

Table 7. LiDAR sensor specification.

Specification Value

Channel 16
Measurement Range 100 m

Accuracy ±3 cm
Laser 903 nm Wavelength

Horizontal Angle 360◦

Vertical Angle 30◦ (+15◦ to −15◦)
Rotation Rates 5–20 Hz

Power Consumption 8 Watt
Operating Temperature −10◦ to +60◦

Sensors 2019, 19, 5412 21 of 28

5.2. Point-Cloud Map Reconstruction Experimental Results

We used the LiDAR sensor described in Section 5.1 and the LiDAR decoding algorithm described
in Section 3 to convert the point-cloud image. We use the decoded 3D coordinate information as the
reconstruction of the image and selected multiple scenes to present the decoding results.

Figure 22a is a view of a square in our university. After decoding and reconstruction, Figure 22b
shows the point-cloud map of the top view of the square, and Figure 22c shows the point-cloud map of
the side view of the square. The side walls of buildings and large trees can be accurately measured by
the LiDAR sensor and are clearly presented. Figure 23a shows a corridor view, and the clear outline of
the corridor can be seen from the reconstructed point-cloud maps in Figure 23b,c.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 28

Table 7. LiDAR sensor specification.

Specification Value
Channel 16

Measurement Range 100 m
Accuracy ±3 cm

Laser 903 nm Wavelength
Horizontal Angle 360°

Vertical Angle 30° (+15° to −15°)
Rotation Rates 5–20 Hz

Power Consumption 8 Watt
Operating Temperature −10° to +60°

5.2. Point-Cloud Map Reconstruction Experimental Results

We used the LiDAR sensor described in Section 5.1 and the LiDAR decoding algorithm
described in Section 3 to convert the point-cloud image. We use the decoded 3D coordinate
information as the reconstruction of the image and selected multiple scenes to present the decoding
results.

Figure 22a is a view of a square in our university. After decoding and reconstruction, Figure 22b
shows the point-cloud map of the top view of the square, and Figure 22c shows the point-cloud map
of the side view of the square. The side walls of buildings and large trees can be accurately measured
by the LiDAR sensor and are clearly presented. Figure 23a shows a corridor view, and the clear
outline of the corridor can be seen from the reconstructed point-cloud maps in Figure 23b,c.

(a) (b)

(c)

Figure 22. Point-cloud map reconstruction results: Square view. (a) Square view; (b) the point-cloud
map of Square top view; (c) the point-cloud map of Square side view.

We decoded the information in the LiDAR packet and reconstructed the 3D point-cloud image
using different scenes. It can be observed in this section that the three-dimensional coordinates can
be reconstructed smoothly indoors or outdoors, and point-cloud image reconstruction can be
performed.

Figure 22. Point-cloud map reconstruction results: Square view. (a) Square view; (b) the point-cloud
map of Square top view; (c) the point-cloud map of Square side view.

We decoded the information in the LiDAR packet and reconstructed the 3D point-cloud image
using different scenes. It can be observed in this section that the three-dimensional coordinates can be
reconstructed smoothly indoors or outdoors, and point-cloud image reconstruction can be performed.Sensors 2019, 19, x FOR PEER REVIEW 22 of 28

(a) (b)

(c)

Figure 23. Point-cloud map reconstruction results: Corridor view. (a) Corridor view; (b) the point-
cloud map of Corridor top view; (c) the point-cloud map of Corridor side view.

5.3. Processing Time

The LiDAR decoding process can be divided into three parts. The first part is the classification
of the input data. The second part is the CORDIC algorithm, which mainly looks for the values of
SIN and COS. The third part is the calculation of the XYZ coordinates. The processing times of these
three blocks are different, and the total processing time is 0.094 s (Figure 24). To increase the overall
circuit processing speed, the decoding circuit was designed as a decoding chip to improve the system
processing time.

Figure 24. System operation time.

5.4. Integrated Circuit Implementation

In this section, we use the digital integrated circuit design flow to implement the circuit. The
design flow includes register transfer level (RTL) hardware design, logic synthesis, testability circuit
design, automated placement and routing, design rule check (DRC), layout versus schematic (LVS)
and post-layout simulation. Then we use the TSMC 0.18 μm 1P6M process and implement the chip.

The value of the input signal can be observed from the waveform and the value of the output
waveform is in accordance with the design expectation. In Figure 25, we can see the input data, the

Figure 23. Point-cloud map reconstruction results: Corridor view. (a) Corridor view; (b) the point-cloud
map of Corridor top view; (c) the point-cloud map of Corridor side view.

Sensors 2019, 19, 5412 22 of 28

5.3. Processing Time

The LiDAR decoding process can be divided into three parts. The first part is the classification
of the input data. The second part is the CORDIC algorithm, which mainly looks for the values of
SIN and COS. The third part is the calculation of the XYZ coordinates. The processing times of these
three blocks are different, and the total processing time is 0.094 s (Figure 24). To increase the overall
circuit processing speed, the decoding circuit was designed as a decoding chip to improve the system
processing time.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 28

(a) (b)

(c)

Figure 23. Point-cloud map reconstruction results: Corridor view. (a) Corridor view; (b) the point-
cloud map of Corridor top view; (c) the point-cloud map of Corridor side view.

5.3. Processing Time

The LiDAR decoding process can be divided into three parts. The first part is the classification
of the input data. The second part is the CORDIC algorithm, which mainly looks for the values of
SIN and COS. The third part is the calculation of the XYZ coordinates. The processing times of these
three blocks are different, and the total processing time is 0.094 s (Figure 24). To increase the overall
circuit processing speed, the decoding circuit was designed as a decoding chip to improve the system
processing time.

Figure 24. System operation time.

5.4. Integrated Circuit Implementation

In this section, we use the digital integrated circuit design flow to implement the circuit. The
design flow includes register transfer level (RTL) hardware design, logic synthesis, testability circuit
design, automated placement and routing, design rule check (DRC), layout versus schematic (LVS)
and post-layout simulation. Then we use the TSMC 0.18 μm 1P6M process and implement the chip.

The value of the input signal can be observed from the waveform and the value of the output
waveform is in accordance with the design expectation. In Figure 25, we can see the input data, the

Figure 24. System operation time.

5.4. Integrated Circuit Implementation

In this section, we use the digital integrated circuit design flow to implement the circuit. The design
flow includes register transfer level (RTL) hardware design, logic synthesis, testability circuit design,
automated placement and routing, design rule check (DRC), layout versus schematic (LVS) and
post-layout simulation. Then we use the TSMC 0.18 µm 1P6M process and implement the chip.

The value of the input signal can be observed from the waveform and the value of the output
waveform is in accordance with the design expectation. In Figure 25, we can see the input data, the
three-dimensional coordinates (out_X, out_Y, and out_Z), and reflectance values decoded by the chip.
After calculation of the values of XYZ through the algorithm, the Golden Pattern is produced and the
result is verified by Testbench.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 28

three-dimensional coordinates (out_X, out_Y, and out_Z), and reflectance values decoded by the chip.
After calculation of the values of XYZ through the algorithm, the Golden Pattern is produced and the
result is verified by Testbench.

Figure 25. Register transfer level (RTL) timing diagram.

After the RTL code is verified, the next step is logic synthesis, which will convert the RTL code
into a logic gate using the design compiler, as shown in Figure 26. In the logic synthesis, it is necessary
to adjust the relevant environment settings, such as the timing, speed and related processes. Since the
digital signal is not ideal, the problems of setup time and hold time need to be considered when the
signal is changed.

Figure 26. Gate-level circuit.

The next step is the design of the testable circuit, mainly to facilitate the test of the main function
of the chip after the chip is packaged. We verify the test coverage and the fault coverage of the circuit.
The test coverage rate of this circuit is 99.88%, and the fault coverage rate is 99.44% (Figure 27).

After backend design of the automatic placement and routing, DRC, LVS, and post-layout
simulation, we adopt the TSMC 0.18 um 1P6M process to develop the chip. After manufacturing, the
chip is packaged by CQFP 100 package. The total chip area is 1.93 mm × 1.93 mm, the core area is 1.32
mm × 1.32 mm, and the number of logic gates is 129,688. The maximum operating frequency is 100
MHz, and the average power consumption is 237.34 mW. The chip specifications are shown in Table
8, and a microphotograph of the chip is shown in Figure 28.

Figure 25. Register transfer level (RTL) timing diagram.

After the RTL code is verified, the next step is logic synthesis, which will convert the RTL code
into a logic gate using the design compiler, as shown in Figure 26. In the logic synthesis, it is necessary
to adjust the relevant environment settings, such as the timing, speed and related processes. Since the
digital signal is not ideal, the problems of setup time and hold time need to be considered when the
signal is changed.

Sensors 2019, 19, 5412 23 of 28

Sensors 2019, 19, x FOR PEER REVIEW 23 of 28

three-dimensional coordinates (out_X, out_Y, and out_Z), and reflectance values decoded by the chip.
After calculation of the values of XYZ through the algorithm, the Golden Pattern is produced and the
result is verified by Testbench.

Figure 25. Register transfer level (RTL) timing diagram.

After the RTL code is verified, the next step is logic synthesis, which will convert the RTL code
into a logic gate using the design compiler, as shown in Figure 26. In the logic synthesis, it is necessary
to adjust the relevant environment settings, such as the timing, speed and related processes. Since the
digital signal is not ideal, the problems of setup time and hold time need to be considered when the
signal is changed.

Figure 26. Gate-level circuit.

The next step is the design of the testable circuit, mainly to facilitate the test of the main function
of the chip after the chip is packaged. We verify the test coverage and the fault coverage of the circuit.
The test coverage rate of this circuit is 99.88%, and the fault coverage rate is 99.44% (Figure 27).

After backend design of the automatic placement and routing, DRC, LVS, and post-layout
simulation, we adopt the TSMC 0.18 um 1P6M process to develop the chip. After manufacturing, the
chip is packaged by CQFP 100 package. The total chip area is 1.93 mm × 1.93 mm, the core area is 1.32
mm × 1.32 mm, and the number of logic gates is 129,688. The maximum operating frequency is 100
MHz, and the average power consumption is 237.34 mW. The chip specifications are shown in Table
8, and a microphotograph of the chip is shown in Figure 28.

Figure 26. Gate-level circuit.

The next step is the design of the testable circuit, mainly to facilitate the test of the main function
of the chip after the chip is packaged. We verify the test coverage and the fault coverage of the circuit.
The test coverage rate of this circuit is 99.88%, and the fault coverage rate is 99.44% (Figure 27).

After backend design of the automatic placement and routing, DRC, LVS, and post-layout
simulation, we adopt the TSMC 0.18 um 1P6M process to develop the chip. After manufacturing, the
chip is packaged by CQFP 100 package. The total chip area is 1.93 mm × 1.93 mm, the core area is 1.32
mm × 1.32 mm, and the number of logic gates is 129,688. The maximum operating frequency is 100
MHz, and the average power consumption is 237.34 mW. The chip specifications are shown in Table 8,
and a microphotograph of the chip is shown in Figure 28.Sensors 2019, 19, x FOR PEER REVIEW 24 of 28

Figure 27. Test coverage and the fault coverage of the circuit.

Table 8. Chip specification.

Specification Value
Technology TSMC 0.18 μm 1P6M
Chip Size 1.93 mm × 1.93 mm
Core Size 1.32 mm × 1.32 mm
Package CQFP 100

Gate Counts 129,688
Frequency 100 MHz
Scan Chain 1

Fault Coverage 99.44%
Power Supply 1.8V

Power Consumption 237.34 mW@100 MHz

Figure 28. Microphotograph of the chip.

5.5. Chip Performance Comparison

This paper compares the performance of various CORDIC hardware architectures (Table 9). The
first comparison is a look-up architecture circuit. Min [30] mainly uses the combined multi-constant

Figure 27. Test coverage and the fault coverage of the circuit.

After backend design of the automatic placement and routing, DRC, LVS, and post-layout
simulation, we adopt the TSMC 0.18 um 1P6M process to develop the chip. After manufacturing, the
chip is packaged by CQFP 100 package. The total chip area is 1.93 mm × 1.93 mm, the core area is
1.32 mm × 1.32 mm, and the number of logic gates is 129,688. The maximum operating frequency is
100 MHz, and the average power consumption is 237.34 mW. The chip specifications are shown in
Table 8, and a microphotograph of the chip is shown in Figure 28.

Sensors 2019, 19, 5412 24 of 28

Table 8. Chip specification.

Specification Value

Technology TSMC 0.18 µm 1P6M
Chip Size 1.93 mm × 1.93 mm
Core Size 1.32 mm × 1.32 mm
Package CQFP 100

Gate Counts 129,688
Frequency 100 MHz
Scan Chain 1

Fault Coverage 99.44%
Power Supply 1.8V

Power Consumption 237.34 mW@100 MHz

Sensors 2019, 19, x FOR PEER REVIEW 24 of 28

Figure 27. Test coverage and the fault coverage of the circuit.

Table 8. Chip specification.

Specification Value
Technology TSMC 0.18 μm 1P6M
Chip Size 1.93 mm × 1.93 mm
Core Size 1.32 mm × 1.32 mm
Package CQFP 100

Gate Counts 129,688
Frequency 100 MHz
Scan Chain 1

Fault Coverage 99.44%
Power Supply 1.8V

Power Consumption 237.34 mW@100 MHz

Figure 28. Microphotograph of the chip.

5.5. Chip Performance Comparison

This paper compares the performance of various CORDIC hardware architectures (Table 9). The
first comparison is a look-up architecture circuit. Min [30] mainly uses the combined multi-constant

Figure 28. Microphotograph of the chip.

5.5. Chip Performance Comparison

This paper compares the performance of various CORDIC hardware architectures (Table 9).
The first comparison is a look-up architecture circuit. Min [30] mainly uses the combined multi-constant
multiplier (MMCM) and Wallace multiplier to perform the architecture. Both MMCM and fused
butterfly with Wallace multiplier (FBW) adopt 45 nm VLSI processes. The operating frequency is
200 MHz, the areas are 101,312 µm2 and 116,886 µm2, and the power consumption of the chip is
127.13mW and 154.78 mW. Our experiment uses an 0.18 um VLSI process. According to the scaling
factor rule of the VLSI process, if the chip is fabricated using a 45 nm process (Table 10), the operating
frequency can be 400 MHz and the area is 54,997.6 µm2, and the power consumption is 2.656 mW.

The second comparison is with the standard CORDIC algorithm. Qi [25] uses the conversion
between polar coordinates and rectangular coordinates to calculate the sine and cosine, which are
rotated according to the standard method. Therefore, the maximum selection angle is 16 times,
the process is 65 nm, the operating frequency is 35 MHz, the area is 863,300 µm2, and the power
consumption is 145.33 mW. According to the scaling factor rule of the VLSI process, if the chip is
fabricated using a 65 nm process, the operating frequency can be 276 MHz, the area is 109,995.25 µm2,
and the power consumption is 5.312 mW.

Wu [26] proposed a CORDIC-based architecture that uses coordinate computer algorithms to
achieve various operations. The process is 0.18 um, the maximum rotation is 16 times, and the operating
frequency is 40 MHz. The area is 1,194,648 µm2 and the power consumption is 51 mW. Ray [27] mainly
uses discrete Fourier transform to improve the calculation speed of CORDIC. The maximum operating
frequency is 125 MHz, the total area is 11,000,000 µm2, the power consumption is 350 mW, and the
number of rotations is 16.

The proposed chip is used to reduce the number of rotation iterations of the CORDIC calculation.
After the angle input, the number of iterations can be reduced by more than half, and the area is also

Sensors 2019, 19, 5412 25 of 28

the smallest under the same process. Table 10 illustrates the process conversion table according to the
VLSI scaling factor rule.

Table 9. Comparison of hardware performance between CORDIC circuit and related literature.

Method Process Type Architecture Frequency
(MHz)

Max
Iteration

Throughput
Bits/Sec

MMCM [30] 45 nm Chip LUT 200 - -
FBW [30] 45 nm Chip LUT 200 - -

Qi [25] 65 nm Chip CORDIC 35 16 1.2572 × 108

Wu [26] 0.18 um FPGA CORDIC 40 16 1.4368 × 108

Ray [27] 0.18 um Chip CORDIC 125 16 4.4901 × 108

Proposed 0.18 um Chip CORDIC 100 7 8.2105 × 108

Table 10. Chip scaling.

Process Frequency Chip Area Power

90 nm 200 MHz 219,990.00 µm2 10.625 mW
65 nm 276 MHz 109,995.25 µm2 5.312 mW
45 nm 400 MHz 54,997.60 µm2 2.656 mW

In this section, the proposed chip improves the traditional CORDIC calculator. Originally, it
takes 0.094 s to calculate a packet and 7.05 s to decode a whole picture that has a total of 75 packets.
The proposed chip takes only 0.012 ms to solve a packet and 0.912 ms to decode a frame. The throughput
of the chip is 8.2105 × 108 bits/sec. The throughputs of the literature Qi [25], Wu [26] and Ray [27] are
1.2572 × 108 bits/sec, 1.4368 × 108 bits/sec and 4.4901 × 108 bits/sec respectively. The method we have
proposed to reduce the number of iterations, the performance of throughput is much higher than other
methods in the literature [25–27].

To verify that the reconstructed point clouds are correct, we compare with Velodyne LiDAR VLP-16
ground truth data that includes County Fair, Hecker Pass, and Monterey Highway. Moreover, in order
to compare the correctness of the decoding of LiDAR packet data, we compare the decoding results
of the standard test environment of VeloView 2.0. In April 2014, Velodyne and Kitware collaborated
to release VeloView 2.0 in SPAR International 3D Measurement and Imaging Conference. VeloView
displays the distance measurements from the LidAR as point-cloud data such as intensity-of-return,
time, distance, azimuth, dual return type, and laser ID. Correctness verification is performed using
a correlation criterion in which the “similarity” between the LiDAR decoded packet data s and the
ground truth w, Sim(s, w), is calculated as follows:

Sim(s, w) =

m∑
i=1

(si ·wi)

m∑
i=1

(wi ·wi)

(17)

We calculate the similarity value. The results are included in Table 11. The experimental results
show the Sim values all to be 1. The experimental results prove that the LiDAR decoded packet results
are exactly the same as the ground truth.

Sensors 2019, 19, 5412 26 of 28

Table 11. The correctness of the decoding of LiDAR packet data.

Ground Truth Header Flag Azimuth Distance Reflectivity Time
Stamp Factory Return

Distance

County Fair 1 1 1 1 1 1 1 1
Hecker Pass 1 1 1 1 1 1 1 1

Monterey
Highway 1 1 1 1 1 1 1 1

Similarity: Sim(s, w).

6. Conclusions

An efficient CORDIC iteration design for LiDAR sensors and point-cloud map reconstruction
technology are proposed in this paper. A new CORDIC architecture is designed for LiDAR sensors to
improve the traditional CORDIC architecture by changing the rotation characteristics to achieve the
goal of pre-selecting angles and reducing the number of iterations. With the proposed architecture, we
can reduce the number of iterations by half. Regardless of the number of input N digits, the values
of the trigonometric functions SIN and COS can be found in seven rotations. According to the SIN
and COS values obtained and distance information, the 3D point-cloud image is obtained through the
three-dimensional coordinate conversion system.

To prove the performance of the presented LiDAR sensing circuit, we have completed a series of
experiments. The proposed chip improves the traditional CORDIC calculator. The proposed chip takes
only 0.012 ms to solve a packet and 0.912 ms to decode a frame. The fault coverage rate of the proposed
chip is 99.44%. The total chip area is 1.93 mm × 1.93 mm and the core area is 1.32 mm × 1.32 mm.
The number of logic gates is 129,688. The maximum operating frequency is 100 MHz, and the average
power consumption is 237.34 mW. Compared with those in related literature, our proposed sensing
circuit has smaller area and low power consumption.

Author Contributions: Y.-C.F. has investigated the ideas, system, algorithm, and methodology of the proposed
techniques, and wrote the manuscript; Y.-C.L. and C.-A.C. implemented the proposed system, conducted the
experiments, analyzed the experimental data, and provided the analytical results, and wrote the manuscript with
support from Y.-C.F. All authors discussed the results and contributed to the final manuscript.

Funding: This work was supported by the Ministry of Science and Technology of Taiwan under Grant
MOST 108-2218-E-035-013.

Acknowledgments: The authors gratefully acknowledge the Taiwan Semiconductor Research Institute (TSRI), for
supplying the technology models used in IC design.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fan, Y.C.; Chu, C.A.; Liu, Y.C. Efficient CORDIC Iteration Design of LiDAR Point Cloud Map Reconstruction
Technology. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics-Taiwan
(ICCE-TW), Yilan, Taiwan, 20–22 May 2019; pp. 1–2.

2. Dimitrievski, M.; Veelaert, P.; Philips, W. Behavioral Pedestrian Tracking Using a Camera and LiDAR Sensors
on a Moving Vehicle. Sensors 2019, 19, 391. [CrossRef]

3. Zhang, F.; Knoll, A. Vehicle Detection Based on Probability Hypothesis Density Filter. Sensors 2016, 16, 510.
[CrossRef]

4. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for
Perception in Autonomous Vehicles. Sensors 2019, 19, 4357. [CrossRef]

5. Fan, Y.C.; Wu, B.T.; Huang, C.J.; Bai, Y.H. Environment Detection of 3D LiDAR by Using Neural Networks.
In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 11–13 January 2019; pp. 1–2.

6. Hsiao, S.F.; Wen, C.S.; Lee, H.M. Implementation of Floating-point CORDIC Rotation and Vectoring Based
on Look up Tables and Multipliers. In Proceedings of the International Symposium on Next Generation
Electronics (ISNE), Kaohsiung, Taiwan, 18–19 November 2010; pp. 44–47.

http://dx.doi.org/10.3390/s19020391
http://dx.doi.org/10.3390/s16040510
http://dx.doi.org/10.3390/s19204357

Sensors 2019, 19, 5412 27 of 28

7. Shin, M.; Kim, J.; Jeong, J.; Park, J.B. 3D LiDAR-based Point Cloud Map Registration: Using Spatial Location
of Visual Features. In Proceedings of the International Conference on Robotics and Automation Engineering
(ICRAE), Shanghai, China, 29–31 December 2017; pp. 373–378.

8. Asvadi, A.; Garrote, L.; Premebida, C.; Peixoto, P.; Nunes, U.J. DepthCN: Vehicle Detection Using 3D-LIDAR
and ConvNet. In Proceedings of the International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, 16–19 October 2017; pp. 1–6.

9. Fan, Y.C.; Huang, P.K.; Liu, H.K. VLSI Design of a Depth Map Estimation Circuit Based on Structured Light
Algorithm. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 2281–2294. [CrossRef]

10. Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R.; Carter, W.; Glennie, C.; Wang, G.; Lu, Z.; Fernandez-Diaz, J.C.
Airborne DInSAR Results Using Time-Domain Backprojection Algorithm: A Case Study over the Slumgullion
Landslide in Colorado with Validation Using Spaceborne SAR, Airborne LiDAR, and Ground-Based
Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4987–5000. [CrossRef]

11. Kang, Z.; Yang, J.; Zhong, R. A Bayesian-Network-Based Classification Method Integrating Airborne LiDAR
Data with Optical Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1651–1661. [CrossRef]

12. Kolzenburg, S.; Favalli, M.; Fornaciai, A.; Isola, I.; Harris, A.J.L.; Nannipieri, L.; Giordano, D. Rapid Updating
and Improvement of Airborne LIDAR DEMs through Ground-Based SfM 3-D Modeling of Volcanic Features.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 6687–6699. [CrossRef]

13. Kim, D.Y.; Hyeon, J.Y.; Shin, D.H.; Ju, B.C.; Ko, K.N.; Huh, J.C. Measurements and Verification of Ground-based
LiDAR in Complex Terrain. In Proceedings of the International Conference on Renewable Energy Research
and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 1575–1579.

14. Han, X.; Yang, S.; Zhou, F.; Wang, J.; Zhou, D. An Effective Approach for Rock Mass Discontinuity Extraction
Based on Terrestrial LiDAR Scanning 3D Point Clouds. IEEE Access 2017, 5, 26734–26742. [CrossRef]

15. Webster, T. Results from 3 Seasons of Surveys in Maritime Canada Using the Leica Chiroptera II Shallow
Water Topobathymetric Lidar Sensor. In Proceedings of the International Conference on OCEANS, Aberdeen,
UK, 19–22 June 2017; pp. 1–14.

16. Velasco, J.; Molina, I.; Martinez, E.; Arquero, A.; Prieto, J.F. Sea Bottom Classification by Means of Bathymetric
LIDAR Data. IEEE Lat. Am. Trans. 2014, 12, 590–595. [CrossRef]

17. Gonsalves, M.O. Using a Dynamic Ocean Surface to Perform a Geometric Calibration of a Bathymetric
Lidar. In Proceedings of the International Conference on OCEANS, Seattle, WA, USA, 20–23 September 2010;
pp. 1–9.

18. Fan, Y.C.; Chen, Y.C.; Chou, S.Y. Vivid-DIBR Based 2D to 3D Image Conversion System for 3D Display.
IEEE/OSA J. Disp. Technol. 2014, 10, 887–898.

19. Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8,
330–334. [CrossRef]

20. Despain, A.M. Fourier Transform Computers Using CORDIC Iterations. IEEE Trans. Comput. 1974, C-23,
993–1001. [CrossRef]

21. Li, J.; Fang, J.; Li, B.; Zhao, Y. Study of CORDIC Algorithm Based on FPGA. In Proceedings of the Chinese
Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 4338–4343.

22. Nguyen, H.T.; Nguyen, X.T.; Pham, C.K.; Hoang, T.T.; Le, D.H. A Low-resource Low-latency Hybrid Adaptive
CORDIC in 180-nm CMOS Technology. In Proceedings of the IEEE Region 10 Conference (TENCON), Macao,
China, 1–4 November 2015; pp. 1–4.

23. Nguyen, H.T.; Nguyen, X.T.; Pham, C.K.; Hoang, T.T.; Le, D.H. A Parallel Pipeline CORDIC Based on
Adaptive Angle Selection. In Proceedings of the 2016 International Conference on Electronics, Information,
and Communications (ICEIC), Da Nang, Vietnam, 27–30 January 2016; pp. 1–4.

24. Hoang, T.T.; Le, D.H.; Nguyen, H.T.; Nguyen, X.T.; Pham, C.K. A Low-resource Low-Latency Hybrid
Adaptive CORDIC with Floating-point Precision. In Proceedings of the 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016; pp. 2158–2161.

25. Qi, Z.; Cabe, A.C.; Jones, R.T.; Stan, M.R. CORDIC Implementation with Parameterizable ASIC/SoC Flow.
In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), Concord, CA, USA, 18–21 March 2010;
pp. 13–16.

26. Wu, C.F.; Shiue, M.T. FPGA Prototyping for CORDIC-Based OFDM Baseband Receiver. In Proceedings of the
Conference on Electron Devices and Solid-State Circuits (EDSSC), Chengdu, China, 18–20 June 2014; pp. 1–2.

http://dx.doi.org/10.1109/TVLSI.2014.2357844
http://dx.doi.org/10.1109/JSTARS.2017.2737362
http://dx.doi.org/10.1109/JSTARS.2016.2628775
http://dx.doi.org/10.1109/TGRS.2016.2587798
http://dx.doi.org/10.1109/ACCESS.2017.2771201
http://dx.doi.org/10.1109/TLA.2014.6868859
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/T-C.1974.223800

Sensors 2019, 19, 5412 28 of 28

27. Ray, K.C.; Dhar, A.S. CORDIC-Based Unified VLSI Architecture for Implementing Window Functions for
Real Time Spectral Analysis. IEE Proc. Circuits Devices Syst. 2006, 153, 539–544. [CrossRef]

28. Meng, B.; Wang, Y.; Sun, W.; Yuan, X. A Novel Diagnosis Method for a Hall Plates-Based Rotary Encoder
with a Magnetic Concentrator. Sensors 2014, 14, 13980–13998. [CrossRef] [PubMed]

29. Xia, D.; Yu, C.; Wang, Y. A Digitalized Silicon Microgyroscope Based on Embedded FPGA. Sensors 2012, 12,
13150–13166. [CrossRef] [PubMed]

30. Min, J.H.; Kim, S.W.; Swartzlander, E.E. A Floating-Point Fused FFT Butterfly Arithmetic Unit with Merged
Multiple-Constant Multipliers. In Proceedings of the Conference Record of the Forty Fifth Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011;
pp. 520–524.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/ip-cds:20050280
http://dx.doi.org/10.3390/s140813980
http://www.ncbi.nlm.nih.gov/pubmed/25090417
http://dx.doi.org/10.3390/s121013150
http://www.ncbi.nlm.nih.gov/pubmed/23201990
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Method
	Light Detection and Ranging (LiDAR) Sensing System Overview
	Three-Dimensional (3D) Mobile LiDAR Packet Decoding
	Three-Dimensional Point-Cloud Map Reconstruction
	COordinate Rotation DIgital Computer (CORDIC) Iterative Reduction Algorithm

	Mobile LiDAR Sensing Circuit and Chip Design
	System Architecture
	Main Controller
	CORDIC Angle Calculator
	CORDIC Horizontal Angle Calculator
	CORDIC Vertical Angle Calculator
	Angle Normalization
	XYZ Iteration Architecture
	Corrected Bit-Length Factor
	Coordinate Calculator

	Experimental Results
	Experimental Environment
	Point-Cloud Map Reconstruction Experimental Results
	Processing Time
	Integrated Circuit Implementation
	Chip Performance Comparison

	Conclusions
	References

