
sensors

Article

Optimized LOAM Using Ground Plane Constraints
and SegMatch-Based Loop Detection

Xiao Liu 1,2,*, Lei Zhang 2, Shengran Qin 2,3, Daji Tian 2, Shihan Ouyang 2,3 and Chu Chen 1,2

1 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110016, China;
chenchu@siasun.com

2 Shenyang SIASUN Robot & Automation Co., LTD., Shenyang 110168, China; zhanglei@siasun.com (L.Z.);
qinshengran@siasun.com (S.Q.); tiandaji@gmail.com (D.T.); ouyangshihan@siasun.com (S.O.)

3 School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
* Correspondence: 1801936@stu.neu.edu.cn

Received: 5 November 2019; Accepted: 6 December 2019; Published: 9 December 2019
����������
�������

Abstract: Reducing the cumulative error in the process of simultaneous localization and mapping
(SLAM) has always been a hot issue. In this paper, in order to improve the localization and mapping
accuracy of ground vehicles, we proposed a novel optimized lidar odometry and mapping method
using ground plane constraints and SegMatch-based loop detection. We only used the lidar point
cloud to estimate the pose between consecutive frames, without any other sensors, such as Global
Positioning System (GPS) and Inertial Measurement Unit (IMU). Firstly, the ground plane constraints
were used to reduce matching errors. Then, based on more accurate lidar odometry obtained
from lidar odometry and mapping (LOAM), SegMatch completed segmentation matching and loop
detection to optimize the global pose. The neighborhood search was also used to accomplish the loop
detection task in case of failure. Finally, the proposed method was evaluated and compared with the
existing 3D lidar SLAM methods. Experiment results showed that the proposed method could realize
low drift localization and dense 3D point cloud map construction.

Keywords: SLAM; lidar; ground plane constraints; SegMatch; loop detection

1. Introduction

Over the last couple of decades, the application field of simultaneous localization and mapping
(SLAM) has been paid more and more attention, especially in an intelligent vehicle. Compared
with the visual sensor, the laser sensor has the advantages of high measurement accuracy, strong
anti-interference ability, and wide sensing range, so the laser-based SLAM has higher positioning
accuracy and better robustness. In the case of only using the lidar sensor, the pose change can only
be calculated by matching between consecutive frames. In order to meet the real-time requirements,
the pose estimation error obtained by the matching between frames and frames gradually increases
when time changes, which is a typical problem in SLAM. Researchers have proposed loop detection
algorithms to optimize global maps, thereby reducing drift errors. Unfortunately, the laser point cloud
has only position information and lacks color information, so the environmental information features
are less, which brings greater challenges to the laser SLAM. In addition, existing solutions for 3D
closed-loop detection are computationally demanding.

In the existing 3D lidar-SLAM algorithm, lidar odometry and mapping (LOAM) [1] has been
leading the way for the performance on the KITTI dataset, but the LOAM algorithm has only lidar
odometry and no loop closure detection. This causes the drift error to increase over time. SegMatch [2]
is a recognition algorithm that requires real-time odometry and does not work well when only using a
lidar sensor.

Sensors 2019, 19, 5419; doi:10.3390/s19245419 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/24/5419?type=check_update&version=1
http://dx.doi.org/10.3390/s19245419
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5419 2 of 19

Motivated by the discussion above, we proposed optimized lidar odometry and mapping method
using ground plane constraints and SegMatch-based loop detection, which not only achieved robust
pose estimation but also optimized global poses when detecting loop-closure. The main contributions
of this paper were as follows:

1. We proposed optimized lidar odometry and mapping method. Ground plane constraints based
on random sample consensus (RANSAC) [3] were added to reduce the matching errors. At the
same time, SegMatch could perform loop detection efficiently so that the global pose could
be optimized.

2. In order to verify our proposed solutions, extensive experiments were carried out in a variety
of environments. Experiments showed that our method was suitable for completing inspection
tasks and could also work well in the long-distance and large-scale outdoor environment.

The rest of the paper is organized as follows: Section 2 describes the related work about various
point cloud registration and loop detection algorithms; Section 3 describes the proposed method in
detail; Section 4 presents an experiment and analysis in different environment; and in the last section,
the conclusions and expectations for future work are presented.

2. Related Work

The lidar-based SLAM has been the cornerstone of mobile robot mapping and navigation research
for the past 20 years. Compared with visual sensors, lidar can provide more stable and accurate
information and is less subject to external interference. Therefore, the laser can provide a more reliable
solution for SLAM. The main work of lidar-based SLAM is frame matching, which is used to predict
the position transformation between two adjacent frames. Typical point cloud registration methods
are mainly iterative closest point (ICP) [4] and normal distribution transformation (NDT) [5]. When
the number of point clouds is large, ICP will waste a lot of computing time. When NDT’s grid is set
to be large, the matching accuracy is poor. Featured-based matching methods are more and more
popular. [6] and [7] presented a key point selection algorithm, which calculated point curvature. [8]
proposed a plane-based registration algorithm, but it could only be applied to indoor environments
with many planes, and environments with fewer outdoor plane features limit such methods.

A low-drift and real-time lidar odometry and mapping (LOAM) method was proposed in [1]
and [9]. The features are extracted by calculating the roughness of each point. The low roughness is the
planar feature, and the roughness is the edge feature. Considering the real-time nature of the system,
a combination of high-frequency coarse lidar odometry estimation and low-frequency accurate motion
estimation is used. LOAM’s resulting accuracy is the best-achieved method that only uses lidar to
estimate pose on the KITTI odometry benchmark site [10]. However, LOAM has no loop detection,
and the accumulated error cannot be corrected.

Techniques for loop detection in 3D data can be broadly classified into two main categories. The one
is local keypoint detection and matching, and the other one is global descriptor matching. The first
category typically detects significant key points in the point cloud, calculates signatures for these
keypoint locations, builds bag-of-words (BoWs), and finally matches them in different scans [11]. There
are also many popular methods proposed, such as intrinsic shape signatures (ISSs) [12], Harris3D [13],
Sift 3D [14], NARF [15], as well as many descriptors, such as spin images [16] and SHOT [17]. However,
the detection of high repeatable key points remains a big challenge. For the lack of high repeatability
issues, global descriptors, such as point feature histograms (PFH) [18] and viewpoint feature histograms
(VFH) [19], have been proposed for using valuable techniques to extract features from point clouds.
Recently, researchers tend to apply convolutional neural networks (CNN) to learn feature descriptors
and to match their metrics in a uniform manner [20,21]. However, the limitation of using the deep
learning method is that a large amount of training data is required, and when the similarity between the
training data and the application environment is low, they cannot achieve good results. For example,
using the training data of the indoor environment to model the outdoor environment is not effective.

Sensors 2019, 19, 5419 3 of 19

Moral et al. [22] proposed a place recognition algorithm, which was based on plane-based maps.
However, their method could only be applied to indoor environments.

Segment-based place recognition in 3D point clouds (SegMatch) was presented in [2]. SegMatch
first proposed a method based on segments by using a deep learning method. Random forest was
used to match continuous segments. They firstly performed geometric verification tests on segment
descriptors, which were fed to the recognition model. SegMatch extracts features, such as vehicles, trees,
and buildings, so it could be used in both indoor and outdoor environments. However, SegMatch relies
on the initial pose and does not work without a Global Positioning System (GPS) sensor. SegMatch’s
construction of maps is less accurate and could only be used for map recognition.

At present, many slam methods, including closed-loop detection, have also appeared. [23]
proposed a lightweight and ground-optimized slam method. It can complete the mapping work well,
but its closed-loop detection sometimes has errors or missed recognition. [24] used the implicit moving
least-squares (IMLS) surface to represent the model, thereby increasing the robustness of the system.
At the same time, in addition to the above several traditional slam methods, the odometry estimation
method using deep learning [25,26] has also been studied by many researchers but has not performed
on par yet. Recently, Behley and Stachniss proposed a surfel-based motion estimation and mapping
method, called SuMa [27]. SuMa allows us to represent large-scale environments and also maintains
detailed geometric information of point clouds. Sparse point clouds are a challenge for it.

3. Proposed Methods

3.1. System Overview

An overview of the proposed framework, which only received data from the lidar sensor, is shown
in Figure 1. The system was mainly composed of four modules: scan preprocessing, lidar odometry,
map construction, and loop closure. The first module mainly reduced noise, segmented the ground
point cloud, and extracted feature point cloud from the original point cloud data. Under the constraints
of the ground plane, the second module calculated the relative pose transformation between two
consecutive frames roughly and quickly. The third module optimized the current pose based on the
built map and added the current frame to the map. The entire map consisted of frames’ poses and
point clouds. In addition, the optimized pose was transmitted to the fourth part. The loop detection in
the last module was mainly composed of two parts, one was the neighborhood search detection, which
only needed the pose data, and the other was the SegMatch detection, which needed the frame pose
and the lidar point cloud. After detecting the loop, the module optimized the entire map. The system
generated maps in real-time at a high frequency of 10 Hz and optimized the whole of the map at a low
frequency of 2 Hz. Compared with the original LOAM framework of [1] and [8], our method paid
more attention to the performance of ground vehicles. The details of each module are shown below.

Sensors 2019, 19, 5419 4 of 19Sensors 2019, 19, x FOR PEER REVIEW 4 of 19

Figure 1. The system framework of our proposed optimized LOAM (lidar odometry and mapping)
using ground plane constraints and SegMatch-based loop detection. The red arrows represent the
input, the black arrows represent the process of the data transmission, the green arrows represent
map generation, and the blue arrows represent the map call.

3.2. Scan Preprocessing

The module mainly consisted of two parts, one was ground plane segmentation, and the other
was feature extraction. The module mainly preprocessed the acquired original lidar point cloud.
Firstly, during the robot's movement, the data obtained by the laser would cause some distortion.
Because we only had a lidar sensor, we assumed that the robot was moving at a constant speed, and
the relative motion of two consecutive frames was similar. We directly used the relative motion of
the previous frame to compensate for the current frame to remove distortion. What’s more, noise
reduction was performed on the point cloud to eliminate individual outliers 𝐹௧. Then, the filtered
point cloud 𝐹௧ was segmented to extract the ground plane point cloud. At last, feature extraction
was performed after the ground plane was removed. The ground plane point cloud 𝐹௧, the extracted
plane features 𝐹௧, and the edge features 𝐹௧ were transmitted to the next module. A visualization of
a point cloud before and after ground plane segmentation is shown in Figure 2a–d.

(a)

(b)

Figure 1. The system framework of our proposed optimized LOAM (lidar odometry and mapping)
using ground plane constraints and SegMatch-based loop detection. The red arrows represent the
input, the black arrows represent the process of the data transmission, the green arrows represent map
generation, and the blue arrows represent the map call.

3.2. Scan Preprocessing

The module mainly consisted of two parts, one was ground plane segmentation, and the other was
feature extraction. The module mainly preprocessed the acquired original lidar point cloud. Firstly,
during the robot’s movement, the data obtained by the laser would cause some distortion. Because we
only had a lidar sensor, we assumed that the robot was moving at a constant speed, and the relative
motion of two consecutive frames was similar. We directly used the relative motion of the previous
frame to compensate for the current frame to remove distortion. What’s more, noise reduction was
performed on the point cloud to eliminate individual outliers Ft

o. Then, the filtered point cloud Ft
f was

segmented to extract the ground plane point cloud. At last, feature extraction was performed after the
ground plane was removed. The ground plane point cloud Ft

g, the extracted plane features Ft
p, and the

edge features Ft
e were transmitted to the next module. A visualization of a point cloud before and after

ground plane segmentation is shown in Figure 2a–d.Sensors 2019, 19, x FOR PEER REVIEW 5 of 19

(a)

(b)

(c)

(d)

Figure 2. The original point cloud is shown in (a). The red points in (b) are ground plane points. Points
in (c) and (d) are edge points and plane points, respectively.

3.2.1. Ground Plane Segmentation

The ground plane point cloud is a good constraint on the pose estimation of the ground vehicle.
For ground vehicles, ground point clouds tend to occupy one-third of the point cloud. Splitting out
the ground plane point cloud greatly reduces the computation time of the later feature extraction.
How to spend the shortest time to complete the ground plane segmentation is a key issue. This paper
chose a random sample consensus (RANSAC) [3] to solve the above problem. According to the basic
principle of RANSAC, three points are selected from each frame of the point cloud to obtain a plane.
The commonly used plane equation is: ax by cz ൌ d, where 𝑎ଶ 𝑏ଶ 𝑐ଶ ൌ 1, 𝑑 0, ሺa, b, cሻ is
the plane normal vector, and d is the distance from the lidar sensor to the plane. The specific steps
are as follows:

1. After the noise reduction processing, randomly select three points 𝑃ଵሺ𝑥ଵ, 𝑦ଵ, 𝑧ଵሻ,𝑃ଶሺ𝑥ଶ, 𝑦ଶ, 𝑧ଶሻ, 𝑃ଷሺ𝑥ଷ, 𝑦ଷ, 𝑧ଷሻ in the point cloud data P.
2. The plane S is determined according to three points 𝑃ଵሺ𝑥ଵ, 𝑦ଵ, 𝑧ଵሻ,𝑃ଶሺ𝑥ଶ, 𝑦ଶ, 𝑧ଶሻ,𝑃ଷሺ𝑥ଷ, 𝑦ଷ, 𝑧ଷሻ. The

values of the a, b, c, d parameters are determined by Equation (1).

൝𝑎𝑥ଵ 𝑏𝑦ଵ 𝑐𝑧ଵ ൌ 𝑑𝑎𝑥ଶ 𝑏𝑦ଶ 𝑐𝑧ଶ ൌ 𝑑𝑎𝑥ଷ 𝑏𝑦ଷ 𝑐𝑧ଷ ൌ 𝑑 (1)

3. Count the number of points on the plane S in P. Set the plane thickness ε (point to plane
distance threshold) and calculate the distance di from any point 𝑃ሺ𝑥, 𝑦, 𝑧ሻ in P to plane S,
where di is calculated by Equation (2): 𝑑 ൌ |𝑎𝑥 𝑏𝑦 𝑐𝑧 െ 𝑑|. (2)

Then, count the number of points of 𝑑 ൏ 𝜀, and record it as the score of the plane S.
4. Repeat the above three steps K times and select the plane 𝑆௫ with the highest score. 1 െ ሺ1 െ 𝐶𝐶ିଵିଵ𝐶ିଶିଶሻ ൌ 𝜑 (3)

In Equation (3), m is the number of points in the point cloud P, n is the number of points on the
plane S, and φ is the probability that the ground plane is selected after K times of sampling.
Since both m and n are large, we used approximate calculations here, and the simplified formula
is as follows:

Figure 2. The original point cloud is shown in (a). The red points in (b) are ground plane points. Points
in (c) and (d) are edge points and plane points, respectively.

Sensors 2019, 19, 5419 5 of 19

3.2.1. Ground Plane Segmentation

The ground plane point cloud is a good constraint on the pose estimation of the ground vehicle.
For ground vehicles, ground point clouds tend to occupy one-third of the point cloud. Splitting out
the ground plane point cloud greatly reduces the computation time of the later feature extraction.
How to spend the shortest time to complete the ground plane segmentation is a key issue. This paper
chose a random sample consensus (RANSAC) [3] to solve the above problem. According to the basic
principle of RANSAC, three points are selected from each frame of the point cloud to obtain a plane.
The commonly used plane equation is: ax + by + cz = d, where a2 + b2 + c2 = 1, d > 0, (a, b, c) is the
plane normal vector, and d is the distance from the lidar sensor to the plane. The specific steps are
as follows:

1. After the noise reduction processing, randomly select three points P1(x1, y1, z1), P2(x2, y2, z2),
P3(x3, y3, z3) in the point cloud data P.

2. The plane S is determined according to three points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3).
The values of the a, b, c, d parameters are determined by Equation (1).

ax1 + by1 + cz1 = d
ax2 + by2 + cz2 = d
ax3 + by3 + cz3 = d

(1)

3. Count the number of points on the plane S in P. Set the plane thickness ε (point to plane distance
threshold) and calculate the distance di from any point Pi(xi, yi, zi) in P to plane S, where di is
calculated by Equation (2):

di =
∣∣∣axi + byi + czi − d

∣∣∣. (2)

Then, count the number of points of di < ε, and record it as the score of the plane S.
4. Repeat the above three steps K times and select the plane Sx with the highest score.

1− 1−Cn
mCn−1

m−1Cn−2
m−2

K = ϕ (3)

In Equation (3), m is the number of points in the point cloud P, n is the number of points on the
plane S, and ϕ is the probability that the ground plane is selected after K times of sampling. Since
both m and n are large, we used approximate calculations here, and the simplified formula is as
follows:

1− 1− 1− τ3K = ϕ. (4)

In Equation (4), τ is the probability that the point is outside the plane Sx, and after simplification,
K is obtained, as shown in Equation (5):

K =
log(1−ϕ)

log 1− 1− τ3 . (5)

5. Re-fitting the selected ground plane data to obtain a ground plane parameter with less error.

According to the above steps, the ground plane point cloud can be extracted, as shown in Figure 2b.
In this process, we first used a pass-through filter to extract point clouds ranging from 1.5 m to 2 m
below the laser to avoid extracting the wall surface. We set the distance threshold to 0.2 and the max
iteration number to 100. The ground plane point cloud was transmitted directly to the ground plane
constraints of the next module. Feature extraction was performed on the remaining point clouds that
did not contain the ground plane for later point cloud matching.

Sensors 2019, 19, 5419 6 of 19

3.2.2. Feature Extraction

The feature extraction module was similar to the method in LOAM [1]. Let S be the set of
consecutive points of pi in a certain line of the lidar. pi is in the middle of S. We could calculate the
curvature of the pi point in S according to the Equation (6).

c =
1

|S|·||ri||

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

jεS, j,i

(
r j − ri

)∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (6)

Features were extracted using a method of calculating the curvature of each point. A point with a
large curvature represented an edge feature, and a point with a small curvature represented a planar
feature. Edge points and plane points are, respectively, shown in Figure 2c,d. However, unlike LOAM
using all raw points, we extracted features from segmented points, which did not contain ground
plane points. The number of segmented points occupied only two-thirds of the original point cloud
data, which greatly reduced the computation time for feature extraction. The planar features and edge
features extracted from each frame segmentation point cloud were transmitted to the next module.

3.3. Lidar Odometry

After obtaining ground plane points, edge points, and plane points, the module was committed
to roughly performing pose estimation based on two consecutive frames of point clouds. In the
LOAM’s method, the edge points Ft

e and the plane points Ft
p of the current frame were used to

perform point-to-edge and point-to-plane scan-matching with the points Ft−1
e and Ft−1

p of the previous
frame. However, for ground vehicles, if the above constraints were only used for matching, a serious
matching error would generate, so we added a ground plane constraint to the matching constraints to
reduce the error. The ground plane had a good constraint on

[
tz,θroll,θpitch

]
, but had no constraint on[

tx, ty,θyaw
]
. Let the plane equation of the previous ground plane point cloud be ax + by + cz = d,

where a2 + b2 + c2 = 1, d > 0, (a, b, c) is the plane normal vector. The distance from the point
pgi

(
xgi , ygi , zgi

)
in the current ground plane point cloud Ft

g to the plane was di. In order to ensure the
robustness of the system, we did not directly use the plane parameters provided by RANSAC. Then,
the following cost function was minimized to obtain the optimal solution:

min

∑
piεFt

g

(
axgi + bygi + czgi − d

)2

. (7)

We solved the 6DOF pose
[
tx, ty, tz,θroll,θpitch,θyaw

]
of the robot based on matching the point

cloud of frame t and frame t − 1.
[
tz,θroll,θpitch

]
were mainly decided by ground plane constraints,

and the remaining
[
tx, ty,θyaw

]
were mainly decided by the distance of point-to-edge and point-to-plane.

If ground plane constraints were lost,
[
tx, ty, tz,θroll,θpitch,θyaw

]
were all determined by the distance

of point-to-edge and point-to-plane. We used the least-square solver method in Ceres Solver [28] to
solve poses. Compared with LOAM, we had a more efficient search method, so we reduced a lot of
calculation time.

3.4. Map Construction

The pose error estimated by two consecutive frames was large, so we used the built map to
optimize the current pose. This module Map Construction matched the edge point Ft

e and the plane
point Ft

p with the features in the local map Mt−1 on the basis of the ground plane constraints and used
the adaptive down-sampling method to improve the optimization efficiency. If we would have ignored
the previous module Lidar Odometry and used this method directly for pose optimization, we would

Sensors 2019, 19, 5419 7 of 19

have spent a lot of time, and the system could not be real-time, so we used the frame pose Tt
L estimated

by the previous module Lidar Odometry as the initial value and combined the pose transformation
Tt−1

M to get the pose Tt
M in the world coordinate system. The conversion relationship is as shown in

Equation (8).
Tt

M = Tt−1
M Tt

L (8)

Finally, after the frame point cloud Ft and the pose Tt
M were associated, the point cloud was

converted into Qt in the world coordinate system, as shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 19

𝑇ெ௧ = 𝑇ெ௧ିଵ𝑇௧ (8)

Finally, after the frame point cloud 𝐹௧ and the pose 𝑇ெ௧ were associated, the point cloud was
converted into 𝑄௧ in the world coordinate system, as shown in Figure 3.

Figure 3. Illustration of point cloud map construction.

In order to facilitate the global optimization of loop detection, we recorded the feature points 𝐹௧
and corresponding pose 𝑇ெ௧ of each frame to form a global map N௧ିଵ, instead of using the method
of saving all point clouds into a cube in LOAM [1]. N௧ିଵ is as shown in Equation (9). N௧ିଵ = ൛𝐹ଵ, … , 𝐹௧ିଵ, 𝐹ଵ, … , 𝐹௧ିଵ, 𝐹ଵ, … , 𝐹௧ିଵ, 𝑇ெଵ , … , 𝑇ெ௧ିଵൟ (9)

This was somewhat similar to the method of LeGO-LOAM [23], but this paper also added the
ground plane feature point 𝐹 to the global map N௧ିଵ. We could construct the local map M௧ିଵ by
using all the feature points in a certain range near the current feature point pose, but when there were
more feature points in the range, the optimization time was increased. The pose estimated by the
second module Lidar Odometry was not very accurate, so we used the third module Map Construction
to optimize it. Under normal circumstances, the optimization took more time, so the third module
Map Construction could not complete real-time optimization; thus, we used adaptive down-sampling
to improve the real-time performance of the third module Map Construction. We had two ways to do
adaptive down-sampling. The first method was to sample according to the distance from the point
to the lidar. The laser was a divergent device. The closer it was to the lidar, the denser was the point
cloud, so we divided the point cloud into three parts according to the distance. The closer the feature
point cloud found to each frame was to the lidar, the fewer points were collected. The second way
was to automatically adjust the search range based on the number of key points. At the same time, in
order to ensure real-time optimization, we also performed additional down-sampling on the ground
plane point cloud 𝐹.

After finding a suitable point cloud to form a local map M௧ିଵ, the pose 𝑇ெ௧ should be optimized
so that the point cloud 𝑄௧ could be well-matched with the local map M௧ିଵ. Unlike LOAM [1], we
still used the Ceres Solver [28] method to solve the problem to optimize the pose. Similarly, we added
ground plane constraints to the optimization to obtain a more accurate pose estimation.

3.5. Loop Closure

The module consisted mainly of two parts. One was loopback detection, and the other was global
optimization. When the system ran, it inevitably accumulated errors, so it could not constitute a more
accurate global map. Thus, we added closed-loop detection. When this frame and the historical frame
coincided, we optimized the global pose.

3.5.1. Loop Detection

After estimating the real-time pose of each frame, we needed to perform loop detection. The
overview of loop detection is shown in Figure 4. Loop detection consisted of two parts, one was
SegMatch, and the other was neighborhood search. Neighborhood search was only used to assist
SegMatch for closed-loop detection only when SegMatch missed detection. The input was the pose 𝑇ெ௧ of the current frame and the laser point cloud raw data. The output was the pose 𝑇ெ௧ಲ of the
current keyframe and the pose 𝑇ெ௧ಳ of the historical keyframe with a high matching degree. At the

Figure 3. Illustration of point cloud map construction.

In order to facilitate the global optimization of loop detection, we recorded the feature points Ft

and corresponding pose Tt
M of each frame to form a global map Nt−1, instead of using the method of

saving all point clouds into a cube in LOAM [1]. Nt−1 is as shown in Equation (9).

Nt−1 =
{
F1

e , . . . , Ft−1
e , F1

p, . . . , Ft−1
p , F1

g, . . . , Ft−1
g , T1

M, . . . , Tt−1
M

}
(9)

This was somewhat similar to the method of LeGO-LOAM [23], but this paper also added the
ground plane feature point Fg to the global map Nt−1. We could construct the local map Mt−1 by
using all the feature points in a certain range near the current feature point pose, but when there were
more feature points in the range, the optimization time was increased. The pose estimated by the
second module Lidar Odometry was not very accurate, so we used the third module Map Construction to
optimize it. Under normal circumstances, the optimization took more time, so the third module Map
Construction could not complete real-time optimization; thus, we used adaptive down-sampling to
improve the real-time performance of the third module Map Construction. We had two ways to do
adaptive down-sampling. The first method was to sample according to the distance from the point to
the lidar. The laser was a divergent device. The closer it was to the lidar, the denser was the point
cloud, so we divided the point cloud into three parts according to the distance. The closer the feature
point cloud found to each frame was to the lidar, the fewer points were collected. The second way was
to automatically adjust the search range based on the number of key points. At the same time, in order
to ensure real-time optimization, we also performed additional down-sampling on the ground plane
point cloud Fg.

After finding a suitable point cloud to form a local map Mt−1, the pose Tt
M should be optimized so

that the point cloud Qt could be well-matched with the local map Mt−1. Unlike LOAM [1], we still
used the Ceres Solver [28] method to solve the problem to optimize the pose. Similarly, we added
ground plane constraints to the optimization to obtain a more accurate pose estimation.

3.5. Loop Closure

The module consisted mainly of two parts. One was loopback detection, and the other was global
optimization. When the system ran, it inevitably accumulated errors, so it could not constitute a more
accurate global map. Thus, we added closed-loop detection. When this frame and the historical frame
coincided, we optimized the global pose.

Sensors 2019, 19, 5419 8 of 19

3.5.1. Loop Detection

After estimating the real-time pose of each frame, we needed to perform loop detection.
The overview of loop detection is shown in Figure 4. Loop detection consisted of two parts, one was
SegMatch, and the other was neighborhood search. Neighborhood search was only used to assist
SegMatch for closed-loop detection only when SegMatch missed detection. The input was the pose Tt

M
of the current frame and the laser point cloud raw data. The output was the pose TtA

M of the current
keyframe and the pose TtB

M of the historical keyframe with a high matching degree. At the same time,
we saved the feature point cloud extracted in each frame into the map. The neighborhood search
only needed the pose data of the current frame, and SegMatch needed not only the pose data but also
the original laser point cloud data of the current frame. When we received the pose Tt

M of the frame,
the latest laser point cloud might be Lt+3; thus, the pose Tt

M of the frame lagged behind the latest
original laser point cloud data Lt+3. But SegMatch needed the frame pose Tt

M and the laser point cloud
Lt, so we had frame alignment of the two data. We kept the latest ten frames of laser point cloud data
in a buffer {Lt−9, . . . , Lt}. When we got the pose Tt

M of a new frame, we looked for the corresponding
laser point cloud data Lt in the buffer based on the timestamp information.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 19

same time, we saved the feature point cloud extracted in each frame into the map. The neighborhood
search only needed the pose data of the current frame, and SegMatch needed not only the pose data
but also the original laser point cloud data of the current frame. When we received the pose 𝑇ெ௧ of
the frame, the latest laser point cloud might be 𝐿௧ାଷ; thus, the pose 𝑇ெ௧ of the frame lagged behind
the latest original laser point cloud data 𝐿௧ାଷ. But SegMatch needed the frame pose 𝑇ெ௧ and the laser
point cloud 𝐿௧, so we had frame alignment of the two data. We kept the latest ten frames of laser
point cloud data in a buffer {𝐿௧ିଽ, … , 𝐿௧}. When we got the pose 𝑇ெ௧ of a new frame, we looked for the
corresponding laser point cloud data 𝐿௧ in the buffer based on the timestamp information.

Figure 4. The overview of loop detection. The red arrow represents the input, the blue arrow
represents the output, and the black arrow represents the transmission of the data.

Since the pose of each frame was stored, the structure of the KD Tree could be used to manage
the pose set 𝑇ெ, which could greatly improve the search efficiency. Then, the historical pose 𝑇ெ in
a certain range near the current pose 𝑇ெ௧ was searched, and the point cloud of current pose 𝑇ெ௧ was
matched with the point cloud of pose 𝑇ெ using normal distribution transformation (NDT) [4]
algorithm. If the score of matching was good enough, it was considered that the loop was detected.
The pose 𝑇ெ with a short trajectory to the current pose 𝑇ெ௧ was to be excluded. This was the
neighborhood search method, and the SegMatch is as described below.

SegMatch is a place recognition algorithm relying on matching 3D segmented point cloud. Based
on the current frame pose 𝑇ெ௧ and point cloud 𝐿௧, SegMatch could perform segmentation matching
and loop detection. Unlike SegMap [29], we directly used the pose that LOAM estimated without
using iterative closest point (ICP) [30] algorithm for matching estimates. We didn’t use SegMatch to
optimize the global pose but for the loop detection. The SegMatch algorithm is mainly divided into
four steps:

1. Segmentation. After the pose 𝑇ெ௧ was associated with the point cloud 𝐿௧, the local point cloud
was extracted in the neighborhood of the current pose 𝑇ெ௧ . The extracted point cloud was filtered
using a voxel grid, and then the filtered point cloud was segmented into a set of point clusters 𝐶௧ using the "Cluster-All Method" of [31].

2. Feature Extraction. Feature extraction was performed on the segmented cluster 𝐶௧ using
several different descriptors. The descriptors used in this paper were calculated based on the
feature vector 𝑓௧ = [𝑓ଵ𝑓ଶ … 𝑓]. One of the descriptors contained seven features, as proposed in
[32]: linearity, planarity, scattering, omnivariance, anisotropy, eigenentropy, and change of
curvature. We stored the feature point cloud 𝐹௦௧ extracted every frame into the map N௧ିଵ for
global recognition later, as shown in Figure 5.

Figure 4. The overview of loop detection. The red arrow represents the input, the blue arrow represents
the output, and the black arrow represents the transmission of the data.

Since the pose of each frame was stored, the structure of the KD Tree could be used to manage the
pose set TM, which could greatly improve the search efficiency. Then, the historical pose Ti

M in a certain
range near the current pose Tt

M was searched, and the point cloud of current pose Tt
M was matched

with the point cloud of pose Ti
M using normal distribution transformation (NDT) [4] algorithm. If the

score of matching was good enough, it was considered that the loop was detected. The pose Ti
M with a

short trajectory to the current pose Tt
M was to be excluded. This was the neighborhood search method,

and the SegMatch is as described below.
SegMatch is a place recognition algorithm relying on matching 3D segmented point cloud. Based

on the current frame pose Tt
M and point cloud Lt, SegMatch could perform segmentation matching and

loop detection. Unlike SegMap [29], we directly used the pose that LOAM estimated without using
iterative closest point (ICP) [30] algorithm for matching estimates. We didn’t use SegMatch to optimize
the global pose but for the loop detection. The SegMatch algorithm is mainly divided into four steps:

1. Segmentation. After the pose Tt
M was associated with the point cloud Lt, the local point cloud

was extracted in the neighborhood of the current pose Tt
M. The extracted point cloud was filtered

using a voxel grid, and then the filtered point cloud was segmented into a set of point clusters Ct

using the “Cluster-All Method” of [31].
2. Feature Extraction. Feature extraction was performed on the segmented cluster Ct using several

different descriptors. The descriptors used in this paper were calculated based on the feature

Sensors 2019, 19, 5419 9 of 19

vector f t =
[

f i
1 f i

2 . . . f i
m

]
. One of the descriptors contained seven features, as proposed in [32]:

linearity, planarity, scattering, omnivariance, anisotropy, eigenentropy, and change of curvature.
We stored the feature point cloud Ft

s extracted every frame into the map Nt−1 for global recognition
later, as shown in Figure 5.Sensors 2019, 19, x FOR PEER REVIEW 9 of 19

Figure 5. The global map, containing feature point cloud extracted by SegMatch.

3. Segment Matching. The extracted point cluster 𝐶௧ of the current frame was matched with the
extracted set of point clusters {𝐶ଵ, … , 𝐶௧} in the global map N௧ିଵ. The point cluster 𝐶 in the
set of point clusters {𝐶ଵ, … , 𝐶௧} was associated with the pose 𝑇ெ , and the pose 𝑇ெ was updated
in real-time. To determine whether there was a match between the current frame and the
historical frame, we chose the deep learning method. In order for the random forest classifier to
identify if the two clusters were matched, we calculated the absolute difference between the two
eigenvectors: ∆𝑓ଵ = ห𝑓ଵ − 𝑓ଵห. (10)

4. Geometric Verification. Finally, the geometric consistency of the segment cluster 𝐶௧ was
determined using random sample consensus (RANSAC) [3], so that the pose 𝑇ெ௧ of the current
frame and the pose 𝑇ெ௫ of the history frame satisfying the condition were obtained.

3.5.2. Global Optimization

When two keyframe poses were detected, we used the GTSAM algorithm [33,34] to optimize the
global pose. The factor graph GTSAM used connects poses using factors, such as constraints and
measurements. GTSAM used a nonlinear optimizer to solve the factor graph to determine the most
likely configuration of the current and past poses. Each time we estimated a new pose, we used the
algorithm framework to establish the constraint between the current frame pose 𝑇ெ௧ and the
previous pose 𝑇ெ௧ିଵ. After receiving the two frame poses 𝑇ெ௧ and 𝑇ெ௫ from the loop detection, we
then established a constraint between the two in the algorithm framework to complete the global
pose optimization. In this way, assuming the noise model of each sensor and actuator is correct,
accurate robot trajectories and environmental maps could be determined.

4. Experiment

We did a series of experiments to evaluate the proposed method. This chapter is divided into
two parts. First, we tested our algorithm on different data sets and showed the results. Second, we
had separately analyzed the improved modules and the operating speed of the system.

4.1. Tests

In this section, we tested with a dataset only containing laser data and compared the results to
other lidar-based SLAM algorithms. We tested our algorithms using the data from HDL-64E and
VLP-16, respectively. In detail, we used the KITTI dataset [10], which was captured by an HDL-64E
in an urban environment, to test our method. In addition, we used our own experimental platform,
which used VLP-16 to sense the environment, to record indoor and outdoor sequences, and tested
them using the proposed method. Our proposed algorithms ran on a laptop computer with 2.2 GHz
quad cores and 6Gib memory in Ubuntu16.04 based on the robot operating system. We used the
voxelized grid approach with a leaf size 0.1 to down-sample the edge point cloud, with a leaf size 0.2

Figure 5. The global map, containing feature point cloud extracted by SegMatch.

3. Segment Matching. The extracted point cluster Ct of the current frame was matched with the

extracted set of point clusters
{
C1, . . . , Ct

}
in the global map Nt−1. The point cluster Ci in the set

of point clusters
{
C1, . . . , Ct

}
was associated with the pose Ti

M, and the pose Ti
M was updated

in real-time. To determine whether there was a match between the current frame and the
historical frame, we chose the deep learning method. In order for the random forest classifier
to identify if the two clusters were matched, we calculated the absolute difference between the
two eigenvectors:

∆ f1 =
∣∣∣∣ f i

1 − f j
1

∣∣∣∣. (10)

4. Geometric Verification. Finally, the geometric consistency of the segment cluster Ct was determined
using random sample consensus (RANSAC) [3], so that the pose Tt

M of the current frame and the
pose Tx

M of the history frame satisfying the condition were obtained.

3.5.2. Global Optimization

When two keyframe poses were detected, we used the GTSAM algorithm [33,34] to optimize
the global pose. The factor graph GTSAM used connects poses using factors, such as constraints and
measurements. GTSAM used a nonlinear optimizer to solve the factor graph to determine the most
likely configuration of the current and past poses. Each time we estimated a new pose, we used the
algorithm framework to establish the constraint between the current frame pose Tt

M and the previous
pose Tt−1

M . After receiving the two frame poses Tt
M and Tx

M from the loop detection, we then established
a constraint between the two in the algorithm framework to complete the global pose optimization.
In this way, assuming the noise model of each sensor and actuator is correct, accurate robot trajectories
and environmental maps could be determined.

4. Experiment

We did a series of experiments to evaluate the proposed method. This chapter is divided into two
parts. First, we tested our algorithm on different data sets and showed the results. Second, we had
separately analyzed the improved modules and the operating speed of the system.

4.1. Tests

In this section, we tested with a dataset only containing laser data and compared the results to
other lidar-based SLAM algorithms. We tested our algorithms using the data from HDL-64E and

Sensors 2019, 19, 5419 10 of 19

VLP-16, respectively. In detail, we used the KITTI dataset [10], which was captured by an HDL-64E
in an urban environment, to test our method. In addition, we used our own experimental platform,
which used VLP-16 to sense the environment, to record indoor and outdoor sequences, and tested
them using the proposed method. Our proposed algorithms ran on a laptop computer with 2.2 GHz
quad cores and 6Gib memory in Ubuntu16.04 based on the robot operating system. We used the
voxelized grid approach with a leaf size 0.1 to down-sample the edge point cloud, with a leaf size 0.2 to
down-sample the plane cloud, and with a leaf size 0.4 to down-sample the ground point cloud for each
laser scan. In order to get more convincing results, we did each experiment five times and calculated
their average.

4.1.1. Tests with KITTI Dataset

We tested our algorithm on the public dataset KITTI. More specifically, we used the sequences “00”
and “05” that contained the most loops where the vehicle revisited the same environment. Sequence
00 lasted 3.7 km, and sequence 05 lasted 2.2 km in an urban environment. We mainly validated the
closed-loop performance of our algorithm using the public dataset. The test of our method over the
datasets ran at real-time speed and only used the lidar of Velodyne HDL64. At the same time, we have
also shown the results of LeGO_LOAM to compare with our method. The experimental results are
shown in Figure 6.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 19

to down-sample the plane cloud, and with a leaf size 0.4 to down-sample the ground point cloud for
each laser scan. In order to get more convincing results, we did each experiment five times and
calculated their average.

4.1.1. Tests with KITTI Dataset

We tested our algorithm on the public dataset KITTI. More specifically, we used the sequences
“00” and “05” that contained the most loops where the vehicle revisited the same environment.
Sequence 00 lasted 3.7 km, and sequence 05 lasted 2.2 km in an urban environment. We mainly
validated the closed-loop performance of our algorithm using the public dataset. The test of our
method over the datasets ran at real-time speed and only used the lidar of Velodyne HDL64. At the
same time, we have also shown the results of LeGO_LOAM to compare with our method. The
experimental results are shown in Figure 6.

(a) 00 using OURS

(b) 05 using OURS

(c) 00 using LeGO_LOAM

(d) 05 using LeGO_LOAM

Figure 6. The result of our algorithm on the KITTI dataset. (a) is sequence 00, and (b) is sequence 05
using our proposed method. (c) is sequence 00, and (d) is sequence 05 using LeGO_LOAM. A1–A4
and B1–B4 are all the loop closure areas.

Both of the sequences were long-distance datasets. The estimation errors inevitably occurred
with time, but we could see from Figure 6 that our algorithm could construct a point cloud map with
global consistency, and the optimization task could be completed well in the revisited areas. It could
be seen that our method was similar to LeGO_LOAM. In order to ensure the real-time performance
of the system, we used a voxel grid approach with a leaf size 0.4 to down-sample the point cloud.
Finally, our algorithm only lost about 50 frames and constructed a dense point cloud map.
LeGO_LOAM's optimization frequency was relatively low, only one-fifth of the keyframes were
retained, so the map was relatively sparse. Figure 6c,d is overlapping and fuzzy, and the details could
not be clearly seen. The areas of A1–A4 and B1–B4 in Figure 6 were the loop closure areas, where the
vehicle passed at least twice. It could be seen that there was only a small drift in these places.

To more intuitively analyze the accuracy of the map we built, we compared the trajectory that
we drew with the provided ground truth. In addition, we compared the trajectory drawn by
LeGO_LOAM with the ground truth to draw an error trajectory map. The results are shown in Figure 7.
It could be seen from Figure 7a,b that the closed-loop optimized trajectory using our method could
well fit the ground truth. Most of the color of the trajectory was blue, indicating that the trajectory
error estimated using our method was small. There were a few errors in the corners, which should
be due to the fact that the car was turning too fast and causing a certain distortion. It was known from
Figure 7c,d that although LeGO_LOAM could realize closed-loop detection, the error trajectory
drawn by Lego_loam had fewer blue areas, indicating that the error was generally larger. In order to
more intuitively see the error size of each figure, we calculated and listed the corresponding errors,
as shown in Table 1. It could be seen from Table 1 that the mean value error and the mean square
error of the map optimized by loop closure using our method were within 1 m in the range of up to

Figure 6. The result of our algorithm on the KITTI dataset. (a) is sequence 00, and (b) is sequence 05
using our proposed method. (c) is sequence 00, and (d) is sequence 05 using LeGO_LOAM. A1–A4 and
B1–B4 are all the loop closure areas.

Both of the sequences were long-distance datasets. The estimation errors inevitably occurred with
time, but we could see from Figure 6 that our algorithm could construct a point cloud map with global
consistency, and the optimization task could be completed well in the revisited areas. It could be seen
that our method was similar to LeGO_LOAM. In order to ensure the real-time performance of the
system, we used a voxel grid approach with a leaf size 0.4 to down-sample the point cloud. Finally,
our algorithm only lost about 50 frames and constructed a dense point cloud map. LeGO_LOAM’s
optimization frequency was relatively low, only one-fifth of the keyframes were retained, so the map
was relatively sparse. Figure 6c,d is overlapping and fuzzy, and the details could not be clearly seen.
The areas of A1–A4 and B1–B4 in Figure 6 were the loop closure areas, where the vehicle passed at
least twice. It could be seen that there was only a small drift in these places.

To more intuitively analyze the accuracy of the map we built, we compared the trajectory that we
drew with the provided ground truth. In addition, we compared the trajectory drawn by LeGO_LOAM
with the ground truth to draw an error trajectory map. The results are shown in Figure 7. It could be
seen from Figure 7a,b that the closed-loop optimized trajectory using our method could well fit the
ground truth. Most of the color of the trajectory was blue, indicating that the trajectory error estimated
using our method was small. There were a few errors in the corners, which should be due to the fact

Sensors 2019, 19, 5419 11 of 19

that the car was turning too fast and causing a certain distortion. It was known from Figure 7c,d that
although LeGO_LOAM could realize closed-loop detection, the error trajectory drawn by Lego_loam
had fewer blue areas, indicating that the error was generally larger. In order to more intuitively see
the error size of each figure, we calculated and listed the corresponding errors, as shown in Table 1.
It could be seen from Table 1 that the mean value error and the mean square error of the map optimized
by loop closure using our method were within 1 m in the range of up to kilometer, and our error results
were better than LeGO_LOAM’s, so that the superiority and robustness of our algorithm could be seen
in the long-distance outdoor environment.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 19

kilometer, and our error results were better than LeGO_LOAM's, so that the superiority and
robustness of our algorithm could be seen in the long-distance outdoor environment.

(a) 00 using OURS

(c) 00 using LeGO_LOAM

(b) 05 using OURS

(d) 05 using LeGO_LOAM

Figure 7. Error mapped onto trajectory. (a) is sequence 00, and (b) is sequence 05 using our method. (c)
is sequence 00, and (d) is sequence 05 using LeGO_LOAM. The dotted trajectory is ground truth, and
the colored trajectory is the trajectory using our method and LeGO_LOAM. The error is as shown on
the right ruler. Blue represents the smallest error, and red represents the largest error. The coordinate
system in the figure is the same as in LOAM. The z-axis is facing forward, the x-axis is facing left, and
the y-axis is facing upward.

Table 1. Pose estimation error on on KITTI dataset.

Sequence Method Max (m) Min (m) Mean (m) Rmse 1 (m)

00
OURS

LeGO_LOAM
2.51
3.29

0.12
0.26

0.75
1.45

0.82
1.61

05 OURS
LeGO_LOAM

1.94
2.24

0.12
0.17

0.67
0.83

0.76
0.89

1 Rmse: Root Mean Square Error.

4.1.2. Tests with Our Dataset

To test the robustness of the algorithm, we tested the indoor and outdoor environments
separately. The first scene was an office covering 120 square meters on the third floor of the “C1”
building in SIASUN. The second scene was the parking lot between the “C1” building and the “C5”
building in SIASUN, which was 80 m long and wide. The third scene was a workshop with a length
and width of 100 m in the “C2” building of SIASUN, but we only walked two of the aisles. The last
scene was the road around the “C5” building in SIASUN, which was 100 m long and 50 m wide. Our
experimental results were compared and analyzed with LOAM and LeGO_LOAM. The test results
are shown in Figure 8a–d.

Scene 1

OURS

LeGO_LOAM

LOAM

(a)

Figure 7. Error mapped onto trajectory. (a) is sequence 00, and (b) is sequence 05 using our method.
(c) is sequence 00, and (d) is sequence 05 using LeGO_LOAM. The dotted trajectory is ground truth, and
the colored trajectory is the trajectory using our method and LeGO_LOAM. The error is as shown on
the right ruler. Blue represents the smallest error, and red represents the largest error. The coordinate
system in the figure is the same as in LOAM. The z-axis is facing forward, the x-axis is facing left,
and the y-axis is facing upward.

Table 1. Pose estimation error on on KITTI dataset.

Sequence Method Max (m) Min (m) Mean (m) Rmse 1 (m)

00
OURS 2.51 0.12 0.75 0.82

LeGO_LOAM 3.29 0.26 1.45 1.61

05
OURS 1.94 0.12 0.67 0.76

LeGO_LOAM 2.24 0.17 0.83 0.89
1 Rmse: Root Mean Square Error.

4.1.2. Tests with Our Dataset

To test the robustness of the algorithm, we tested the indoor and outdoor environments separately.
The first scene was an office covering 120 square meters on the third floor of the “C1” building in
SIASUN. The second scene was the parking lot between the “C1” building and the “C5” building in
SIASUN, which was 80 m long and wide. The third scene was a workshop with a length and width of
100 m in the “C2” building of SIASUN, but we only walked two of the aisles. The last scene was the
road around the “C5” building in SIASUN, which was 100 m long and 50 m wide. Our experimental
results were compared and analyzed with LOAM and LeGO_LOAM. The test results are shown in
Figure 8a–d.

Sensors 2019, 19, 5419 12 of 19

Sensors 2019, 19, x FOR PEER REVIEW 11 of 19

kilometer, and our error results were better than LeGO_LOAM's, so that the superiority and
robustness of our algorithm could be seen in the long-distance outdoor environment.

(a) 00 using OURS

(c) 00 using LeGO_LOAM

(b) 05 using OURS

(d) 05 using LeGO_LOAM

Figure 7. Error mapped onto trajectory. (a) is sequence 00, and (b) is sequence 05 using our method. (c)
is sequence 00, and (d) is sequence 05 using LeGO_LOAM. The dotted trajectory is ground truth, and
the colored trajectory is the trajectory using our method and LeGO_LOAM. The error is as shown on
the right ruler. Blue represents the smallest error, and red represents the largest error. The coordinate
system in the figure is the same as in LOAM. The z-axis is facing forward, the x-axis is facing left, and
the y-axis is facing upward.

Table 1. Pose estimation error on on KITTI dataset.

Sequence Method Max (m) Min (m) Mean (m) Rmse 1 (m)

00
OURS

LeGO_LOAM
2.51
3.29

0.12
0.26

0.75
1.45

0.82
1.61

05 OURS
LeGO_LOAM

1.94
2.24

0.12
0.17

0.67
0.83

0.76
0.89

1 Rmse: Root Mean Square Error.

4.1.2. Tests with Our Dataset

To test the robustness of the algorithm, we tested the indoor and outdoor environments
separately. The first scene was an office covering 120 square meters on the third floor of the “C1”
building in SIASUN. The second scene was the parking lot between the “C1” building and the “C5”
building in SIASUN, which was 80 m long and wide. The third scene was a workshop with a length
and width of 100 m in the “C2” building of SIASUN, but we only walked two of the aisles. The last
scene was the road around the “C5” building in SIASUN, which was 100 m long and 50 m wide. Our
experimental results were compared and analyzed with LOAM and LeGO_LOAM. The test results
are shown in Figure 8a–d.

Scene 1

OURS

LeGO_LOAM

LOAM

(a)

Sensors 2019, 19, x FOR PEER REVIEW 12 of 19

Scene 2

Scene 3

Scene 4

OURS

OURS

OURS

LeGO_LOAM

LeGO_LOAM

LeGO_LOAM

LOAM

LOAM

LOAM

Figure 8. (a) shows a point cloud map of an indoor office built using three methods. (b) shows a three-
dimensional point cloud map of the parking lot constructed by three different methods. (c) shows the
point cloud map of the complex environment in a large workshop constructed by three algorithms.
(d) shows the point cloud map of the road scene around the building constructed by three SLAM
(simultaneous localization and mapping) methods.

According to the point cloud diagram of Figure 8a, since the test environment was relatively
small and regular, the three methods could complete the map construction well, and the error was
small. However, as the scene size increased, the error gradually increased, as shown in Figure 8b,c.
The three methods could basically construct the maps of Scene 2 and Scene 3, but in contrast, the map
constructed by our method was more dense and complete. LOAM and LeGO_LOAM relied on the
Inertial Measurement Unit (IMU) to obtain a more accurate initial pose, but in this paper, we only
used the lidar sensor, so the calculation error of these two methods gradually increased with time.
LeGO_LOAM had loop detection, so the cumulative error could be reduced after the loop was
detected. In the last scene, only our method could build a complete map, as shown in Figure 8d.
LOAM had no loop detection, so the z-axis drift could not be corrected, resulting in a large deviation.
Since the road between two buildings was similar to the long corridor scene, LeGO_LOAM could not
overcome this difficulty, so the map construction failed.

During the experiment, we preserved their real-time estimated poses while using three
algorithms to construct four different scene maps. The trajectories estimated by the three algorithms
in the four scenes are shown in Figure 9a–d.

(a) Scene 1

(d)

(c)

(b)

Figure 8. (a) shows a point cloud map of an indoor office built using three methods. (b) shows a
three-dimensional point cloud map of the parking lot constructed by three different methods. (c) shows
the point cloud map of the complex environment in a large workshop constructed by three algorithms.
(d) shows the point cloud map of the road scene around the building constructed by three SLAM
(simultaneous localization and mapping) methods.

According to the point cloud diagram of Figure 8a, since the test environment was relatively
small and regular, the three methods could complete the map construction well, and the error was
small. However, as the scene size increased, the error gradually increased, as shown in Figure 8b,c.
The three methods could basically construct the maps of Scene 2 and Scene 3, but in contrast, the map
constructed by our method was more dense and complete. LOAM and LeGO_LOAM relied on the
Inertial Measurement Unit (IMU) to obtain a more accurate initial pose, but in this paper, we only
used the lidar sensor, so the calculation error of these two methods gradually increased with time.
LeGO_LOAM had loop detection, so the cumulative error could be reduced after the loop was detected.
In the last scene, only our method could build a complete map, as shown in Figure 8d. LOAM had no
loop detection, so the z-axis drift could not be corrected, resulting in a large deviation. Since the road
between two buildings was similar to the long corridor scene, LeGO_LOAM could not overcome this
difficulty, so the map construction failed.

During the experiment, we preserved their real-time estimated poses while using three algorithms
to construct four different scene maps. The trajectories estimated by the three algorithms in the four
scenes are shown in Figure 9a–d.

Sensors 2019, 19, 5419 13 of 19

Sensors 2019, 19, x FOR PEER REVIEW 12 of 19

Scene 2

Scene 3

Scene 4

OURS

OURS

OURS

LeGO_LOAM

LeGO_LOAM

LeGO_LOAM

LOAM

LOAM

LOAM

Figure 8. (a) shows a point cloud map of an indoor office built using three methods. (b) shows a three-
dimensional point cloud map of the parking lot constructed by three different methods. (c) shows the
point cloud map of the complex environment in a large workshop constructed by three algorithms.
(d) shows the point cloud map of the road scene around the building constructed by three SLAM
(simultaneous localization and mapping) methods.

According to the point cloud diagram of Figure 8a, since the test environment was relatively
small and regular, the three methods could complete the map construction well, and the error was
small. However, as the scene size increased, the error gradually increased, as shown in Figure 8b,c.
The three methods could basically construct the maps of Scene 2 and Scene 3, but in contrast, the map
constructed by our method was more dense and complete. LOAM and LeGO_LOAM relied on the
Inertial Measurement Unit (IMU) to obtain a more accurate initial pose, but in this paper, we only
used the lidar sensor, so the calculation error of these two methods gradually increased with time.
LeGO_LOAM had loop detection, so the cumulative error could be reduced after the loop was
detected. In the last scene, only our method could build a complete map, as shown in Figure 8d.
LOAM had no loop detection, so the z-axis drift could not be corrected, resulting in a large deviation.
Since the road between two buildings was similar to the long corridor scene, LeGO_LOAM could not
overcome this difficulty, so the map construction failed.

During the experiment, we preserved their real-time estimated poses while using three
algorithms to construct four different scene maps. The trajectories estimated by the three algorithms
in the four scenes are shown in Figure 9a–d.

(a) Scene 1

(d)

(c)

(b)

Sensors 2019, 19, x FOR PEER REVIEW 13 of 19

(b) Scene 2

(c) Scene 3

(d) Scene 4

Figure 9. (a) shows the trajectory of the office environment estimated using the three algorithms. (b)
shows the trajectory estimated in the parking lot using three methods. (c) shows the trajectory in the
workshop estimated by three different methods. (d) shows the trajectory of the road around a
building estimated by the three SLAM algorithms. In the four figures, the blue line is LeGO_LOAM,
the green line is LOAM, and the red one is OURS. The plot uses a common coordinate system. The x-
axis is the robot's forward direction, the y-axis is the left side of the robot, and the z-axis is upward.
The starting points in the figure all start from the origin (0,0). The left half of each scene is a top view
of the trajectory, and the right half is the changes of xyz over time.

Due to experimental conditions, we were unable to obtain accurate trajectories. We started from
the marked starting point, and finally returned to the starting point, and compared the final
deviation. For Scene 1 and Scene 3, the trajectories estimated by the three methods were similar, but
only our method and LeGO_LOAM implemented closed-loop detection to optimize the global pose.
LOAM had the worst ground constraints effect, and our ground constraints effect was the best. For
Scene 2, the maps constructed by the three methods had good global consistency, but the error of the
LOAM method was larger than the other two methods. Our ground constraint was better than the
other two methods. For Scene 4, from Figure 9d, we could clearly see that the LeGO_LOAM trajectory
deviated from the correct track due to the wrong loop detection, and LOAM did not achieve the re-
identification of the map at the end. Only our method could complete the map construction task well.

Figure 9. (a) shows the trajectory of the office environment estimated using the three algorithms.
(b) shows the trajectory estimated in the parking lot using three methods. (c) shows the trajectory in the
workshop estimated by three different methods. (d) shows the trajectory of the road around a building
estimated by the three SLAM algorithms. In the four figures, the blue line is LeGO_LOAM, the green
line is LOAM, and the red one is OURS. The plot uses a common coordinate system. The x-axis is the
robot’s forward direction, the y-axis is the left side of the robot, and the z-axis is upward. The starting
points in the figure all start from the origin (0,0). The left half of each scene is a top view of the trajectory,
and the right half is the changes of xyz over time.

Due to experimental conditions, we were unable to obtain accurate trajectories. We started from
the marked starting point, and finally returned to the starting point, and compared the final deviation.

Sensors 2019, 19, 5419 14 of 19

For Scene 1 and Scene 3, the trajectories estimated by the three methods were similar, but only our
method and LeGO_LOAM implemented closed-loop detection to optimize the global pose. LOAM
had the worst ground constraints effect, and our ground constraints effect was the best. For Scene 2,
the maps constructed by the three methods had good global consistency, but the error of the LOAM
method was larger than the other two methods. Our ground constraint was better than the other two
methods. For Scene 4, from Figure 9d, we could clearly see that the LeGO_LOAM trajectory deviated
from the correct track due to the wrong loop detection, and LOAM did not achieve the re-identification
of the map at the end. Only our method could complete the map construction task well.

In order to verify the global consistency of the map, we set the initial pose of each test to [0,0,0,0,0,0]
and compared the relative pose estimation error between the final pose and the initial pose. The results
are shown in Table 2.

Table 2. Relative pose estimation error when returning to start in four scenes using three
different algorithms.

Scene Method Roll Pitch Yaw Total Rot.2

(deg)
X Y Z Total

Trans.3 (m)

1
OURS −0.52 0.48 −179.74 179.74 −0.08 −0.05 −0.01 0.08
LOAM −1.51 −0.33 −179.88 179.88 −0.18 −0.05 0.03 0.19

LeGO_LOAM −0.81 −0.4 −179.59 179.6 −0.12 −0.06 0.02 0.13

2
OURS 4.34 0.01 179.75 179.8 0.47 −0.19 0.01 0.51
LOAM 2.71 0.8 174.69 174.72 −2.06 −0.02 0.03 2.06

LeGO_LOAM 1.27 −0.72 177.93 177.93 1.22 −0.13 0.16 1.24

3
OURS −1.49 0.44 0.94 1.83 −0.05 0.01 −0.01 0.04
LOAM 0.43 −0.61 −6.4 6.44 −0.16 0.09 −0.09 0.21

LeGO_LOAM −0.83 0.87 0.3 1.24 −0.15 0.02 −0.01 0.15

4
OURS
LOAM

LeGO_LOAM

2.57
−3.31

−1.98
−1.58

−8.13
−9.52

8.76
10.2

−0.01
−0.51
fail

0.11
−1.19

0.04
2.82

0.11
3.11

2 Rot.: Rotation; 3 Trans.: Translation.

It could be seen from Table 2 that the consistency of Scene 1 and Scene 3 was better, and the
errors were within 1 m. LeGO_LOAM had ground constraints and closed-loop detection, so the final
pose deviation was not great, especially the z-axis deviation, but the z-axis deviation of LOAM was
large. In Scene 2, only the error of our method was within 1 m, and the other two were relatively
large. The final pose estimated using LeGO_LOAM had a large deviation on the z-axis, but it could
be seen from Figure 9b that the average z-axis deviation of LeGO_LOAM was less than LOAM. In
Scene 4, the consistency of LOAM was also poor, and the z-axis deviation was very large. Our method
used ground plane constraints and SegMatch-based loop detection to construct the above four scenes
maps well.

4.2. Discussion of Tests

In this section, in order to further analyze the advantages and performance of our proposed
algorithm, we tested and analyzed the ground plane constraints, loop closure, and runtime.

4.2.1. Influence of Ground Plane Constraints

To test the performance of the ground plane constraints, we recorded a short dataset that was
straight 100 m on the flat ground. The result was obtained by observing the deviation of the z-axis,
and the test results are shown in Figure 10a–d.

Sensors 2019, 19, 5419 15 of 19
Sensors 2019, 19, x FOR PEER REVIEW 15 of 19

(a)

(c)

(b)

(d)

Figure 10. (a) shows the effect of our algorithm without ground plane constraints and with a high
frequency of 10 Hz to optimize map, and (b) shows the effect of our algorithm with ground plane
constraints. (c) shows the test results of the LeGO_LOAM algorithm. (d) shows the effect of our
method without ground plane constraints and with a low frequency of 2 Hz to optimize the map.

Figure 10a is a map constructed using our SLAM algorithm without ground plane constraints,
and it was clear that the z-axis drift was getting larger and larger. The accumulated errors had a huge
impact on the later construction, which was unfavorable to this system. After adding the ground
plane constraints, it could be clearly seen that the z-axis drift was controlled, as shown in Figure 10b.
The ground plane constraints were also included in LeGO_LOAM, so we also tested the dataset using
this algorithm. The experimental results are shown in Figure 10c. It could be seen from Figure 10c
that even if there were ground plane constraints in LeGO_LOAM, the z-axis drift still existed. In
addition, we also found that our method without ground plane constraints and with a high frequency
of 10 Hz to optimize the map was better than LeGO_LOAM. When we reduced the optimization
frequency to the same as LeGO_LOAM, our ground constraints effect would be worse than
LeGO_LOAM.

In order to more intuitively view the size of the drift, we plotted the trajectory of the three, as
shown in Figure 11. In comparison, our ground plane constraints algorithm had obvious advantages
and performance better than LeGO_LOAM.

Figure 11. The trajectory of four methods. The red line is the trajectory estimated using our algorithm
without ground plane constraints and with a low frequency of 2 Hz to optimize map, the blue line is
the trajectory estimated using LeGO_LOAM, the purple line is the trajectory estimated using our
algorithm without ground plane constraints and with a high frequency of 10 Hz to optimize map, and
the green line is the trajectory estimated using our algorithm containing ground plane constraints.

Figure 10. (a) shows the effect of our algorithm without ground plane constraints and with a high
frequency of 10 Hz to optimize map, and (b) shows the effect of our algorithm with ground plane
constraints. (c) shows the test results of the LeGO_LOAM algorithm. (d) shows the effect of our method
without ground plane constraints and with a low frequency of 2 Hz to optimize the map.

Figure 10a is a map constructed using our SLAM algorithm without ground plane constraints,
and it was clear that the z-axis drift was getting larger and larger. The accumulated errors had a huge
impact on the later construction, which was unfavorable to this system. After adding the ground
plane constraints, it could be clearly seen that the z-axis drift was controlled, as shown in Figure 10b.
The ground plane constraints were also included in LeGO_LOAM, so we also tested the dataset using
this algorithm. The experimental results are shown in Figure 10c. It could be seen from Figure 10c that
even if there were ground plane constraints in LeGO_LOAM, the z-axis drift still existed. In addition,
we also found that our method without ground plane constraints and with a high frequency of 10 Hz
to optimize the map was better than LeGO_LOAM. When we reduced the optimization frequency to
the same as LeGO_LOAM, our ground constraints effect would be worse than LeGO_LOAM.

In order to more intuitively view the size of the drift, we plotted the trajectory of the three,
as shown in Figure 11. In comparison, our ground plane constraints algorithm had obvious advantages
and performance better than LeGO_LOAM.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 19

(a)

(c)

(b)

(d)

Figure 10. (a) shows the effect of our algorithm without ground plane constraints and with a high
frequency of 10 Hz to optimize map, and (b) shows the effect of our algorithm with ground plane
constraints. (c) shows the test results of the LeGO_LOAM algorithm. (d) shows the effect of our
method without ground plane constraints and with a low frequency of 2 Hz to optimize the map.

Figure 10a is a map constructed using our SLAM algorithm without ground plane constraints,
and it was clear that the z-axis drift was getting larger and larger. The accumulated errors had a huge
impact on the later construction, which was unfavorable to this system. After adding the ground
plane constraints, it could be clearly seen that the z-axis drift was controlled, as shown in Figure 10b.
The ground plane constraints were also included in LeGO_LOAM, so we also tested the dataset using
this algorithm. The experimental results are shown in Figure 10c. It could be seen from Figure 10c
that even if there were ground plane constraints in LeGO_LOAM, the z-axis drift still existed. In
addition, we also found that our method without ground plane constraints and with a high frequency
of 10 Hz to optimize the map was better than LeGO_LOAM. When we reduced the optimization
frequency to the same as LeGO_LOAM, our ground constraints effect would be worse than
LeGO_LOAM.

In order to more intuitively view the size of the drift, we plotted the trajectory of the three, as
shown in Figure 11. In comparison, our ground plane constraints algorithm had obvious advantages
and performance better than LeGO_LOAM.

Figure 11. The trajectory of four methods. The red line is the trajectory estimated using our algorithm
without ground plane constraints and with a low frequency of 2 Hz to optimize map, the blue line is
the trajectory estimated using LeGO_LOAM, the purple line is the trajectory estimated using our
algorithm without ground plane constraints and with a high frequency of 10 Hz to optimize map, and
the green line is the trajectory estimated using our algorithm containing ground plane constraints.

Figure 11. The trajectory of four methods. The red line is the trajectory estimated using our algorithm
without ground plane constraints and with a low frequency of 2 Hz to optimize map, the blue line
is the trajectory estimated using LeGO_LOAM, the purple line is the trajectory estimated using our
algorithm without ground plane constraints and with a high frequency of 10 Hz to optimize map,
and the green line is the trajectory estimated using our algorithm containing ground plane constraints.

Sensors 2019, 19, 5419 16 of 19

4.2.2. Impact of Loop Closure

Loop detection could correct the established map, which was of great significance for pose
estimation. From Section 4.1.1, a significant effect of closed-loop detection in long-distance urban
environments could be seen. To test the performance of loop detection and optimization more
specifically and intuitively, we recorded a circular trajectory dataset and tested the effects of the
closed-loop and no-closed-loop algorithms, as shown in Figure 12. It could be clearly seen from
Figure 12a that the car and the wall had a ghost image, which was the phenomenon that the map
was not corrected. When the loop closure was added, this part was optimized, and the ghosting
phenomenon disappeared, as shown in Figure 12b. Therefore, our SegMatch-based loop detection
algorithm could eliminate the cumulative error well when the loop was detected.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 19

4.2.2. Impact of Loop Closure

Loop detection could correct the established map, which was of great significance for pose
estimation. From Section 4.1.1, a significant effect of closed-loop detection in long-distance urban
environments could be seen. To test the performance of loop detection and optimization more
specifically and intuitively, we recorded a circular trajectory dataset and tested the effects of the
closed-loop and no-closed-loop algorithms, as shown in Figure 12. It could be clearly seen from
Figure 12a that the car and the wall had a ghost image, which was the phenomenon that the map was
not corrected. When the loop closure was added, this part was optimized, and the ghosting
phenomenon disappeared, as shown in Figure 12b. Therefore, our SegMatch-based loop detection
algorithm could eliminate the cumulative error well when the loop was detected.

(a)

(b)

Figure 12. The effect of our loop closure algorithm. (a) Without loop closure, (b) with loop closure.

4.2.3. Runtime Analysis

In order to explore the real-time nature of the system, we analyzed the runtime of each module
in our algorithm. The results are shown in Table 3. Each of the modules ran on a different thread. As
could be seen from Table 3, the first three modules took less than 100 ms. Our adaptive down-
sampling method guaranteed the real-time performance of the system, and a high-precision dense
point cloud map could be constructed. The loop closure module took much time, and time would
increase as the map got bigger, but did not affect the overall performance of the system, as it only
needed to optimize the global map at a frequency of 2 Hz.

Table 3. Runtime performance for each module.

Modules Average Time (ms)
Scan preprocessing 50

Lidar odometry
Point cloud map construction

Loop closure

65
80
220

5. Conclusions

In this paper, we proposed optimized lidar odometry and mapping method using ground plane
constraints and SegMatch-based loop closure. The use of ground plane constraints increased the
accuracy of point cloud registration. The adaptive down-sampling method was used to improve the
real-time performance of local optimization so that a dense point cloud map could be constructed.
SegMatch was used to perform loop detection on the map built by LOAM to improve the global map.

The proposed method was firstly tested in four scenes of our own datasets and compared with
the two existing methods. The results showed that our method could achieve low-drift real-time
localization and mapping in large scenes. At the same time, we also tested on the public dataset KITTI
for closed-loop detection and global optimization in the long-distance urban environment and
construction of a 3D point cloud map. We evaluated the performance of the system from three
aspects: ground plane constraints, loop closure, and runtime. The results showed the superiority of
our algorithm.

Figure 12. The effect of our loop closure algorithm. (a) Without loop closure, (b) with loop closure.

4.2.3. Runtime Analysis

In order to explore the real-time nature of the system, we analyzed the runtime of each module in
our algorithm. The results are shown in Table 3. Each of the modules ran on a different thread. As could
be seen from Table 3, the first three modules took less than 100 ms. Our adaptive down-sampling
method guaranteed the real-time performance of the system, and a high-precision dense point cloud
map could be constructed. The loop closure module took much time, and time would increase as the
map got bigger, but did not affect the overall performance of the system, as it only needed to optimize
the global map at a frequency of 2 Hz.

Table 3. Runtime performance for each module.

Modules Average Time (ms)

Scan preprocessing 50
Lidar odometry 65

Point cloud map construction 80
Loop closure 220

5. Conclusions

In this paper, we proposed optimized lidar odometry and mapping method using ground plane
constraints and SegMatch-based loop closure. The use of ground plane constraints increased the
accuracy of point cloud registration. The adaptive down-sampling method was used to improve the
real-time performance of local optimization so that a dense point cloud map could be constructed.
SegMatch was used to perform loop detection on the map built by LOAM to improve the global map.

The proposed method was firstly tested in four scenes of our own datasets and compared with
the two existing methods. The results showed that our method could achieve low-drift real-time
localization and mapping in large scenes. At the same time, we also tested on the public dataset
KITTI for closed-loop detection and global optimization in the long-distance urban environment
and construction of a 3D point cloud map. We evaluated the performance of the system from three

Sensors 2019, 19, 5419 17 of 19

aspects: ground plane constraints, loop closure, and runtime. The results showed the superiority of
our algorithm.

In future work, we would complete the multi-sensor fusion based on IMU to improve the
robustness and accuracy of the system. Secondly, we would study the filtering method of the original
point cloud to quickly remove dynamic objects and increase the anti-interference ability of the system.
We would broaden our application area to underground garage scenes to resolve an autonomous
parking problem for unmanned vehicles.

Author Contributions: Conceptualization, X.L. and L.Z.; methodology, X.L.; software, X.L.; validation, X.L., S.Q.,
and S.O.; formal analysis, X.L.; investigation, X.L.; resources, L.Z.; data curation, X.L. and D.T.; writing—original
draft preparation, X.L.; writing—review and editing, L.Z. and C.C.; visualization, D.T.; supervision, S.Q.; project
administration, S.O.; funding acquisition, L.Z.

Funding: This research was funded by the National Key Research and Development Plan, grant
number 2017YFC0806700.

Acknowledgments: Thanks to the following organizations that provided technical support for this research:
Shenyang SIASUN Robot and Automation Co., LTD.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics:
Science and Systems, Berkeley, CA, USA, 12–16 July 2014.

2. Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.; Siegwart, R.; Cadena, C. SegMatch: Segment based place recognition
in 3D point clouds. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation
(ICRA), Singapore, 29 May–3 June 2017; pp. 5266–5272.

3. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum
2007, 26, 214–226. [CrossRef]

4. Besl, P.J.; McKay, N.D. A Method for Registration of 3D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

5. Magnusson, M.; Andreasson, H.; Lilienthal, A.J.; Nuchter, A. Appearance-based loop detection from 3D
laser data using the normal distributions transform. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 23–28.

6. Bosse, M.; Zlot, R. Keypoint Design and Evaluation for Place Recognition in 2D Lidar Maps. Robot. Auton.
Syst. 2009, 57, 1211–1224. [CrossRef]

7. Zlot, R.; Bosse, M. Efficient Large-scale 3D Mobile Mapping and Surface Reconstruction of an Underground
Mine. In Proceedings of the 8th International Conference on Field and Service Robotics, Matsushima, Japan,
16–18 July 2012.

8. Grant, W.S.; Voorhies, R.C.; Itti, L. Finding Planes in LiDAR Point Clouds for Real-time Registration.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan,
3–7 July 2013; pp. 4347–4354.

9. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416.
[CrossRef]

10. Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark
Suite. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

11. Steder, B.; Ruhnke, M.; Grzonka, S.; Burgard, W. Place recognition in 3D scans using a combination of bag of
words and point feature based relative pose estimation. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1249–1255.

12. Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan,
27 September–4 October 2009; pp. 689–696.

http://dx.doi.org/10.1111/j.1467-8659.2007.01016.x
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1016/j.robot.2009.07.009
http://dx.doi.org/10.1007/s10514-016-9548-2

Sensors 2019, 19, 5419 18 of 19

13. Sipiran, I.; Bustos, B. A Robust 3D Interest Points Detector Based on Harris Operator. In Eurographics
Workshop on 3D Object Retrieval; Daoudi, M., Schreck, T., Eds.; The Eurographics Association: Norrköping,
Sweden, 2010; pp. 7–14.

14. Scovanner, P.; Ali, S.; Shah, M. A 3-Dimensional Sift Descriptor and Its Application to Action Recognition.
In Proceedings of the MULTIMEDIA ’07 15th International Conference on Multimedia, Augsburg, Germany,
25–29 September 2007; ACM: New York, NY, USA, 2007; pp. 357–360.

15. Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. NARF: 3D Range Image Features for Object Recognition.
In Proceedings of the Workshop on Defining and Solving Realistic Perception Problems in Personal
Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
8 October 2010.

16. Johnson, A. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

17. Salti, S.; Tombari, F.; di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description.
Comput. Vis. Image Underst. 2014, 125, 251–264. [CrossRef]

18. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Learning Informative Point Classes for the Acquisition of
Object Model Maps. In Proceedings of the IEEE International Conference on Control, Automation, Robotics
and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 643–650.

19. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D Recognition and Pose Using the Viewpoint Feature
Histogram. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, 8 October 2010; pp. 2155–2162.

20. Dewan, A.; Caselitz, T.; Burgard, W. Learning a Local Feature Descriptor for 3D LiDAR Scans. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 4774–4780.

21. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric
Descriptors from RGB-D Reconstructions. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

22. Fernández-Moral, E.; Mayol-Cuevas, W.; Arévalo, V.; González-Jiménez, J. Fast place recognition with
plane-based maps. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6–10 May 2013; pp. 2719–2724.

23. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on
Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765.

24. Deschaud, J. IMLS-SLAM: Scan-to-Model Matching Based on 3D Data. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018;
pp. 2480–2485. [CrossRef]

25. Cho, Y.; Kim, G.; Kim, A. DeepLO: Geometry-Aware Deep LiDAR Odometry. arXiv 2019, arXiv:1902.10562.
26. Li, Q.; Chen, S.; Wang, C.; Li, X.; Wen, C.; Cheng, M.; Li, J. LO-Net: Deep Real-Time Lidar Odometry. arXiv

2019, arXiv:1904.08242.
27. Behley, J.; Stachniss, C. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments.

In Proceedings of the Robotics: Science and Systems (RSS), Pittsburgh, PA, USA, 26–30 June 2018.
28. Agarwal, S.; Mierle, K. Ceres Solver. Available online: http://ceres-solver.org (accessed on 22 August 2018).
29. Dubé, R.; Cramariuc, A.; Dugas, D.; Nieto, J.; Siegwart, R.; Cadena, C. SegMap: 3D Segment Mapping

using Data-Driven Descriptors. In Proceedings of the Robotics: Science and Systems, Pittsburgh, PA, USA,
26–30 June 2018.

30. Dubé, R.; Gawel, A.; Sommer, H.; Nieto, J.; Siegwart, R.; Cadena, C. An online multi-robot SLAM system for
3D LiDARs. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1004–1011.

31. Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the segmentation
of 3D LIDAR point clouds. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011.

32. Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D scene interpretation: A framework combining optimal
neighborhood size selection with relevant features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2014, 2, 181. [CrossRef]

http://dx.doi.org/10.1016/j.cviu.2014.04.011
http://dx.doi.org/10.1109/ICRA.2018.8460653
http://ceres-solver.org
http://dx.doi.org/10.5194/isprsannals-II-3-181-2014

Sensors 2019, 19, 5419 19 of 19

33. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

34. Dellaert, F.; Kaess, M. Square Root SAM: Simultaneous localization and mapping viasquare root information
smoothing. Int. J. Robot. Res. 2006, 25, 1181–1203. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1177/0278364906072768
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Methods
	System Overview
	Scan Preprocessing
	Ground Plane Segmentation
	Feature Extraction

	Lidar Odometry
	Map Construction
	Loop Closure
	Loop Detection
	Global Optimization

	Experiment
	Tests
	Tests with KITTI Dataset
	Tests with Our Dataset

	Discussion of Tests
	Influence of Ground Plane Constraints
	Impact of Loop Closure
	Runtime Analysis

	Conclusions
	References

