
sensors

Article

Block-Based Development of Mobile Learning
Experiences for the Internet of Things

Iván Ruiz-Rube * , José Miguel Mota, Tatiana Person , José María Rodríguez Corral
and Juan Manuel Dodero

School of Engineering, University of Cádiz, Avenida de la Universidad de Cádiz, 10, 11519 Puerto Real, Cádiz,
Spain; josemiguel.mota@uca.es (J.M.M.); tatiana.person@uca.es (T.P.); josemaria.rodriguez@uca.es (J.M.R.C.);
juanma.dodero@uca.es (J.M.D.)
* Correspondence: ivan.ruiz@uca.es

Received: 22 October 2019; Accepted: 9 December 2019; Published: 11 December 2019
����������
�������

Abstract: The Internet of Things enables experts of given domains to create smart user experiences
for interacting with the environment. However, development of such experiences requires strong
programming skills, which are challenging to develop for non-technical users. This paper presents
several extensions to the block-based programming language used in App Inventor to make the
creation of mobile apps for smart learning experiences less challenging. Such apps are used to
process and graphically represent data streams from sensors by applying map-reduce operations.
A workshop with students without previous experience with Internet of Things (IoT) and mobile
app programming was conducted to evaluate the propositions. As a result, students were able to
create small IoT apps that ingest, process and visually represent data in a simpler form as using
App Inventor’s standard features. Besides, an experimental study was carried out in a mobile app
development course with academics of diverse disciplines. Results showed it was faster and easier
for novice programmers to develop the proposed app using new stream processing blocks.

Keywords: Internet of Things (IoT); mobile apps; end-user development; App Inventor; block-based
languages; map-reduce

1. Introduction

The Internet of Things (IoT) concept has several definitions, as involved technologies are
continually evolving. IoT is defined as “a network that connects uniquely identifiable things to
the Internet” [1]. These things have sensing and actuating capabilities and can be programmed,
such that data can be collected and their state can change. IoT potentialities enable the development of
a significant number of applications for improving citizens’ life. Smart homes and buildings, smart
cities, mobility and transportation, healthcare, agriculture and industry are some of the main areas of
IoT application [1]. For a rapid materialization of IoT, the symbiosis among the physical world and the
cyber world must be harmonious [2]. Interactions between humans and computing-enabled objects
must be smarter and opportunistic [3]. As it may happen with humans’ intelligence [4], the smartness
of IoT things relies heavily on their sensory, interactive capabilities. In this vein, smart interactive
objects enable creating tangible things to do different tasks in different application domains [5].

The development of smart IoT applications usually requires strong programming skills,
which commonly exceed people’s abilities. However, in recent years, several projects, such as Arduino
and Raspberry Pi, aimed not only at professionals but also educators and students, have influenced
the IoT expansion. These initiatives include both hardware platforms and programming tools, and a
user community is growing around them.

Sensors 2019, 19, 5467; doi:10.3390/s19245467 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4980-0549
https://orcid.org/0000-0002-4288-7143
https://orcid.org/0000-0002-4105-5679
http://www.mdpi.com/1424-8220/19/24/5467?type=check_update&version=1
http://dx.doi.org/10.3390/s19245467
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5467 2 of 19

Since the notation used in programming languages has a tremendous impact on novices [6],
various tools to program IoT microcontrollers and microcomputers have emerged. These tools are
based on block-based languages and proved to be useful for novice programmers. Learners of
block-based languages depicted greater gains in algorithmic thinking [7] and a higher interest in
computer science than those using text-based environments [8]. Differences between block-based
languages and text-based languages often fade after learners transfer their acquired knowledge of
computer programming to more professional, text-based languages and environments [9].

Currently, the most commonly used block-based programming tools, namely Scratch and App
Inventor, provide capabilities to connect with external hardware devices, such as Arduino. However,
they present some limitations when it comes to developing IoT applications, namely: (1) the absence
of an easy mechanism for ingesting and processing event data streams and (2) the lack of usable
mechanisms for visually representing data.

To facilitate authoring of IoT mobile apps, several visual components for a custom version of
App Inventor, as well as a set of extensions for its block-based programming language, have been
developed. With these components and language extensions, users can easily create apps that ingest
data streams from available sensors, process them using a map-reduce programming style and then
visualise the results of data processing graphically. The goal of this paper is to investigate how easy it
is for non-experts to leverage such improved features to create their own smart IoT applications.

The block-based language approach followed in our research proposal has some limitations,
which have been described in the literature. First, it may be applicable only for novice programmers
who are learning to create their own smart IoT applications [9]. The research claims and results
are not directly transferable to professional, text-based programming languages or even to other
not block-based, visual programming paradigms [10]. Second, the use of programming concepts
that are relevant to create smart IoT applications (such as state initialisation [11], parallelism [12],
anonymous functions [13] and higher-order functions [14]) were adapted to visual and block-based
languages. However, there are no evidences of learning improvements thanks to the use of such
end-user development (EUD) approaches. Therefore, the use of block-based languages as an EUD
approach for creating smart IoT applications may have limitations, which have to be overcome by
more extensive research, as intended in this work.

The rest of the paper is structured as follows: the background and related works are presented in
Section 2. Section 3 describes the main contribution. Two case studies are included in Sections 4 and 5.
The former presents a usability study conducted with students of a computer programming
fundamentals course whereas the latter was targeted at university lecturers. Finally, Section 6 discusses
the results and draws the conclusions of this research.

2. Background & Related Works

IoT solutions are composed of hardware and software elements. Guth et al. [15] propose an
IoT reference architecture from a comparison of various open-source (SiteWhere, OpenMTC and
FIWARE) and proprietary (Amazon Web Services IoT) IoT platforms. Such architecture includes a
set of sensors and actuators at the lower level. On the next level up, a hardware device is connected
by a wired connection or wirelessly to sensors and actuators. Data communication protocols are
required to manage the constraints of the smart devices, as well as gateways to translate data between
different protocols and to forward communications. Middleware [15,16] processes the data received
from the connected devices (e.g., by the execution of condition-action rules) to provide them to
connected applications and sends commands to be executed by the corresponding actuators. Finally,
IoT applications allow device-to-device and human-to-device interactions [17]. In the latter, mobile
app-based smart interactive experiences can be provided for end-users.

Existing initiatives for learning and developing IoT solutions as well as block-based end-user
development tools and their applications for creating IoT mobile experiences are described below.



Sensors 2019, 19, 5467 3 of 19

2.1. Initiatives for Learning and Developing IoT Solutions

Arduino and Raspberry Pi are some of the most popular platforms used for educational
purposes [1,18,19], with a huge development community. Arduino is a programmable circuit board,
which can be connected with sensors and actuators of many types. Raspberry Pi is a single-board
computer to run programs in a multitasking environment. However, the analog-digital conversion is
not available onboard and thus additional hardware is required for interfacing with analog sensors
such as photocells, joysticks and potentiometers.

Some initiatives and educational projects were carried out in order to teach IoT technologies for
undergraduate and university students [20,21]. For example, in a project-based teaching and learning
approach conceived for an IoT course [22], Raspberry Pi is used to devise and implement IoT designs.
Other project-based learning courses for learning wired and wireless networking techniques have
been offered to electrical and computer engineering students [23]. The use of microcontrollers with
network connectivity and without complex operating systems provides cost-effective, well-supported
and flexible platforms for developing IoT applications.

Moreover, the educational research outcome of teaching IoT device prototyping in a practical,
real problem-based setting is presented [24] as a means for teaching computer science and software
engineering. An example course outline for planning learning experiences in IoT prototyping is
described along with a general assessment framework and best practice recommendations in order to
facilitate personalised learning in analogous contexts.

Some educational approaches are based on the pocket labs (PL) concept to stimulate students’
initiative and creativity. PL allow learners to experiment with real equipment in any place and at any
time [25]. Despite that IoT and PL are not initially interrelated, the authors present a real case of IoT
teaching practice based on Arduino and accompanying shields that includes sensors and actuators.
PLs are combined with the online Tinkercad software tool to prototype and simulate electronic designs
that include the Arduino boards.

Other initiatives for integrating IoT technologies in existing teaching-learning case studies were
developed. For example, an IoT-based learning framework that integrates IoT and hardware/software
technologies is used as part of a software engineering course for embedded system analysis and
design [26]. Specifically, the authors introduced a lab development kit composed by Arduino and
Raspberry Pi boards, sensors and XBee modules for providing wireless communication.

Common general-purpose programming languages can be used for developing IoT
applications [19]. However, since IoT systems involve a wide variety of hardware and software
components, depending on a range of distributed system and communication technologies, developing
IoT applications is time-consuming and complex. Hence, a variety of IoT libraries, such as
CoAPthon [27], and frameworks [28], such as IDeA, FRASAD, D-LITe, IoTLink, WebRTC based
IoT application Framework, Datatweet, IoTSuite and RapIoT, have been developed to manage
those complexities.

2.2. End-User Development Tools for IoT

Modern software programming tools hide much of the complexity of traditional programming
languages. Recent low code software engineering approaches have been successful both for IoT [29]
and for more general mobile application development [30]. Their general objective consists in making
application creation easier for people without programming skills. This goal is shared by the research
field known as end-user development (EUD). A recent review on this topic differentiates between
end-user programming (EUP) and other software engineering activities that span the entire software
development lifecycle [31]. The review was recently completed by another author, focusing on current
EUD tools for developing IoT and robot applications [32].

Among EUP tools, block-based programming environment features are noteworthy [33] to enable
composing programs without dealing with the syntactic issues of textual languages. Among such
block-based languages and environments, Scratch [34,35] is very popular to create interactive



Sensors 2019, 19, 5467 4 of 19

games, stories and animations, as well as to share such creations on the Web. Scratch computer
programs are built by dragging and dropping blocks that represent common programming elements,
such as variables, expressions, conditions and statements. Another block-based EUP approach for
robotic applications is Phratch, which is a Scratch-like live programming environment [36]. Besides,
App Inventor [37,38] is an open-source block-based programming tool. This tool enables users
without prior programming experience to create apps specifically for smartphones and mobile devices.
In particular, it makes mobile app deployment easier for the end-user. Additionally to other tools’
amenities, App Inventor allows end-users to perform interface design and software deployment
tasks, which belong to the realm of EUD beyond EUP. End-users can drag, drop and arrange various
interface and non-visible components through a visual designer and then use a block language editor
to program the app logic behaviour in order to create and deploy fully functional mobile apps. App
Inventor provides event handling as a form of trigger-action programming (TAP), which proved to be
particularly suitable to define bespoke behaviours to respond to the multiple events that may occur in
an IoT context [39]. End-users specify the behaviour of a system as events or triggers and response
actions when the events occur [40].

Despite the availability of libraries and frameworks to work with IoT technologies, it is very
complicated to find EUD solutions to assist non-IT professionals in a particular area or topic to develop
their own IoT consumer applications and smart user experiences. For example, ScratchX [41] is an
experimental platform that allows people to test experimental functionalities built by some developers
for the Scratch visual language. These experimental extensions enable apps to integrate with web
services and external hardware, such as Arduino or Raspberry Pi.

On the other hand, the MIT IoT App Inventor project [42] allows students, teachers and makers to
implement IoT projects in the same way as they develop regular mobile apps. This project provides
users with components and block extensions to read data from a great variety of sensors (e.g., moisture,
pressure, temperature, noise, etc.) and control a multiplicity of actuators (e.g., buzzers, lights, motors,
etc.) As apps run on mobile devices, they can take advantage of all built-in features provided by App
Inventor, but they can also use the apps to interact with objects all around. Besides, UDOO [43] is a
combined set of open hardware and software technologies to allow novice makers to create their own
digital objects connected to the cloud and to define custom behaviour logic for sensors and actuators.
In addition to the physical devices, UDOO includes an App Inventor extension to handle sensors and
actuators from within mobile apps. Finally, IoT Inventor [44] is a web-based integration platform,
not based on but inspired by App Inventor, with a friendly drag-and-drop composer interface to build
personalised and reconfigurable services using smart IoT-enabled things.

All of the described extensions are targeted to handle sensors and actuators but they do not
provide support for easily ingesting, processing and visualizing data.

3. Creating IoT Mobile Apps with VEDILS

VEDILS [45] is a visual environment for designing interactive learning scenarios. It is an
authoring tool targeted at users without programming skills who want to create their own mobile
apps. The platform is based on App Inventor, the programming tool to build apps for mobile devices.
The current version requires Android devices, though an iOS-based version is currently being devised
by MIT. The development environment relies on the Blockly library for its visual programming
language based on blocks.

App Inventor provides several components for designing mobile apps’ user interfaces as well
as other features, including multimedia elements, communication with the device sensors, sharing
through social networks, etc. In addition to the built-in components provided by App Inventor,
VEDILS features new components to enrich the apps with virtual and augmented reality experiences
and to serve multi-modal external Human Machine Interface (HMI) devices, such as hand gesture
sensors or electroencephalography (EEG) headsets, among other features. The platform was also
used to conduct a study on the suitability of visual languages for non-expert robot programmers [46].



Sensors 2019, 19, 5467 5 of 19

Regarding IoT computing, several components and blocks were developed for VEDILS to ingest,
process and visualise data from a diversity of sensors.

3.1. Ingesting IoT Data Streams

App Inventor manages the following block types for each component: property getters and setters
(green blocks), functions (blue blocks) and event handlers (yellow blocks). VEDILS extends those with
a particular type of block (similar to event handlers) for non-visual components that issue a continuous
flow of data, as is the case of both internal and external sensors. These kinds of components (red
blocks) provide the app developer with a data stream suitable to be treated with the processing blocks
described in Section 3.2; these are triggered when data from the sensor are ingested for a predefined
time window.

One of the most common ways of receiving data from an IoT sensor and sending commands to
an actuator is via a Bluetooth connection. Thus, the built-in BluetoothClient component was extended
with the new StreamDataReceived block (see Figure 1), which provides the data stream as well as a new
SecondsToGetStreamData property to set the time period to fetch new data from the Bluetooth server.

(a) Editor properties (b) Visual blocks

Figure 1. Ingesting stream data from Bluetooth external devices.

In addition, every new VEDILS component that provides communication with internal or external
devices can support the streaming blocks. For example, the BrainwaveSensor component, which enables
to detect brain activity by means of an EEG headset, includes specific blocks for ingesting stream
data from regular fast Fourier transform (FFT) bands (i.e., Theta, Alpha, Low Beta, High Beta and
Gamma) of EEG channels (see Figure 2). It also includes a TimeToStreamBandsData property to set
the time window. The current implementation works with the Emotiv Epoc+ and Insight headsets.
Thus, this component enables a new range of mobile applications to monitor emotions, track cognitive
performance and even control objects through learning a set of mental activity patterns that can be
trained and interpreted as mental commands.

The blocks of Figure 2 were developed as Java class methods that support external and internal
sensors. The data flow is internally managed as Java 8 streams. Besides, additional classes based on
threads and the Java Timer API were required to periodically check data availability.



Sensors 2019, 19, 5467 6 of 19

(a) Editor properties (b) Visual blocks

Figure 2. Ingesting stream data from electroencephalography (EEG) headsets.

3.2. Processing IoT Data Streams

In order to address the issue of treating IoT data, several data processing blocks were developed
and delivered with VEDILS (see Figure 3):

• Filter block: removes the elements that do not meet a specific condition from an input stream.
For example, in a stream containing a set of numbers, developers could filter the odd numbers
obtaining a new stream with only the even ones.

• Map block: applies an operation to each element of an input stream. For example, transforming a
stream of lowercase words into a stream of uppercase words.

• Reduce (a) block: combines the elements contained in the input stream by applying the binary
operator specified as a parameter. The combiner function must combine two numbers to return a
new one, such as the maximum or minimum value.

• Reduce (b) block: combines the elements contained in the input stream, by applying one of the
built-in mathematical operations. For example, computing the average or standard deviation of a
50-item stream.

• Sort (a) block: produces a new stream with the elements of the input stream according to the order
induced by the comparator specified as a parameter. The comparator must be a function that
returns a negative number if item1 is less than item2; a positive one if item1 is higher than item2; or
zero if both items are equal.

• Sort (b) block: produces a new stream with the elements of the input stream according to its
natural order, i.e., numerically or alphabetically. The block has a field to specify whether to apply
an ascending or descending sorting.

• Limit block: shortens the stream size to the specified length. For example, collecting the first
10 items in the stream.

All the previous blocks are intermediary operations, except for the Reduce block, which is terminal.
The intermediary blocks can be indistinctly chained, whereas the Reduce blocks must always appear
on the left of the sequence of operations.



Sensors 2019, 19, 5467 7 of 19

Figure 3. Visual blocks for processing stream data

Extensions for the visual programming language itself requires not only Java code but also other
languages. The visual appearance of each block of the Streams palette is defined by a JavaScript
fragment using the Blockly library API, whereas its run-time behaviour is defined by generating YAIL
code. Young Android Intermediate Language (YAIL) is a set of abstractions for Kawa, a Java-based
implementation of the Scheme functional language. Figures 4 and 5 show the code required to develop
the limit block.

Figure 4. JS fragment for defining the Limit block with Blockly.

Figure 5. JS fragment for generating the Young Android Intermediate Language (YAIL) code of the
Limit block.

3.3. Visualising IoT Data Streams

App Inventor does not provide built-in capabilities to include charts or data tables in the apps.
Thus, two new visible components were integrated into VEDILS for allowing developers to equip



Sensors 2019, 19, 5467 8 of 19

their apps with those kinds of visualisations (see Figure 6). The Chart component enables the creation
of simple graphics such as bars, lines or pie charts, whereas the DataTable component is intended to
present the data in a tabular format. Both components can be fed with a data stream from any sensor
and they are customisable, for example, by configuring the category and value axes of charts.

(a) Editor properties (b) Visual blocks

Figure 6. Visualizing stream data with the chart component

Both the Chart and DataTable components were developed as Java classes that inherit from the
AndroidViewComponent superclass, already included in App Inventor. In run-time, these components
provide an embedded WebViewer for the app screen, which points to an external HTML. That web
page receives a JSON string containing the app data and renders it via the Google Chart API.

4. Evaluating IoT Mobile App Development with Students

This section presents a usability study of the VEDILS components for IoT computing. This test
is aimed at checking whether these IoT components are suitable for learners when programming
end-user IoT mobile apps. The test was defined and executed by following the guidelines provided by
Rubin et al. [47].

4.1. Study Design

A three-hour workshop was conducted with students of a computer programming fundamentals
course from a vocational education and training module. This workshop was implemented in the frame
of a Code Week initiative (https://codeweek.eu/view/242496/desarrollo-sencillo-de-apps-moviles-
para-iot). The research question for this study was the following: is it easier for students to develop
IoT mobile apps using VEDILS than using App Inventor?. To evaluate the legibility degree and ease of
use of the IoT blocks compared to App Inventor’s, we designed the following experimental scenario:
During the first hour, students learned about IoT, its basic concepts, components and architectures.
Later on, they learned about the features and applications of the Raspberry Pi single-board computer
and Sense HAT add-on. Then, they were presented with the running IoT sample app described below.
The instructor taught students how to design the UI of the app as well as the blocks required to connect
and disconnect the Raspberry Pi device through Bluetooth. Later on, the students were provided with
a base project for both App Inventor and VEDILS to be completed during the rest of the session (see
Figure 7a). Finally, they were asked to fill out a short questionnaire, including both quantitative and
qualitative question items.

A quasi-experimental study was conducted with the students. One half of the participants created
first the app with App Inventor and then with VEDILS; whereas the other half did it in reverse order.

https://codeweek.eu/view/242496/desarrollo-sencillo-de-apps-moviles-para-iot
https://codeweek.eu/view/242496/desarrollo-sencillo-de-apps-moviles-para-iot


Sensors 2019, 19, 5467 9 of 19

To complete the app projects, the students were also provided with step-by-step tutorials to guide the
development with both tools.

(a) (b)

Figure 7. Developing the mobile app for interacting with the external Internet of Things (IoT) device.
(a) Students programming the mobile app; (b) Android app communicating with the Raspberry and its
Sense HAT add-on.

4.2. The Sample App

The proposed app shows the average temperature received from the IoT sensor for the last
10 s. In order to bring the IoT app development closer to a more realistic scenario, the temperature
measurements of the Raspberry Pi were generated from a simulation server. The python server running
in the device generated random value series in the [14, 104] interval, measured as degrees Fahrenheit.
Occasionally, abnormal values (i.e., 127◦F) were generated to emulate measurement errors. The app
had to obtain the temperature data, convert it into Celsius degrees, remove outliers and compute the
average of the series.

4.2.1. User Interface Design

The app layout (see the picture in Figure 7b) is based on a vertical arrangement composed of
several elements. At the top of the screen, there are buttons for connecting and disconnecting to/from
the Raspberry Pi. A chart depicting the evolution of the temperature is included in the centre of the
screen. At the bottom of the screen, there are buttons for sending commands to change the Sense
HAT LED panel background colour. The LED panel in the picture shows the temperature measured
every second.

From the user interface perspective, the only difference between the App Inventor and VEDILS
versions is that the former requires a Canvas component, whereas the latter uses the new Chart
component. Nevertheless, from the user programming perspective, there are some remarkable
differences, as explained next.

4.2.2. Programming with App Inventor

A Clock component must be used to periodically check if there is new data to receive via the
Bluetooth connection. Then, the developer must call the ReceiveSignedBytes method and then iterate
through the data collection. For each individual value, a local variable is used to store the result
of applying the conversion formula between the two measurement scales. Later on, a conditional
statement must be applied to check if the calculated value is not an outlier. If so, that value must
be added to an accumulator variable and increment by one the counter of valid measurements. Later
on, the accumulator variable must be divided by the counter to compute the average (see Figure 8).
Two text labels are accordingly updated to show the received raw of data and the computed average.
Finally, the updateChart procedure is called to update the visual representation. Figure 9 shows how



Sensors 2019, 19, 5467 10 of 19

the DrawLine block in the Canvas must be used to depict the temperature along time as a line chart.
This block requires a pair of (x,y) coordinates for both source and target points. Since the (0,0) point of
the Canvas corresponds with its left upper corner, it is necessary to turn the temperature values into
the proper values for the Y-axis. Besides, the X-axis must be consequently moved forward for each
time instant. Some other variables must also be used to control the coordinates. Furthermore, at the
beginning of the drawing process and every time the canvas right-edge is reached, the drawing area
must be cleared and some horizontal lines must be drawn to represent certain temperature milestones
(0◦, 10◦, etc.). Besides, some variables must be reinitialised.

Figure 8. Processing temperature data with App Inventor.

Figure 9. Drawing temperature data with App Inventor.

4.2.3. Programming with VEDILS

With VEDILS (see Figure 10), the developer must handle the StreamDataReceived block, which
directly provides a data stream of temperature measurements. This data stream is pipelined through
a series of processing steps. With the Map block, every item in the stream is mapped into its
corresponding Fahrenheit value; with the Filter block, outliers are discarded according to the validity
condition; and finally, with the Reduce block, the data stream is summarized by computing an average.
The AppendData block is used to depict the average temperature along time in the line chart. Thus,



Sensors 2019, 19, 5467 11 of 19

the computed value must be sent to the Chart component, together with the current timestamp
provided by Clock. Previously, the Chart must have been configured with the category and value axes
(see Figure 11).

Figure 10. Processing temperature data with VEDILS.

Figure 11. Drawing temperature data with VEDILS.

4.3. Data Compilation

The data collection was performed without interacting with the subjects during the experiment
(i.e., an indirect method). The online questionnaire designed for the survey includes, in addition
to the consent form, several questions to determine the initial status of participants as well as to
compile the students’ opinions after the test. They were asked about their expertise level creating
software programs with visual languages and with text-based programming languages. Regarding
the post-test, some questions related to the perceived ease of use of App Inventor and VEDILS
were included. They deal with the tool usability for (i) connecting/disconnecting via Bluetooth and
sending commands to the IoT sensor; (ii) consuming temperature data from the sensor, applying
a transformation for changing their measurement scale, removing the outliers and computing the
average; and (iii) drawing a chart with the temperature evolution. The answers to these questions
follow a five-level Likert scale (1-Strongly disagree, 2-Disagree, 3-Neither agree nor disagree, 4-Agree
and 5-Strongly agree). The participants were also asked about their intention to use App Inventor
or VEDILS to create more IoT projects. Study data as well as the resources used are linked in the
Supplementary Materials.

4.4. Analysis and Findings

This study aimed at checking whether it is easier for students to develop the proposed IoT mobile
app using VEDILS rather than with App Inventor. Ten students (eight men and two women) aged 24
(stddev = 2) participated in the study. All of them were first-year students of a vocational course in
web development. By the time the workshop was conducted, they had not yet learned any textual
programming tool. They had only studied and used the App Inventor platform. Only one of them had
previous experience with traditional text-based coding languages.

All students agreed that it is easy (avg = 4.0, stddev = 0.0) to develop the routines for
connecting/disconnecting via Bluetooth and sending commands to the IoT sensor with App Inventor
and VEDILS (both tools share the same blocks for that purpose). Regarding the temperature data
ingestion and processing steps, most students neither agree nor disagree (avg = 2.77, stddev = 0.40)



Sensors 2019, 19, 5467 12 of 19

that these steps are easy to develop with App Inventor. Nevertheless, most students agreed that it is
easy to develop these routines with VEDILS (avg = 3.88, stddev = 0.26). This perceived ease of use is
even more substantial when developing the temperature evolution chart: the App Inventor Canvas
component (avg = 2.66, stddev = 0.44) versus the VEDILS Chart component (avg = 4, stddev = 0.23).
Finally, regarding the question about which tool they would use to develop mobile apps that consume
data from IoT sensors and depict them in a chart, 66.6% of the participants chose VEDILS, 11.1% chose
App Inventor, whereas the rest did not indicate a preference. In short, all participants rated VEDILS
better than App Inventor, except for the student who already had coding skills.

A total of 177 blocks were required for developing the App Inventor version of the app, whereas
only 84 were required in VEDILS. In both cases, procedures were used to avoid as much as possible
the number of duplicate blocks. Accordingly, the difference in the size of the projects may relate to the
students’ perceived ease of use for both tools. That difference is particularly pronounced when it comes
to presenting the temperature chart because developers must handle many details of the drawing
process. The results are also consistent with the qualitative opinions expressed by the students, who
highlighted the saving of programming effort required to consume, process and visualise IoT data
thanks to the abstractions provided by VEDILS.

5. Evaluating VEDILS Data Processing Blocks with Academics

While the above section evaluates the components and language extensions provided by VEDILS
for IoT computing, this case study solely focuses on the data processing blocks. The main objective
is to check the development agility and the usability of the stream blocks compared to the standard
built-in blocks for processing data. The design, implementation and analysis of the experimental study
are presented below.

5.1. Study Design

The study was performed through six editions of an introductory course of mobile app
development with App Inventor/VEDILS between January and February 2018. These courses are part
of the Cádiz university’s docent innovation program, in which several IT-related courses are regularly
delivered to their associated lecturers and researchers.

The reference framework for establishing the hypotheses of this study is based on the potential
benefits of certain computer programming paradigms over others [48]. Some authors explored
techniques for introducing parallelism concepts, anonymous procedures and higher-order functions
into block languages [12–14]. In this particular case of application development, we analyse the
ease and agility of using block-based versions of the map-reduce constructs from the functional
programming paradigm versus the iterative constructs (i.e., loops) from the imperative programming
paradigm. The research questions posed for this study are the following: RQ1—Is there any difference
in users’ perception of the complexity of the stream processing blocks? RQ2—Is it easier for users
to develop apps that collect and process data samples using functional blocks rather than using
imperative blocks? and RQ3—Is it faster for users to develop apps that collect and process data
samples using functional blocks rather than using imperative blocks?

To find answers to the research questions, the following scenario was carried out. First, all the
academics interested in enrolling in the course were arbitrarily allocated in one of the (six) course
editions. Each course lasted five hours and the participants were first taught with a short introduction
to the educational applications of mobile devices. Next, the instructors explained the fundamentals of
visual programming and the VEDILS tool’s features.

Second, to reinforce and consolidate what was learned, participants created a number of
educational mobile apps. These apps leverage the smartphone sensory and multimedia elements
provided by App Inventor as well as the augmented reality capabilities provided by VEDILS.
During the course, all the participants had to develop the same apps, except for one that emulates dice
rolling. In addition to simulating the dice, in three of the course editions attendants who represented



Sensors 2019, 19, 5467 13 of 19

the control groups had to include an additional routine to calculate the count of odd numbers in a
sequence of dice roll samples, whereas in the other three editions, attendants who represented the
experimental groups had to program the count of even numbers. For the control groups, the attendants
were accordingly taught about the loop statements for data processing, whereas for the experimental
groups, the participants were taught about stream blocks.

Finally, the course attendants were asked to develop a citizen science mobile app by themselves.
In this vein, smartphones enable to automate data collection and enrich observations with photographs,
sound recordings and global positioning system (GPS) coordinates using embedded sensors [49].
The app requirements were: (i) to simulate the input of a numerical measurement of an external
phenomenon and (ii) to compute the average of the collected measurements, excluding values out of a
permitted value range.

The development of the citizen science app was required to obtain the course completion certificate.
The assignment delivery was due within two weeks of course completion. In addition to submitting
the developed apps, an online questionnaire had to be filled out. Answers to the questionnaire were
analysed using quantitative techniques.

5.2. Data Compilation

A total of 45 users attended the VEDILS course. Data collection was performed without interacting
with the subjects through an online questionnaire. The survey included questions related to the
participants’ knowledge area, age, gender, years of teaching and research experience, highest academic
degree obtained and prior expertise in creating computer programs with a visual and/or text-based
programming language. Regarding the post-test, questions related to the perceived ease of use of App
Inventor and VEDILS were included. These questions pointed to several aspects, such as the use of
variables and data lists, control flow statements and loop blocks (for the control groups) and the use of
stream blocks (for the experimental groups). In addition, similar questions were included to check the
participants’ self-confidence when developing the citizen science app. The answers to all the questions
were on a five-level Likert scale.

Besides, all the app project files submitted to the learning management store (i.e., Moodle) for
the instructor’s review were subsequently processed through a data integration process for analytic
purposes. Among other data, the following were automatically extracted: time spent to develop the
app, the number of blocks used, number of debugs and compilations required to complete the app.
Study data as well as the resources used are linked in the Supplementary Materials.

5.3. Analysis and Findings

The 45 participants (17 women and 28 men) were, on average, 41 years old, had 13 years of
teaching experience and 11 years of researching experience. Furthermore, 62.22% of the academics
had a Ph.D. Their background is as follows: Arts and Humanities (2.22%), Computer Science (20%),
Engineering and Architecture (4.44%), Health Sciences (17.78%), Laws and Social Sciences (28.89%)
and Natural Sciences (26.67%). In terms of their previous programming experience, from nothing (1) to
expert (5), they had scarce visual (avg = 1.82) and textual (2.15) programming skills. Overall, 25 subjects
were part of the control groups, whereas the experimental groups were composed of 20 subjects.

Tables 1 and 2 show the users’ perception of the stream processing blocks complexity and the ease
of development of the app created to collect and process data samples. Data are grouped in the table
according to the participants’ gender, academic degree, knowledge area and previous experience with
visual and textual programming languages.



Sensors 2019, 19, 5467 14 of 19

Table 1. Results of the survey with academics: perceived ease of use (the italic font shows the average
and chi-squared values whereas the bold one indicates significant differences).

User Profile Loop Blocks Stream Blocks Average Chi-Squared

Gender

Man 3.71 3.69 3.71 0.72
Woman 3.73 4.40 3.94 0.55

Chi-squared 0.61 0.41
Academic degree

Non-doctorate 3.77 4.00 3.88 0.09
Doctorate 3.68 3.82 3.75 0.24

Chi-squared 0.46 0.04

Knowledge area

EHSE 4.00 3.64 4.00 0.48
SSH 3.22 4.75 3.22 0.29

Chi-squared 0.46 0.17

Experience with visual programming languages

Non-experienced 3.89 4.00 3.67 0.31
Experienced 4.57 3.60 4.17 0.02
Chi-squared 0.19 0.01

Experience with textual programming languages

Non-experienced 3.21 3.83 3.54 0.58
Experienced 4.36 4.00 4.24 0.46
Chi-squared 0.17 0.32

All academics

Academics 3.72 3.89 3.80 0.83

Table 2. Results of the survey with academics: ease of development of the app (the italic font shows
the average and chi-squared values whereas the bold one indicates significant differences).

User Profile Loop-Based Stream-Based Average Chi-Squared

Gender

Man 3.07 4.08 3.57 0.17
Woman 2.81 3.33 3.00 0.37

Chi-squared 0.48 0.05

Academic degree

Non-doctorate 2.88 4.25 3.53 0.31
Doctorate 3.00 3.54 3.25 0.60

Chi-squared 0.23 0.32

Knowledge area

EHSE 3.37 3.93 3.65 0.63
SSH 2.22 3.60 2.71 0.18

Chi-squared 0.23 0.29

Experience with visual programming languages

Non-experienced 2.55 3.71 3.09 0.05
Experienced 4.00 4.20 4.08 0.48
Chi-squared 0.06 0.52

Experience with textual programming languages

Non-experienced 2.07 3.54 2.82 0.01
Experienced 4.09 4.50 4.24 0.54
Chi-squared 0.00 0.11

All academics

Academics 2.96 3.84 3.36 0.13



Sensors 2019, 19, 5467 15 of 19

Concerning the participants’ gender, women perceived that the stream blocks were easier to use
(avg = 4.4) than for men (avg = 3.69) but interestingly enough, men were the ones who found the
app development more comfortable with those blocks (man’s avg = 4.08 vs. woman’s avg = 3.33).
Furthermore, non-doctorates found the development much easier with stream blocks (avg = 4.25) than
the traditional ones (avg = 2.88). Besides, Social Sciences and Humanities (SSH) academics perceived
the stream blocks easier to use (avg = 4.75) compared to the Earth & Health Sciences and Engineering
(EHSE) lecturers (avg = 3.64). SSH academics also found it difficult (avg = 2.22) to develop the app
with the loop blocks, whereas they did not have that much trouble with the stream ones (avg = 3.6).

It is interesting to note (p < 0.05) that users with previous experience in visual programming
languages perceived loop blocks (avg = 4.57) easier than stream blocks (avg = 3.56). Nevertheless,
there is a significant difference (p < 0.05) in the fact that academics without experience with visual
languages developed the app easier with the map-reduce blocks (avg = 3.71) than with the standard
loop blocks (avg = 2.55). As expected, there is also a significant difference (p < 0.05) concerning the
ease of development of the proposed app with the map-reduce blocks (avg = 3.54) compared to the
standard loop blocks (avg = 2.07) for academics without experience with textual languages.

Regarding the apps the lecturers had to create as final assignment of the course, 39 out 45 were
correctly developed: 16 apps use the traditional loop blocks and 23 use the stream blocks. Table 3
shows the direct metrics obtained from the app projects. As can be observed, all the apps which had
to be developed with stream blocks were completed. The remaining six apps were expected to be
developed using the traditional loop blocks. On average, three hours were needed to develop the app
with the standard loop blocks, whereas fewer than two hours were required to create the same app
with the new stream blocks. That is also tested with a significant difference (p < 0.05). Furthermore,
the average number of builds and debugs performed for the stream-based apps is fewer than for the
loop-based one.

Table 3. Indicators of the developed apps (the italic font shows the average and Mann-Whitney U Test
values whereas the bold one indicates significant differences).

% Completion Minutes Spent Number of Debugs + Builds

Loop-based 72% 180.71 13.25
Stream-based 100% 111.97 9.74

Average 86.66% 140.17 11.18
Mann-Whitney U Test 0.024 0.16

To sum up, with regard to the question (RQ1), there is no difference in the users’ perception of the
complexity of the stream processing blocks (avg=3.89) and the loop blocks (avg = 3.72). Concerning
whether it is easier for users to develop apps which collect and process data samples with functional
blocks rather than with imperative blocks (RQ2), the participants agreed that the development of the
requested app was easier with the map-reduce blocks (avg = 3.84) than with loop ones (avg = 2.96).
Finally, the indicators obtained for RQ3 point that it is faster for users (100% completion of the projects,
a fewer number of debugs required to develop the app and a significant difference (around 38%) in
saving development time) to collect and process data samples with functional blocks rather than with
imperative blocks.

6. Discussion and Conclusions

Developing smart user experiences based on IoT technologies is a very complicated task, especially
for non-IT professionals. To address these barriers, some of the popular block-based tools aimed at
learners in computer programming (e.g., Scratch or App Inventor) were extended with modules to
communicate with external hardware. However, they do not provide adequate support for easily
ingesting, processing and visualising data from sensors.



Sensors 2019, 19, 5467 16 of 19

In this research, some components and blocks developed explicitly for a custom version of App
Inventor, called VEDILS, were proposed. They are devised to facilitate the ingestion of data from
sensors in time intervals, to process received data by using a pipelined sequence of mapping, filtering
and reducing operations, and finally, to represent them graphically or in a tabular format.

Two studies, namely a quasi-experimental study conducted with students and an experimental
with academics, were conducted to evaluate the contribution. From the first study, students considered
that it was easier for them to develop the routines for ingesting, processing and visualising data
from the external temperature sensor with the VEDILS IoT features rather than with the equivalent
components and blocks in App Inventor. From the second study, aimed at only checking the data
processing blocks, participants did not perceive stream blocks easier than the loop blocks. Nevertheless,
with statistical significance, it was faster for academics to develop the proposed app with the stream
blocks, and easier specifically for novice programmers.

Additionally, threats to validity must be taken into account. To maximise the internal validity and
the construct validity, we maintained a detailed protocol for both studies. Peer researchers reviewed
them, and actions were considered to minimise bias. In the first study, the students completed the app
development projects for both App Inventor and VEDILS but in reverse order to minimise the learning
effect on the subjects. In the study conducted with academics, they were randomly distributed into
different groups. In addition, every course edition was taught with the same instructors (also the
authors of this paper). Furthermore, all course attendants were required to develop the same app with
the same requirements to ensure the count of minutes spent, debugs and builds required to create
the apps were not affected by other factors. Apart from the data automatically extracted from the
developed projects (time spent, number of builds and number of debugs), the rest of the variables used
for our experiments to measure user perceptions are subjective so that they can also be considered as
validity threats.

The limited size of the student sample can be viewed as an external validity threat. Moreover,
although the second study has a user sample more extensive than the first one, it is only aimed at
academics. As a result, we cannot assure that the obtained findings can be generalised to professionals
of other disciplines or conventional users. Hence, more experimentation and analysis are required to
evaluate to what extent the findings presented in this work are of relevance for other cases.

It is necessary to consider the limitations of the current work. First, since the new type of language
block for providing app developers with a data stream according to a predefined period of time was
only incorporated for the standard BluetoothClient component and the BrainwaveSensor of VEDILS, it is
not currently possible to harness it for other built-in App Inventor sensors. In addition, the extension
component for using Bluetooth Low Energy (BLE) technology, which is not part of the App Inventor
main distribution, is not yet supported for our contribution. Second, the current implementation of the
components for visualising data do not allow developers to customise colours, lines widths, font sizes,
etc., which are format aspects usually required when designing charts.

Smart homes and buildings, smart cities, mobility and transportation, healthcare, agriculture
and industry are some of the main areas of IoT application [1]. The study conducted with students
illustrated the potential application of our approach to smart buildings, e.g., for monitoring room
temperature. Nevertheless, the contribution presented in the paper is expected to be useful to create
IoT applications for other areas. Thus, for example, non-expert programmers (researchers, patients and
healthcare professionals) will be able to develop apps for wellness and healthcare purposes without
struggling with the complexities of the common mobile programming languages, namely Java or Swift.
These kinds of apps are usually data-intensive and require to process users’ biometric data, which is
ingested from wearable devices, such as smart bands or chest straps, among others.

This research tried to investigate whether the components and extensions presented in the paper
contribute to the popularisation of IoT-based mobile app development. In this vein, EUD platforms
and, in particular, enriched block-based authoring tools as VEDILS, can simplify development tasks
of novice end-user programmers. Furthermore, according to the obtained results, the use of blocks



Sensors 2019, 19, 5467 17 of 19

based on the map-reduce paradigm from functional programming streamlines the development of
data processing functions in IoT consumer apps, although more experimentation is required. As future
work, we plan to support the BLE extension for App Inventor to improve the customising features of
the Chart and DataTable components.

Supplementary Materials: The software for authoring IoT apps with data processing and visualising capabilities
can be used through the VEDILS web site http://vedils.uca.es/. Besides, to guarantee the reproducibility of the
studies, all the resources developed are available online at http://www.mdpi.com/1424-8220/19/24/5467/s1.
This link provides a ZIP package containing: questionnaires and results of both studies, PDF presentations (in
Spanish) for the course with academics and the workshop with students and solutions for the different exercises
and tutorials.

Author Contributions: Conceptualization, I.R.-R.; methodology, I.R.-R. and J.M.D.; software, T.P. and I.R.-R.;
validation, J.M.M.; formal analysis, I.R.-R. and J.M.M.; investigation, I.R.-R., J.M.M., and J.M.R.C.; resources,
I.R.-R. and J.M.D.; data curation, I.R.-R. and J.M.M.; writing—original draft preparation, I.R.-R., J.M.M. and
J.M.R.C.; writing—review and editing, I.R.-R. and J.M.D.; visualization, I.R. and J.M.M.; supervision, I.R.-R.;
project administration, J.M.D.; funding acquisition, J.M.D.

Funding: This work was developed in the VISAIGLE project, funded by the Spanish National Research Agency
(AEI) with ERDF funds under grant ref. TIN2017-85797-R.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy
EEG electroencephalography
EHSE Earth & Health Sciences and Engineering
EUD end-user development
EUP end-user programming
FFT fast Fourier transform
GPS global positioning system
HMI Human Machine Interface
IoT Internet of Things
MIT Massachusetts Institute of Technology
PL pocket lab
SSH Social Sciences and Humanities
TAP trigger-action programming
VEDILS Visual Environment for Designing Interactive Learning Scenarios
YAIL Young Android Intermediate Language

References

1. Hassan, Q.F.; Madani, S.A. Internet of Things: Challenges, Advances, and Applications; CRC Press: Boca Raton,
FL, USA, Taylor & Francis Group, LLC: Abingdon, UK, 2017.

2. Zhong, N.; Ma, J.; Huang, R.; Liu, J.; Yao, Y.; Zhang, Y.; Chen, J. Research Challenges and Perspectives
on Wisdom Web of Things (W2T). In Wisdom Web of Things; Springer International Publishing: Cham,
Switzerland, 2016; pp. 3–26. [CrossRef]

3. Guo, B.; Zhang, D.; Wang, Z.; Yu, Z.; Zhou, X. Opportunistic IoT: Exploring the harmonious interaction
between human and the internet of things. J. Netw. Comput. Appl. 2013, 36, 1531–1539. [CrossRef]

4. Näätänen, R.; Tervaniemi, M.; Sussman, E.; Paavilainen, P.; Winkler, I. ‘Primitive intelligence’ in the auditory
cortex. Trends Neurosci. 2001, 24, 283–288. [CrossRef]

5. Ardito, C.; Desolda, G.; Lanzilotti, R.; Malizia, A.; Matera, M. Analysing trade-offs in frameworks for the
design of smart environments. Behav. Inf. Technol. 2019, 1–25. [CrossRef]

6. Stefik, A.; Siebert, S. An Empirical Investigation into Programming Language Syntax. ACM Trans.
Comput. Educ. 2013, 13. [CrossRef]

http://vedils.uca.es/
http://www.mdpi.com/1424-8220/19/24/5467/s1
http://dx.doi.org/10.1007/978-3-319-44198-6_1
http://dx.doi.org/10.1016/j.jnca.2012.12.028
http://dx.doi.org/10.1016/S0166-2236(00)01790-2
http://dx.doi.org/10.1080/0144929X.2019.1634760
http://dx.doi.org/10.1145/2534973


Sensors 2019, 19, 5467 18 of 19

7. Grover, S.; Pea, R.; Cooper, S. Designing for deeper learning in a blended computer science course for middle
school students. Comput. Sci. Educ. 2015, 25, 199–237. [CrossRef]

8. Weintrop, D.; Wilensky, U. Comparing Block-Based and Text-Based Programming in High School Computer
Science Classrooms. ACM Trans. Comput. Educ. 2017, 18. [CrossRef]

9. Weintrop, D.; Wilensky, U. Transitioning from introductory block-based and text-based environments to
professional programming languages in high school computer science classrooms. Comput. Educ. 2019, 142.
[CrossRef]

10. Paternò, F. End user development: Survey of an emerging field for empowering people. ISRN Softw. Eng.
2013, 2013, 532659. [CrossRef]

11. Franklin, D.; Hill, C.; Dwyer, H.; Hansen, A.; Iveland, A.; Harlow, D. Initialization in Scratch: Seeking
Knowledge Transfer. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, Memphis, TN, USA, 2–5 March 2016; pp. 217–222. [CrossRef]

12. Bogaerts, S. Hands-On Exploration of Parallelism for Absolute Beginners with Scratch. In Proceedings of
the 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum,
Cambridge, MA, USA, 20–24 May 2013; pp. 1263–1268. [CrossRef]

13. Harvey, B.; Mönig, J. Lambda in blocks languages: Lessons learned. In Proceedings of the 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond), Atlanta, GA, USA, 22 October 2015; pp. 35–38.

14. Kim, S.; Turbak, F. Adapting higher-order list operators for blocks programming. In Proceedings of the
2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Atlanta, GA, USA,
18–22 October 2015; pp. 213–217.

15. Guth, J.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Reinfurt, L. Comparison of IoT platform
architectures: A field study based on a reference architecture. In Proceedings of the 2016 Cloudification of
the Internet of Things (CIoT), 2016, Paris, France, 23–25 November 2016; pp. 1–6.

16. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT middleware: A survey on issues and enabling
technologies. IEEE Internet Things J. 2016, 4, 1–20. [CrossRef]

17. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Bus. Horizons 2015, 58, 431–440. [CrossRef]

18. McEwen, A.; Cassimally, H. Designing the Internet of Things; John Wiley & Sons: Indianapolis, IN, USA, 2013.
19. Singh, K.J.; Kapoor, D.S. Create Your Own Internet of Things: A survey of IoT platforms. IEEE Consum.

Electron. Mag. 2017, 6, 57–68. [CrossRef]
20. Ali, F. Teaching the internet of things concepts. In Proceedings of the WESE’15: Workshop on Embedded

and Cyber-Physical Systems Education, Amsterdam, The Netherlands, 4–9 October 2015; p. 10.
21. Raikar, M.M.; Desai, P.; Vijayalakshmi, M.; Narayankar, P. Upsurge of IoT (Internet of Things) in engineering

education: A case study. In Proceedings of the 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 191–197.

22. Zhong, X.; Liang, Y. Raspberry Pi: An effective vehicle in teaching the internet of things in computer science
and engineering. Electronics 2016, 5, 56. [CrossRef]

23. He, N.; Bukralia, R.; Huang, H.W. Teaching wireless networking technologies in the internet-of-things using
ARM based microcontrollers. In Proceedings of the 2017 IEEE Frontiers in Education Conference (FIE),
Indianapolis, IN, USA, 18–21 October 2017; pp. 1–4.

24. Mäenpää, H.; Varjonen, S.; Hellas, A.; Tarkoma, S.; Männistö, T. Assessing IoT projects in university
education: A framework for problem-based learning. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education Track, Buenos Aires, Argentina, 20–28 May 2017;
pp. 37–46.

25. Cvjetkovic, V. Pocket labs supported IoT teaching. Int. J. Eng. Pedagog. 2018, 8, 32–48. [CrossRef]
26. He, J.; Lo, D.C.T.; Xie, Y.; Lartigue, J. Integrating Internet of Things (IoT) into STEM undergraduate education:

Case study of a modern technology infused courseware for embedded system course. In Proceedings of the
2016 IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, 12–15 October 2016; pp. 1–9.

27. Tanganelli, G.; Vallati, C.; Mingozzi, E. CoAPthon: Easy development of CoAP-based IoT applications with
Python. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy,
14–16 December 2015; pp. 63–68.

28. Udoh, I.S.; Kotonya, G. Developing IoT applications: Challenges and frameworks. IET Cyber-Phys. Syst.
Theory Appl. 2018, 3, 65–72. [CrossRef]

http://dx.doi.org/10.1080/08993408.2015.1033142
http://dx.doi.org/10.1145/3089799
http://dx.doi.org/10.1016/j.compedu.2019.103646
http://dx.doi.org/10.1155/2013/532659
http://dx.doi.org/10.1145/2839509.2844569
http://dx.doi.org/10.1109/IPDPSW.2013.63
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1016/j.bushor.2015.03.008
http://dx.doi.org/10.1109/MCE.2016.2640718
http://dx.doi.org/10.3390/electronics5030056
http://dx.doi.org/10.3991/ijep.v8i2.8129
http://dx.doi.org/10.1049/iet-cps.2017.0068


Sensors 2019, 19, 5467 19 of 19

29. Pantelimon, S.G.; Rogojanu, T.; Braileanu, A.; Stanciu, V.D.; Dobre, C. Towards a Seamless Integration of IoT
Devices with IoT Platforms Using a Low-Code Approach. In Proceedings of the IEEE 5th World Forum on
Internet of Things, Limerick, Ireland, 15–18 April 2019; doi:10.1109/WF-IoT.2019.8767313. [CrossRef]

30. Chang, Y.H.; Ko, C.B. A Study on the Design of Low-Code and No Code Platform for Mobile Application
Development. Int. J. Adv. Smart Converg. 2017, 6, 50–55. [CrossRef]

31. Barricelli, B.R.; Cassano, F.; Fogli, D.; Piccinno, A. End-user development, end-user programming and
end-user software engineering: A systematic mapping study. J. Syst. Softw. 2019, 149, 101–137. [CrossRef]

32. Paternò, F.; Santoro, C. End-User Development for Personalizing Applications, Things, and Robots. Int. J.
Hum. Comput. Stud. 2019. [CrossRef]

33. Bau, D.; Gray, J.; Kelleher, C.; Sheldon, J.; Turbak, F. Learnable Programming: Blocks and Beyond.
Commun. ACM 2017, 60, 72–80. [CrossRef]

34. Lifelong Kindergarten Group. Scratch - Imagine, Program, Share, 2019. Available online: https://scratch.
mit.edu/ (accessed on 16 October 2019).

35. Armoni, M.; Meerbaum-Salant, O.; Ben-Ari, M. From scratch to “real” programming. ACM Trans. Comput.
Educ. (TOCE) 2015, 14, 25. [CrossRef]

36. Laval, J. End user live programming environment for robotics. Robot. Autom. Eng. J. 2018, 3. [CrossRef]
37. Massachusetts Institute of Technology. MIT App Inventor, 2019. Available online: https://appinventor.mit.

edu/ (accessed on 16 October 2019).
38. David, W.; Abelson, H.; Spertus, E.; Looney, L. App Inventor: Create Your Own Android Apps; O’Reilly Media,

Inc.: Sebastopol, CA, USA 2015.
39. Leonardi, N.; Manca, M.; Paternò, F.; Santoro, C. Trigger-Action Programming for Personalising Humanoid

Robot Behaviour. In Proceedings of the ACM CHI Conference on Human Factors in Computing Systems,
Scotland Uk, 4–9 May 2019; pp. 445:1–445:13.

40. Ur, B.; McManus, E.; Yong Ho, M.P.; Littman, M.L. Practical trigger-action programming in the smart home.
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON,
Canada, 26 April–1 May 2014; pp. 803–812.

41. Lifelong Kindergarten Group. Scratchx, 2019. Available online: https://scratchx.org/ (accessed on
16 October 2019).

42. Massachusetts Institute of Technology. MIT App Inventor + Internet of Things, 2019. Available online:
http://iot.appinventor.mit.edu/ (accessed on 16 October 2019).

43. Rizzo, A.; Burresi, G.; Montefoschi, F.; Caporali, M.; Giorgi, R. Making IoT with UDOO. Interact. Des.
Archit. J. 2016, 30, 95–112.

44. Lu, C.H.; Hwang, T.; Hwang, I.S. IoT Inventor: A web-enabled composer for building IoT-enabled
reconfigurable agentized services. In Proceedings of the 2016 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), Nantou, Taiwan, 27–29 May 2016; pp. 1–2.

45. Mota, J.M.; Ruiz-Rube, I.; Dodero, J.M.; Arnedillo-Sánchez, I. Augmented reality mobile app development
for all. Comput. Electr. Eng. 2018, 65, 250–260. [CrossRef]

46. Corral, J.M.R.; Ruíz-Rube, I.; Balcells, A.C.; Mota-Macías, J.M.; Morgado-Estévez, A.; Dodero, J.M. A Study
on the Suitability of Visual Languages for Non-Expert Robot Programmers. IEEE Access 2019, 7, 17535–17550.
[CrossRef]

47. Rubin, J.; Chisnell, D. Handbook of Usability Testing: How to Plan, Design and Conduct Effective Tests; John Wiley
& Sons.: Indianapolis, IN, USA, 2008.

48. Krishnamurthi, S.; Fisler, K., Programming Paradigms and Beyond. In The Cambridge Handbook of Computing
Education Research; Cambridge University Press: Cambridge, UK, 2019.

49. O’Grady, M.J.; Muldoon, C.; Carr, D.; Wan, J.; Kroon, B.; O’Hare, G.M.P. Intelligent Sensing for Citizen
Science. Mob. Netw. Appl. 2016, 21, 375–385. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/WF-IoT.2019.8767313
http://dx.doi.org/10.7236/IJASC.2017.6.4.7
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1016/j.ijhcs.2019.06.002
http://dx.doi.org/10.1145/3015455
https://scratch.mit.edu/
https://scratch.mit.edu/
http://dx.doi.org/10.1145/2677087
http://dx.doi.org/10.19080/RAEJ.2018.03.555608
https://appinventor.mit.edu/
https://appinventor.mit.edu/
https://scratchx.org/
http://iot.appinventor.mit.edu/
http://dx.doi.org/10.1016/j.compeleceng.2017.08.025
http://dx.doi.org/10.1109/ACCESS.2019.2895913
http://dx.doi.org/10.1007/s11036-016-0682-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background & Related Works
	Initiatives for Learning and Developing IoT Solutions
	End-User Development Tools for IoT

	Creating IoT Mobile Apps with VEDILS
	Ingesting IoT Data Streams
	Processing IoT Data Streams
	Visualising IoT Data Streams

	Evaluating IoT Mobile App Development with Students
	Study Design
	The Sample App
	User Interface Design
	Programming with App Inventor
	Programming with VEDILS

	Data Compilation
	Analysis and Findings

	Evaluating VEDILS Data Processing Blocks with Academics
	Study Design
	Data Compilation
	Analysis and Findings

	Discussion and Conclusions
	References

