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Abstract: Underwater Wireless Sensors Networks (UWSNs) use acoustic waves as a communication
medium because of the high attenuation to radio and optical waves underwater. However, acoustic
signals lack propagation speed as compared to radio or optical waves. In addition, the UWSNs
also pose various intrinsic challenges, i.e., frequent node mobility with water currents, high error
rate, low bandwidth, long delays, and energy scarcity. Various UWSN routing protocols have been
proposed to overcome the above-mentioned challenges. Vector-based routing protocols confine the
communication within a virtual pipeline for the sake of directionality and define a fixed pipeline
radius between the source node and the centerline station. Energy-Scaled and Expanded Vector-Based
Forwarding (ESEVBF) protocol limits the number of duplicate packets by expanding the holding
time according to the propagation delay, and thus reduces the energy consumption via the remaining
energy of Potential Forwarding Nodes (PFNs) at the first hop. The holding time mechanism of
ESEVBF is restricted only to the first-hop PFNs of the source node. The protocol fails when there is a
void or energy hole at the second hop, affecting the reliability of the system. Our proposed protocol,
Extended Energy-Scaled and Expanded Vector-Based Forwarding Protocol (EESEVBF), exploits the
holding time mechanism to suppress duplicate packets. Moreover, the proposed protocol tackles the
hidden terminal problem due to which a reasonable reduction in duplicate packets initiated by the
reproducing nodes occurs. The holding time is calculated based on the following four parameters:
(i) the distance from the boundary of the transmission area relative to the PFNs’ inverse energy
at the 1st and 2nd hop, (ii) distance from the virtual pipeline, (iii) distance from the source to the
PEN at the second hop, and (iv) distance from the first-hop PEN to its destination. Therefore, the
proposed protocol stretches the holding time difference based on two hops, resulting in lower energy
consumption, decreased end-to-end delay, and increased packet delivery ratio. The simulation results
demonstrate that compared to ESEVBF, our proposed protocol EESEVBF experiences 20.2% lesser
delay, approximately 6.66% more energy efficiency, and a further 11.26% reduction in generating
redundant packets.

Keywords: Underwater Wireless Sensor Networks (UWSNSs); Extended Energy-Scaled and Expanded
Vector-Based Forwarding (EESEVBEF); Potential Forwarding Nodes (PFINs)
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1. Introduction

Smart coasts (SCs) are rapidly gaining importance as a major contributing factor to sustainable
communities [1]. Key features of SCs are the monitoring of water quality, water pollution, seismic
activity, eco-system, and the overall management of the coastal zones. To effectively implement
these features, uninterrupted collection, monitoring, detection, and management of various aquatic
parameters are required. Such continuous monitoring of oceanographic parameters is only made
possible by employing Underwater Wireless Sensor Networks (UWSNS) [2], which have become the
technological underpinning of SCs.

Several sensor nodes, operated by battery, are deployed in water-based environments to form
UWSNSs. Such nodes are equipped with sensing, communicating, and storing capabilities of various
physical aquatic parameters. A sink floating at the surface of the sea receives the sensed data and
further forwards it to the onshore monitoring station. Each communication approach is marred
by unique challenges when employed in the underwater environment [3]. The communication
among sensor nodes may be carried out through optical waves [4,5], electromagnetic waves [6,7], or
acoustic waves [8].

Unlike underwater communication, the preferred choice for terrestrial communication has
been electromagnetic signals at radio frequencies because of their wider bandwidth, lower energy
consumption per bit, and smaller propagation delays. Therefore, communication from the floating
sinks to the onshore monitoring stations employ this mode. On the other hand, high conductivity
of seawater leads to severe attenuation and significant absorption losses, making it a bad choice
for underwater communications. Similarly, sightline is a requirement in optical communications
between parties and is not always possible. Moreover, the distance over which optical communication
can successfully take place is drastically curtailed by water turbidity, making it unviable for
underwater communications.

The modality of choice, and hence the most widely used one for underwater networks is the
acoustic communication, where the network is also termed as underwater acoustic sensor network
(UASN). UASNSs also face various challenges such as fading, resulting in high error rates and
bandwidth limitations due to multipath [9]. Moreover, acoustic signals in an aquatic environment
travel much slower compared to radio signals in a terrestrial environment. These challenges result in
limitations in synchronization, data routing, and information regarding the network state. This explains
why traditional communication approaches, otherwise successful for terrestrial sensor networks,
cannot be effectively used in the underwater environment.

Most of the challenges faced by UASNSs listed above are interdependent, making it even more
complex to design optimal solutions. In vector-based routing protocols, each node calculates the
holding time based on the node/network parameters, e.g., the distance to sink, middle of the virtual
pipeline, and receiving node distance from the previous hop’s sender. Holding time is only estimated
after a node first checks and ensures that it is located within the virtual pipeline. This procedure
takes place upon receiving the first duplicate of a packet from downstream nodes. The timer is set
up based on the (estimated) holding time. When the timer expires, the node forwards the packet, if
no other copy from its neighbors is received. At the same time, the remaining nodes will suppress
their packet forwarding protocols in favor of the node, which has the minimum holding time in all the
surrounding nodes.

For faster propagation, such protocols (vector-based) calculate the holding time based on the
nodes’ proximity. In addition, the proximity of the middle of the pipeline and the distance to the sink
are also considered for estimation. End-to-end delay reductions occur while packets are forwarded
through these nodes; however, it causes energy depletion, resulting in a void energy hole problem.
For this reason, it is required to have a fair energy balancing among the nodes inside the vector and
the whole network. Therefore, holding time estimations consider the energy factor to increase the
network lifetime. However, the shortest path between the sender and the sink does not guarantee
fair distribution of load/energy in the network. Alternatively, better decisions regarding forwarding
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based on precise holding time estimations are achieved when each node in the network is updated
with the network state information (complete or partial network). Exchange of control packets makes
this network state information available; however, this traffic puts additional burden on bandwidth,
energy consumption and error rates. Therefore, suggested forwarding schemes for UASNs should
address these limitations and offer a balanced tradeoff. Further improvement to reduce the number of
duplicate packets can be made if the immediate neighbors estimate their holding times to be greater
than the propagation delays.

Higher energy consumption, channel errors and long propagation delays of acoustic signals are
well-established challenges in aquatic environments [10]. Energy consumption and propagation delays
are phenomenally increased when the far away node of the network sends packets to the sink node
(fixed at a particular point). For efficient collection of data, sink mobility has been suggested by various
schemes in the literature. Mobile Sinks (mobile stations) are nodes that can change their position
in two ways: (1) autonomously, and (2) via anchored ropes/vessels. An example of autonomously
changing positions is the autonomous underwater vehicles (AUVs) [11]. The mobile sink is assumed
to have frequent refueling and recharging made available to ensure roaming in the network. Therefore,
the proposed routing schemes for UASNs may also consider the effectiveness of using a mobile sink.

In this paper, Extended Energy-Scaled and Expanded Vector-Based Forwarding (EESEVBF)
protocol exploits the holding time mechanism to suppress duplicate packets. Moreover, the proposed
protocol also tackles the hidden terminal problem due to which a reasonable reduction in duplicate
packets initiated by the reproducing nodes occurs. The holding time is calculated based on the
following four parameters: (i) the distance from the boundary of the transmission area relative to the
PFNs’ inverse energy at the 1st and 2nd hop, (ii) distance from the virtual pipeline, (iii) distance from
the source to the PFN at the second hop, and (iv) distance from the first-hop PEN to its destination.
Therefore, the proposed protocol stretches the holding time difference based on two hops, resulting in
lower energy consumption, decreased end-to-end delay, and an increased packet delivery ratio.

Motivation and Contributions

The vector-based routing protocols use pipeline for directionality purposes along with the
positional information of the node for calculating the holding time. The proximity of the node towards
the destination point (upward packet advancement) reduces the end-to-end delay and considering the
normalized energy of the PFNs from the first and second hop, reduces the energy consumption in the
network. Based on these factors, we propose Extended Energy-Scaled and Expanded Vector-Based
Forwarding (EESEVBF) protocol. EESEVBF considers the following points in designing the holding
time mechanism for the PFNs:

1. To avoid the void hole problem, the holding time of the PFNs is calculated based on the energy
of the neighboring nodes. The holding time between two PFNs of a source node depends on
the propagation distance between them, i.e., a larger holding time difference reduces duplicate
packets, resulting in reduced overhead in the network. A small variation in the energy levels of
neighboring nodes can affect the difference between the holding time of the nodes.

2. The nodes are prioritized on their position with respect to the virtual pipeline. The distance
between the sender and the forwarder is added in the holding time mechanism, which helps in
minimizing the end-to-end delay. This factor generally contributes to the movement of packets by
a large distance in a specific direction towards the sink.

3. The nodes manipulate the timer information of their common neighbors with the source node,
modeling the network as a real time system. The node with the minimum holding time in all
the PFNs of a source node forwards the packet within a very short time. The packet is further
forwarded by the nodes in the second hop using the same mechanism.

4.  Energy balancing is accomplished by using the residual normalized energy information of the
candidate nodes in the estimation of the holding time. This process aims to have the same energy
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level of all nodes within the transmission range of the source node. Therefore, no single node will
go to the dead state alone.

5. The upward packet advancement is effectuated by taking into consideration the depth information
of the first two hops from the current source node. The forwarder nodes are prioritized resulting
in more advancement in the first two hops of the source node compared to the subsequent ones.

6.  Further minimization in the energy tax is achieved by suppressing the packet forwarding initiated
from the reproducing regions. The proposed protocol uses control (announcement) packets for
suppressing the duplicate packets from regions where the forwarder nodes have no access.

7.  Energy optimization is achieved by exploring the sending and receiving energy in the whole
network life with the linear programming technique.

The novelty of our approach is given in the following points:

e  The best route forwarder is decided based on the holding time value calculation, which also
considers the second hop.

e  The timer value of the first hop is not affected but only the priority of transmission is changed
based on their succeeding hops.

e Inaddition to the first hop, the second hop is also used in the calculation of all the three parameters
(Energy factor (Ef), Positioning factor(Pf) and Cultivate Packet Advancement).

e  We introduce a novel concept of control packets for addressing the hidden terminal problem.

The simulation results manifest that EESEVBF reduces the energy tax, lessens the end-to-end
delay, and ensures the reliability compared to ESEVBE.

This paper is further organized as follows: Section 2 reviews the previous work related to the
proposed EESEVBE. Section 3 describes the problem statement and background. Section 4 details
the architecture of our proposed protocol and the holding time value calculation. The experimental
setup is described in Section 5. In Section 6, we present and discuss the simulation results. Finally,
the conclusions and future directions are given in Section 7.

2. Related Work

Several studies have already been carried out for efficient routing protocols in UWSNSs [12-14];
however, we describe the closely related work in this section, i.e., all those protocols that depend
on the pipeline radius for directionality purposes using a node’s relative coordinates [15] and timer
information [16] for broadcasting.

In [17], the authors propose Vector-Based Forwarding (VBF), which draws a fixed virtual pipeline
between source and terminus point for forwarding a data packet. The forwarding decision can be
made by considering the relative position of the node with reference to the pipeline. Upon reception
of a data packet by a sensor node, it verifies if it is inside the virtual pipeline. If the answer is yes,
then it computes the desirableness factor («). The desirableness factor is the ratio between the virtual
pipeline width to the sum of the distance of the forwarder from the center and the source node.
The forwarder nodes that are closer to the pipeline are selected each time, resulting in an energy hole
in a short period of time. When the number of nodes in the network increases, it also increases the
duplicate copies of the data packet due to the lesser difference between the holding time as compared
to the propagation delay. Accordingly, more energy consumption occurs throughout the network
and most of the packets do not reach their destination. When the network density is lower, finding a
suitable node becomes more challenging. For an efficient packet delivery ratio, a single path between
the terminus point and the forwarder must remain, which is indeed inflexible in VBE.

To overcome the shortcomings in VBE, researchers proposed hop-by-hop VBF (HH-VBEF) [18].
The HH-VBF defines a virtual pipeline on each successive forwarding hop, instead of using a single
pipeline. Moreover, it improves reliability by considering pipelines to find more suitable forwarding
nodes. The node transmission range is similar to that of the pipeline radius. The mechanism for
calculating the timer value is similar to that of VBE. Because of the reduction in the number of void
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holes, the PDR is improved in HH-VBF compared to its predecessor VBE. Similar to the VBF protocol,
HH-VBF can not also apply fair energy to the nodes in the network. The inadequacies of HH-VBF are
covered by Adaptive HH-VBF (AHH-VBF) [19]. AHH-VBF dynamically alters the transmission power
and forwarding zones. The transmission power for each forwarding data packet is enumerated to
the farthest node in the transmission region and the forwarding zone is defined based on first-hop
qualified nodes’ density at each hop. The motivation behind the different values of the pipeline radius
is to reduce the broadcasting to an acceptable level. AHH-VBF uses the controlled packets to attain
forwarding zone and transmission power adaptiveness. The request packet is sent by the source multiple
times at different transmission powers and it retains the neighbors table, while in response, it receives
the acknowledgment packet. In this process, if the total nodes are fewer than the predefined threshold
value, then the maximal power level is selected, otherwise the power level is adjusted appropriately.
Adjusting the transmission power and the pipeline radius results in efficient energy tax. However,
each time the same set PFNs will always be selected, which violates the fair distribution of energy
among the nodes. Moreover, the dynamic power does not ensure the prevention of duplicate packets
as well as the selection of qualified forwarders.

Let us now consider those protocols that do not use holding time calculations, but they are based
on location. The authors in [20] propose Focused Beam Routing (FBR) protocol, which uses the concept
of directional power alteration in seeking directionality. Prior to forwarding packets, the source node
gradually increases the flooding angle and power based on gradients defined in advance. In FBR,
the source node sends many Request To Send (RTS) packets in each direction and needs to wait for
the Clear To Send (CTS) packet. Many RTS packets need to be sent by the node and then it must wait
for receiving the CTS packets. These CTS packets are expected from the neighbors in the direction of
the beam. The control overhead packets can incur higher costs due to higher energy consumption
and end-to-end delays at each hop in a crowded network. In FBR, the delay is caused due to the
exchange of control packets (RTS and CTS), which lead the authors in [21] to introduce Layer by Layer
Angle-Based Flooding (L2-ABF) protocol. A cone-shaped angle of flooding is created to the shallower
layer facing the terminus point. In L2-ABE, the angle of transmitting power (i.e., cone’s length /width)
is based on the Euclidean distance and the packet’s speed between the sender and receiver nodes.
The scheme sends multiple duplicate packets in dense and random network scenarios.

The authors in [22] proposed Directional Flooding-based Routing (DFR), which is a receiver
and location-based scheme. The nodes in the network can find their relative coordinates, qualified
node and the destination sink location. In DFR, all the nodes do not need to calculate the holding
time value for their timer because of directly transmitting mechanism in an upward direction.
Moreover, the broadcasting of data packets is confined within a certain range to improve the energy
efficiency. The width of the flooding is dynamically traded off with signal strength. The energy
consumption sometimes leads to its maximum due to the unnecessary width of the power flooding,
which alternatively reduces the packet delivery ratio.

A modified Dynamic Source Routing-based Location-Aware Source Routing (LASR) has been
proposed in [23]. It uses link quality, i.e., expected transmission count (ETX) and location awareness
as routing metrics to forward packets towards the sink node. As it uses source routing, therefore,
the packet size is directly proportional to the number of hops that the packet has been relayed.
Furthermore, it requires flooding of the route request in the entire network to find a suitable
route towards the destination, which drastically reduces the network performance and consumes
network resources.

To minimize energy tax per node, increase packet delivery ratio, and reduce end-to-end delay,
the literature focuses on different sink mobility scenarios which are briefly discussed below.

Instead of covering the whole network, authors in [24] proposed autonomous underwater vehicle
(AUV) to collect data from path nodes (selected nodes). In AUV, the path nodes act like local data
collection points, avoiding the sink to traverse the whole network and receiving data efficiently with
less energy through already well-defined paths.
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Another relevant protocol is the Aided Underwater Routing Protocol (AURP) [25], which receives
packets from multiple gateway nodes. The scheme uses different (heterogeneous) channels to collect
data to minimize and control sink mobility. The addition of heterogeneous channel enables AURP to
use either lower bit rate with long-range channel or higher bit rate with short-range channel.

In [26], the authors proposed mobile sink mobicast or geocast in the Euclidean three dimensions
for the underwater sensor network (USN). The scheme mainly focuses on reducing the void hole
occurrence due to the energy tax throughout the network when the mobile sink collects data. The ZOR
(zone of reference) is achieved by dividing the whole geographic 3D USN zone into multiple sub-zones.
The sink receives the data from nodes within ZOR and traverses the trajectory through the well-defined
paths created in the initializing phase.

In [27], the authors propose a new protocol called DOlphin and Whale Pods Routing (DOW-PR)
protocol consisting of two parts i.e., dolphin and the further improved version, whale pods. The scheme
enhances the reliability, end-to-end delay and minimizes the energy consumption compared to
Weighting Depth and Forwarding Area Division (WDFAD) routing protocol. The proposed scheme
selects the path where traffic congestion is minimum, which results in initiating the least number of
duplicate packets. The counterpart whale pods embed sink in the middle in a specific region, which
gives a very high data rate and prolongs the network lifetime.

Sendpra et al. [28] performed electromagnetic/radio communication in UWSN using a frequency
band of 2.4 GHz. The behavior of radio signals was analyzed as a function of network parameters,
i.e., data rates, working frequency and modulations. The proposed protocol focused on rectifying
the existing models of electromagnetic communication in freshwater and compared it with analytical
models in the specified environment. The Round-Trip Time (RTT) of a packet was analyzed with
various modulation techniques, frequency and as a distance function between the sender and
the receiver.

Sensor nodes operated by battery are self-powered. The battery of the node discharges with
time, reducing the network lifetime. There exist various techniques to prolong the network lifetime.
The energy consumption can be decreased if idle/sleep state is used by the sensor nodes when no data
is transmitted. During this idle state, the sensor nodes operate in very low energy consumption mode.
Such a transition between active and idle states requires that nodes in the network are operated at
the same clock reference. For this purpose, the authors in [29] proposed Acoustic Triggered Wake-Up
(AT-WUP) system embedded within a sensor architecture that can switch between active and sleep
states to improve the network lifetime. Such an architecture requires only 8.71 uW energy consumption.
Furthermore, the sensor nodes at idle state cause a minimum discharge (i.e., less than 1 pA), which
can be easily handled by the proposed AT-WUP system. The proposed system attempts to address the
issue of global clock synchronization by providing a wake-up solution for low-power nodes.

In [30], the authors proposed a protocol for delay tolerant underwater networks. The protocol
uses a timer countdown interval mechanism to overcome the packet collision at the next node from the
previous two nodes. Packet loss is reduced by implementing a queue to store the packet for some time
in case it does not receive the expected qualified hop. Hop count information is exchanged between
nodes with control packets (HELLO message). Such a HELLO message consists of the information to
identify the sensor node and the distance to the destination. The transmission of such packets happens
at regular intervals from the nodes with a state table with some information. These tables are to update
other nodes’ tables that can initiate the transmission of other data packets. Each table is updated upon
reception of a HELLO message with the information of the hop count of the sender to the sink node.
This process of updating state tables is followed for all nodes. During this process, if another node is
found closer to the sink that receives a HELLO message, then it starts sending the data packet (if any).
On the other hand, if no node is found closer to the sink, then the HELLO message is sent to update
other nodes’ tables.

Underwater Delay Tolerant Network with Probabilistic spraying (UDTN-Prob) [31] is a
replication-based routing protocol that estimates the Cumulative Distributive Function (CDF) between
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the current node and the sink node to give priority of transmission to a node. CDF is the probability
that a packet will reach its final destination by selecting the current forwarder.

In contrast to these approaches of DTN, our proposed protocol calculates the transmission priority
based on the holding time (HTjs) of the current forwarder and the minimum among the succeeding
PFNs of that forwarder at the second hop (HT3,).

3. Problem Statement

The Energy-Scaled and Expanded Vector-Based Forwarding (ESEVBF) protocol [32] expands
the holding time of AHH-VBF to suppress duplicate packet generation due to a very small difference
between the holding time of the neighbor nodes as compared to the propagation delay. The propagation
delay is very high in the harsh underwater environment. Upon generation/reception of a packet
from its predecessor, the node forwards the packet to other nodes in its transmission range, which
will result in generating a large number of duplicate packets and in more energy consumption if all
nodes take part in forwarding. Therefore, it is very challenging to reduce the forwarding nodes to an
acceptable level. Till now, all the protocols use the holding time mechanism to suppress duplicate
packets. The holding time is calculated in ESEVBEF based on: (1) the distance of the PFN from the edge
of the transmission range scaled with inverse normalized energy, (2) the distance from the virtual
pipeline, and (3) the distance from the sink node of that corresponding node. ESEVBF covers all the
factors related to the holding time but it is based only on the first hop. In ESEVBE, the problem may
arise due to the presence of void/energy hole found by the PEN of the sender. The proposed scheme
will extend the holding time scenario to the second hop. In that case, there will be a higher probability
to advance the packet further in the overall distance covered by the two hops from the source node.
The proposed system tends to find the more suitable node, which is best with respect to the first hop
as well as the second hop. The whole scenario of selecting the forwarder node is depicted in Figure 1.
The small red circles represent the source nodes (S and S1), the blue circles represent the Expected
First-Hop PFNs and their energies, while the black ones represent the Expected Second Hop PFNs
and their energies. Similarly, there are three types of big circles in the figure representing various
transmission ranges, i.e., the circles with the solid line boundary represent the transmission ranges
of the source nodes, the dashed circles represent the transmission ranges at the first hop, while the
dotted ones represent the transmission ranges at the second hop. As depicted in the figure, node S is
the source node because it broadcasts a packet and nodes A/B are the receivers of the packet. ESEVBF
selects node A for forwarding the received packet, which means that Node A will transmit the packet
early in such a way that node B receives it before its own broadcasting. When Node B receives the
packet transmitted by A as a duplicate packet, it suppresses both the packets (the original packet
received from Source node S as well as the duplicate packet received from node A). The PFN (node C)
of node A does not have sufficient energy to continue broadcasting. The proposed system will select
node B for forwarding as it has a second hop PEN, which is more favorable with respect to energy and
packet advancement. Therefore, the proposed protocol tends to increase the net packet advancement
and finds the best favorable routing path with respect to the residual energy.

In the second scenario, as shown in the same Figure 1, node 51 has G and F PFNs in its transmission
range. When node 51 broadcasts the received /generated packet, nodes F and G receive the packet, and
the next forwarder is selected based on the holding time. ESEVBF selects node F as a next forwarder,
which introduces the problem of void holes. In contrast, EESEVBF will give preference to node G
because there is node H at the second hop, which can further continue the packet transmission process
for reducing data loss.

The second problem faced in ESEVBF is the hidden terminal problem, as depicted in Figure 2.
The source node broadcasts while its PENs receive the packet. The qualified nodes are prioritized
according to the holding time value. The problem occurs in a scenario when the forwarder (the node
with higher priority) does the broadcasting of the packet in its own transmission zone after the expiry
of the timer value, while some PFNs of the source node are not in the range (located in reproducing
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regions, as shown in Figure 2), and hence do not receive a copy of the original packet. This results in
the generation of duplicate packets. The source node S broadcasts the packet, which is received by
the nodes P}n, P]%nr P}’n, S;,, S}%, S%,Pg, P;, and Pg’, as shown in Figure 2. The suppressed nodes due to
being deeper than the source node, directly drop the packet but P}n, PJ%n, P]%n, Pgl,, Pé, and P§’ calculate
the holding time value and set the timers. Based on the parameters of the holding time, the highest
priority node should be node P}n. The nodes Pg, Pg and Pg3 are out of the transmission range of the
highest priority node (P}n). Therefore, they will generate duplicate packets and transmit these packets,

resulting in higher energy consumption. On the contrary, EESEVBF uses control packets to suppress
the reproducing nodes, as discussed below.

Energy hole

----------------- Void hole due to no PFN
@ Source node d ™

@ Expected First Hop PFNs

-
s

@® Expected second Hop

\
\
PFNs \
.
Dotted Circles 1 s ang 75 'E
represents r ! :
’
Dashed Circles s S :"
represents T r and T " ) ki
N, g ’
Solid Circles s and T §! . . o st A !
represents " r

Figure 1. Forwarder Node Selection Scenario.

The propagation delay 7(n1, n2) between two nodes in UWSNs is proportional to the separation
distance between them, as shown in Figure 3. Node A can suppress the broadcasting of node B when
the holding time difference between them is greater than the propagation delay and in that case,
the suppressed otherwise duplicate region will be achieved. The reproducing region is achieved due
to the hidden terminal problem. In ESEVBE, duplicate packets are initiated and forwarded in both
suppressed and reproducing regions, while in EESEVBE, this is achieved by using the control packets.

Mathematically, the suppressed region, duplicate region and reproducing region can be expressed in
Equations (1)—(3) respectively:

HT! — HT!2 > t(nl,n2) A Tryy > D2 < Trg @
HT,' — HT}*> < t(n1,n2) A Tryy > Djif < Trs (2)
HT! — HT!? > (n1,n2) A Tryy < DI < Trg ®)

The duplicate region can be easily avoided if the holding time difference is larger, but at the same
time, it can generate a long end-to-end delay. ESEVBF estimates the holding time in such a way that
the suppression is achieved frequently with the tradeoff of end-to-end delay.
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PFNs

Expected duplicate"-..
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55 ¢ Nodes
53
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Figure 2. Hidden Terminal Problem Scenario.
Preliminaries

The proposed EESEVBF scheme uses the following notations:

Sink Node Si: Sink node in UWSN is a superficial node that is placed at the sea surface to
collect data from the deployed nodes inside the water. A radio link is used by the sink nodes for
communication. The packet received by the sink node is considered to be a successful conveyance to
its terminus point. These superficial nodes are either steady at their starting points or they dynamically
move in their planes. Let Sy be the set of sinks in the network, then

Sk = Sk1,Sk2,Sk3/+ - - - Skn 4)

where Sy, is a specific node and n is the total number of sinks.

Transmission Range ( Tri) of Node(i): The transmission range of any node i(xs,ys,zs) is the
omnidirectional distance up to where it can transmit the data packet.

Eligible Neighbors of Node(i) (EGN;): The nodes that are in the transmission range of Node (i) are
the eligible neighbors of Node (i). This can be mathematically expressed as:

EGN; = ieSy A Dist) < T}' ()

where Sy is the total numbers of nodes in the network and Distf is the Euclidean distance between
node i(xi, Yi, Zi) and j(xi, Yi, Zi)~

DIST; = \/(xi —x)2+ (vi —yj)* + (zi — z)* ©)
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Potential Forwarding Nodes (PFNs): The nodes that are in the set EGN; and lie in the upper
hemisphere are called PFNs. The following condition must be satisfied for the node s1, which is the

PEN of some other node s.
PFNs C EGNg; Adepthg < depths (7)

Potential Forwarding Zone (PFZ): PFZ is the bisection region or sub-region of the transmission
range in which each point is nearer to the sink compared to the current forwarder and its radius is
equal to the radius of the forwarder. The following conditions must be true for a point ps(xps, Yps, Zps)
to be in PFZ of S in the 3D Euclidean space.

Dist! < Dist}), Disty < T? (8)
where

° Distf; is the distance between point ps(xps, yps, zps) and Sink node D(xp, yp, zp)
. Dist?p is the distance between point S(xs, ys, zs) and Sink node D(xp, yp, zp)
e Dist; isthe distance between point ps(xs, s, zs) and Source node S(xs, s, s ).

=
N
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3
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Figure 3. Holding time difference relationship with propagation delay.
4. Proposed Scheme

In this section, we present the details of our proposed scheme. The proposed protocol enhances the
performance matrics of ESEVBF by extending the holding time mechanism of the first-hop forwarder
to the second hop and further solves the hidden terminal problem.

4.1. Network Architecture

The network architecture of EESEVBF protocol is composed of anchored nodes, relay nodes and
sink nodes, as depicted in Figure 4. The terminus nodes/sink nodes are centralized stations consisting
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of acoustic and radio modems. They communicate with each other and with the external network
through the radio links. Sink nodes are fixed at the water surface. The data received by any sink node
is considered a successful delivery to its destination. On the other hand, relay nodes are movable with
the water current while anchored nodes are fixed at the bottom. The sensor nodes communicate with
each other through an acoustic link. The speed of acoustic signals (1500 m/s) is much smaller than
that of electromagnetic signals (3.8 x 108 m/s). Environmental monitoring and underwater tectonic
plates monitoring are the typical applications of the network [33].

O Tronsmission Range o satellite
©

Sink node 6 Anchored ‘t
8 node ¥
8 Relay node

—— » Radio signal

e Acoustic Signals

4 User Receiver
Station

o
]
2
I
o
4
2
> K
4
v
4
o1
I
2
o
o
JOJ
2
4
<
¢ o
@ 4

Figure 4. Network architecture.

4.2. Acoustic Signal Velocity in the Underwater Environment

The speed of acoustic waves mainly depends on the variation of pressure, temperature,
and salinity of water at different layers. Let us suppose that C represents acoustic sound velocity,
T is the underwater temperature at different layers, S is the Salinity and D is used to represent depth,
then mathematically, the speed of acoustic signal (C) can be expressed as [33]:

C = 144896 + (4.591 x T —5.304 x 1072 x T?) +2.374 x 10~* x T> + 1.340(S — 35) + 1.63 x 102D
+1.675 x 1077 D* — 1.025 x 1072T(S — 35) — 7.139 x 10713 x D3 )

The above Equation is well grounded for 0 °C < Temp < 30 °C, 30 < Si < 40PPT, 0 <
depth < 8000 m. The effects of temperature and salinity on acoustic sound velocity can be observed
in Figures 5 and 6.
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4.3. Packet Types in EESEVBF

The proposed protocol defines five different types of packets, which are Neighbor Request,
Acknowledgment, Container, Announcement and Data Packet. The sensor nodes are deployed in the
3D region. The holding time mechanism is used to select the next forwarder when the packet is
broadcast by the source node and received by the PFNs. If the PFNs remain static throughout the
simulation life, then one specific node will always be selected when the source broadcasts the packet.
The selected node will go to a dead state in a limited time due to the repeated selection. Therefore,
the sensor nodes move and randomly change their positions. The qualified forwarding nodes are
shallower than the current source node and the distance between them is lesser than the transmission
range. To find these forwarding nodes, the source node broadcasts the Neighbor Request Packet.
The format of the Neighbor Request Packet is NRP(id,dpt,ty), where id represents a unique integer number
assigned to each node in the initialization phase, dpt contains information about the depth, and ty is a
binary number used to differentiate between the packets. The value of ty for NRP is “00”. When the
neighbor receives a Neighbor Request Packet, it replies with an Acknowledgment Packet. The format of an
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Acknowledgment Packet is AP(id,dpt ei ty), where id is a unique number assigned to each node, dpt is the
depth information, ei is the energy status and ty is “01” representing the packet type. The Container
Packet (CP) is used to exchange the priorities at the first hop between the PFNs of the source node.
The neighbor node, upon receiving a data packet from the source node, calculates its own holding
time as well as finds the minimum holding time at the second hop. The format of a Container Packet is
CP(id, HTy4 ,HT,,4,ty) where id is the unique number of the sending node, HTj; is the holding time of
the node at the first hop, HT5,, is the sum of the holding time of the node at the first hop and with
the minimum holding of the PFNs at the second hop. Similar to the other types, ty differentiates the
packet with the value of “10” for CP. When the source node receives the Container packets from all the
neighbors, it broadcasts the Announcement Packet (AC). This type of packet is used for the solution of
the hidden terminal problem discussed later in this section. The format of the Announcement Packet is
AC (hp;z,x,y,2,ty) where hp;z,x,y, and z represents the id and coordinates of the highest priority node
respectively and ty value for AC is “11”. The last packet type is Data Packet (DP), which is the actual
data to be sent to the centralized station. The format of Data Packet is DP(HD,PD, ty). HD representing
the header of the packet contains information about the packet generating node and the centralized
station, PD is the payload of the data packet, and the ty value in this case is “111”. The payload is the
most crucial part containing the actual information about the environment. If the above packets are
transmitted in short intervals, then higher network overhead and energy consumption are expected.
Therefore, to avoid this problem, each node keeps its corresponding neighbor table, which is for the
purpose of keeping a track record of their neighbors. The format of the neighbor table is NeighTab(NID,
Ei, Depth, HT;, TU), where NID represents the neighbor node ID, Ei is the residual energy of the node,
HT, is its holding time and TU represents the time for updating the neighbor entry. Meanwhile, if the
source node initiates /receives the second packet when there is enough time for updating the neighbor
table, then it will directly broadcast the Data Packet and the Announcement Packet from the previous
holding time estimations.

4.4. Packet Forwarding Mechanism In EESEVBF

The proposed protocol extends the holding time mechanism of the first-hop forwarder to the
second hop for finding the best satisfactory node with respect to the net packet advancement cover
in the two hops. In addition, it also avoids the occurrence of a void hole whether it is due to an
energy hole or the lack of potential forwarding nodes in the transmission range. There are two types
of neighbors of a source node. PFNs are the nodes lying in the upper hemisphere of a source node,
whereas suppressed nodes are the ones deeper than the source node. When a packet broadcast by the
source node is received by a qualified node, it finds the energy of the neighbors from the neighbor table
to calculate its holding time (HTj5) at the first hop. In addition, the qualified node of the source node
has sufficient information about expected PFNs at the second hop in its transmission range. The PFN
further calculates its own holding time along with the expected nodes at the second hop. To find the
HT;,; of the PEN, the holding time of the node with the highest priority among the second hop PFNs
is added with its own holding time. There are two priorities of the qualified nodes, one at the first hop
based on its own holding time, and the second is based on its own as well as the expected next PFN
at the second hop. The nodes then exchange the container packet to know about the priorities of the
other common PFNs with the source node.

The format of the sensor is Struct(ID, HTys, HT»,,4, Hry). The identifier ID is a unique integer
number representing some specific node in the network and HTy; , HT,,,; represent the holding time
values at the first and second hop respectively, while HT, is Resultant Holding Time/Timer value.
The Container Packet CP received from the common qualified node contains the information about
holding time/priorities of the sending node. Therefore, upon receiving the CP, the node places the
values of ID, HTyg; , and HT,,,; in Structl. The node then sets its timer, i.e., HTr value after processing
the priorities of all the forwarders. The overall holding time phenomena is the same for both first and
second hop, only the holding time value is changed at the second hop to adjust the priority. At both first
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and second hops, the nodes with 1st priority sets their holding times HT,. Similarly, the nodes with 2nd
highest priority at each hop set their corresponding holding times and the same mechanism is applied
to all the remaining nodes. Each node has its own structure and can calculate the holding times HTr
for the remaining nodes as well. For instance, as shown in Figure 7, S is the source node with the PFNs
A, B, C, D with IDs 1,2,3 and 4, respectively. Let node A after receiving the Container Packet from all the
common PFNs with source has Struct1.ID (1,2,3,4), Struct1.HT s (15msec, 10msec, 17msec, 30msec) and
Struct1.HT,,4(70msec, 55msec, 35msec, 45msec), as listed in Table 1.

Table 1. Packet Forwarding Scenario before the nodes receive the CP Packet.

Structl Node A Node B Node C Node D
ID 1 2 3 4

HTyg 17 msec 10 msec 15 msec 30 msec

HT),4 70 msec 55 msec 35 msec 45 msec
HT; — — — —

At the first hop, node B has its ID 2 and holding time value 10 msec, which is the lowest HT;
value and has the highest priority among all the nodes at the first hop. In contrast, node C with ID
of 3 is at the 1st priority at the second hop node. Therefore, node C sets its holding time (HT;) value
as the holding time value of node B at the first hop. The second highest priority node D at second
hop sets its holding time (HT;) value with that of the holding of Node C at the first hop, similarly,
node B with 3rd priority at the second hop sets it holding time value (HT;) as the holding time of
node A at the first hop. A similar mechanism is applied to all the remaining nodes. This results in
the new structl, as shown in Table 2. The nodes A, B, C and D then set their timer values to their
corresponding HT, values. When the timer expires and no duplicate packet is received, the PFN
forwards the packet. Algorithm 1 is the proposed algorithm for selecting the next PEN. The technical
differences between the EESEVBF and ESEVBF lie in the mechanism used for holding time/timer
value calculation. Our proposed protocol EESEVBF uses a novel approach in vector-based forwarding
protocols by not disturbing the timer value in the first hop but only exchanging the priority of the
transmission based on the subsequent hops.

Moreover, the proposed scheme uses Announcement Packet for the solution of the hidden terminal
problem that occurs in ESEVBE. To understand this problem, consider the following scenario:
A neighbor node receives a data packet from the source node. The qualified forwarding nodes
calculate the holding times and set the timers accordingly. When the timer expires and the node does
not receive the duplicate packet of the Data, it forwards the packet. The reproducing nodes are those
that are in the range of the source node but not in the range of the node with the lowest holding time
value among all the PENs. The packet is forwarded by the node with the lowest holding time value,
but the reproducing nodes do not receive a duplicate copy and hence, they also transmit the same
packet. In contrast, our proposed scheme uses Announcement Packet, broadcast by the source node after
receiving the Container Packet. The Announcement Packet contains the necessary information about the
forwarder. When a node receives the Announcement Packet, it calculates its distances with the forwarder
and checks if it lies in the range of the forwarder or not. If the statement is true, then it waits until
the timer expires, otherwise it drops the packet. The reproducing nodes not lying in the range of the
forwarder node drop the packet before the expiry of the timer. In this way, the generation of duplicate
packets is suppressed resulting in lower energy consumption.
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Algorithm 1: Proposed Algorithm for Selecting the Next PFN.

Totalnodes, trange;
for R < 1 to Rounds by 1 do
Totalnoges=Totalnoges+50;

for ng < 1 to Totalny4.s by 1 do
Network Deploy

for tr + 0 to Nor, by 1 do

trange = trange + 50;

for i < 1 to Totaly,4.s by 1 do

for j <— 1 to Totaly,ges by 1 do
Find distance between node i and j

if distance < trange AND Depthof nodei > Depthof nodej then
| Qualified forwarding node of node i

for i < 1 to DataGenerated by 1 do
Source node S.ID =i

PENS(1).ID=i;

PENS(1).H=1;

PFNS(1).D=0;

PFNS(1).HT=0;

PENS(1).TT=0;

sink_recvd = 0;

while PFNs of S > 0 AND sink,ecpiveq == False do

c_forwr=PFNS(1).ID; c_hops =PFNS(1).H; c_dist =PFNS(1).D; c¢_ht
=PFNS(1).HT; c_tt =PFNS(1).TT; Find Distance with the sink

if Distance < t,ange then
L Sitkypcieved = True, Packet gy = Packetyysini + 1, Energy consumption

calculation
ST1=[];
bcast=0;
[ST1 nforwardrs2 bcast]=CFRWRDRS3h(S, c¢_forwr, Sink, W, t_range, v,

PFNS, NFORWDD); for i3 < 1 to nforwardrs2by 1 do
Insert the forwarders to forwarding list as following;

inPFN=0;

nPFNS=numel(PFNS)+1;
PFNS(nPFNS).ID=ST1(i3).ID;

tchops = c_hops + 1;

PENS(nPFNS).H=tchops;

PFNS(nPFNS).D = c_dist + ST1(i3).SF;
PFNS(nPFNS).HT=ST1(i3).HT;

PFNS(nPENS).TT = c_ht 4+ c_tt 4+ (ST1(i3).SF /v);

PDR_EESEVBF(R, ng, tr) = _DPacketyoging

~ DataGenereted”’

EnergyConsumption_EESEV BF(R, ny, tr)=Total Energy Consumed

Delay_EESEVBE(R, g, tr) = (.

Calculate PDR, End-to-End delay and Energy Consumption
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Table 2. Packet Forwarding Scenario after the nodes received the CP Packet.

Structl Node A Node B Node C Node D
ID 1 2 3 4
HTyg 17 msec 10 msec 15 msec 30 msec
HTy,4 70 msec 55 msec 35 msec 45 msec
HT, 30 msec 17 msec 10 msec 15 msec
- ’ N T A nd =35m
Y _ N , .. 'HT(ZI 35msec
. G N
_/ HT,2nd=55msec \NJ o .
: -7 TTS~UA
/ F. R FAY ~.
S / , e P \
. L R . i \ HT,2nd=45msec ¥ B
D OHT Mst=10msee [~ - 7 . ,?l-i\
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/ “

. Ind = ‘
/ HT 2nd=T0msec \\
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i

Figure 7. Forwarding Scenario.

4.5. Holding Time Estimation

The acoustic sensor nodes are deployed to monitor the underwater environment. The sensor
nodes persistently originate data packets and forward them to the centralized station. When the
source node broadcasts the data packets, all nodes lying in its transmission range receive them. If all
the forwarder nodes take part in forwarding the packets, then it will result in the overhead and
higher energy consumption. To increase the network lifetime, we propose a holding time mechanism
(see Algorithm 2) to reduce the number of forwarding nodes to lower the energy consumption, but at
the same time, ensure reliability. Once the required processing time is passed, the node extends the
holding time value on the second hop by setting the timer according to the holding time value. In that
case, the packet is forwarded only upon the timer’s expiry and no duplicate of the packet is received,
otherwise, it is dropped. The following equations have been derived from [32] and processed further
for the holding time mechanism of node A, as depicted in Figure 8.

HT;;x = E¢ + Py + CultivatePacket Advancement (10)

The parameter energy factor (Ef) represents the distance of the PFN from the edge of the
transmission range scaled with the inverse normalized energy of the PFN at the first hop as well as at

S _ DA
Ef = o(—Ea) <TVDS> (11)

Us

the second hop, i.e.,

where

(ea +ep) — (eminyy + eminypy)
(emaxyp + emaxyy1) — (emingyy + eminyy)

Ey=
emin = min (ej|Vj € x;)

Cruaxy = MAX (ej|Vj € Xi)
Ep € [0, 1]
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Algorithm 2: Estimation of the Holding time.
function [Struct,,; nforwrdrs NBCount] = CFRWRDRS3(S,forwlID, sink1, W, R, v, PENS,
NFORWDD) S1=source(x,y,z) , D=Destination(x,y,z) , Find Eminy 1, Emaxy;
for P < 1 to number of PFNs of Sby 1 do
Get location of PEN(P), Find Eminy,,y, Emaxy,,

for K < 1 to number of PFNs of Pby 1 do
Ej=Get the energy of the second hop PFN
Ej—Eminy,,
Ek = Emaxy,,—E ;
hp2 miny,p

HT,,;=Find minimum holding time at the second hop
HT;5=Find holding time of node P at the 1st hop, Struct;s.ID = P
Structi. HT = HThg;
| Structy,;.ID = P, Structy,; HT = HT14 + HTy,4
Sort both Structys and Structy,; with respect the holding time (HT)
for m < 1 to nodesin Struct,,; by 1 do
| melementof Structy,;.HT = melement of Structys.HT;

S=Find the node with minimum HT

for t < 1 to nodesin Struct,,; by 1 do

Fl=node t coordinates from struct , F2=minimum HT coordinates , Find Propagation
distance

if Propagation distance < Holding time of F1 - Holding time of F2 then
| Suppressed , remove from the structy,

if number of nodes in struct,,;==1 then
| structy,;.HT =0

Figure 8. Holding time estimation.
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The energy of the node is normalized in neighbors of the source node. The normalized energy
is between 0 and 1. The node with maximum residual energy will have lower normalized energy
value. The e4 and ep represent the residual energy of nodes A and B, respectively. The eminy,;,; and
eminy,y are the minimum energy of the PFN at the first and second hop respectively, the converse
is true for emaxy, and emaxy,y . On the other hand, the normalized energy value is higher for the
node which has higher residual energy for itself as well as for its expected PFN at the second hop
than the specific threshold. Figure 9 is plotted by varying the distance of the PFN from the edge of the
transmission range and its normalized energy. The E factor decreases when the residual energy of the
nodes increases and the distance from the edge of the transmission range decreases. The node with the
highest residual energy among all the PFNs has a E; value approximately equal to zero.

500
[} N - A - distance from the transmission edge=50m
450 1 ~e —3¢— distance from the transmission edge=100m
S —¥— distancefrom the transmission edge=150m
400 - © | —— dgistance from the transmission edge=200
= © = distance from the transmission edge=250m

350

Ef(msec)
N
()

il T Ty R W S G ¢
o | | | . . ! ! : ; :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ei(j)
Figure 9. Ef vs. Normalized Energy.

The second factor Py in holding time calculation brings directionality and shows the placement of
the node with respect to the virtual pipeline. The node nearer to the vector connecting sender and sink
is preferable for forwarding the packets. Nodes that are not within the virtual pipeline directly drop
the packet. The P is calculated as:

Pf = tan <x> (12)

P, = (2xZ)/Dg,
Z= \/fr x (fr—Dg) x (fr—4) x (fr — D&), and
fr = (ng_'—Dék_._DIqu).

2

The Py increases when the distance P, from the virtual pipeline increases resulting in increasing
the holding time of the forwarding node (see Figure 10).

)

13
CultivatePacket Advancement = 2 — (PrimeGap + inferierGap) (13)
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The last factor Cultivate Packet Advancement represents the advance distance to be covered from the
source node to PFN at the second hop of the forwarding packet. The factor Cultivate Packet Advancement
of all the nodes is in the range [0,1].

)

D3, — D4 cos(6 D4 — DB cos(6
CultivatePacket Advancement = 2 — ( Sk ;é‘ ( a)> + ( Sk ;g (6) (14)
r r

The nodes nearer to the sink have a lesser value of Cultivate Packet Advancement. The packet is
advanced by the distance D1 from the source node when we select node A for forwarding. On the
other hand, if node B is selected as a forwarder, the packet on the first hop is advanced by a lesser
distance than node A. However, on the second hop, node B is more favorable. The factor DE kcos(6,)
gives the distance from the sink node to the projection point of node A on the center of the pipeline.
Similarly, Dk cos(6;) gives the distance up to the projection point of B on the center of the pipeline.
Here, 6, and 0, are represented as:

s 2 A2 A2
0, = cos™! (DSk +Is)szk "’ljs > (15)
2 X DSk X DSk
A2 B2 B2
6, = cos~! (DSk +Dg +Dj ) (16)
A2 B
2 X DSk X DSk

Consider the nodes shown in Figure 8, ESEVBF will select node A for forwarding because it fulfills
all the factors successfully as compared to node B at the first hop. However, Node B covers more
advance distance from source node S to node D at the second hop. Therefore, the proposed system will
select node C for forwarding the packet, resulting in lower end-to-end delay and energy consumption.

18
=3} DfromStoF=100m
16 == DfromStoF=200m
== DfromStoF=300m
14 F —3¥— DfromStoF=400m
= © = DfromStoF=500m

50 100 150 200 250 300 350 400 450 500

Figure 10. Forwarder Node Selection Scenario.

5. Experimental Setup

This section describes the details of our simulation setup, metrics, and evaluation methodology.
In our simulations, we compare the performance of EESEVBF with ESEVBF. We deploy a 3D volumetric
region of length (2 km) x width (2 km) x depth (4 km). The header size of the data packet is 11 bytes,
the payload is 72 bytes, neighbor request and acknowledgment are 50 bits, and the container packet
size is 70 bits. The data rate is 16 kbps. The propagation speed of sound underwater is 1500 m/s.
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The number of nodes varies from 200 to 450 to demonstrate the performance in the sparse and dense
networks, and the transmission range varies from 500 m to 900 m. The centralized station for receiving
the data packets is static and at the water surface. The nodes can move with a constant speed of 2 m/s.
The initial energy, sending energy, and receiving energy/idle energy of the node is set to 80J, 4.5],
and 0.017], respectively. The background underwater wireless environment and the acoustic channel
parameters (ambient noise, site-specific noise, central acoustic signal frequency) are set for simulation,
as given in [27].

6. Analysis of Results

The proposed protocol intensifies the performance parameters (end-to-end delay, PDR, energy
consumption, and duplicate packets) of ESEVBE. The underwater network is deployed to monitor
some specific areas in the sea roof.

6.1. Packet Delivery Ratio (PDR)

The source nodes consistently generate the data packets and forward them to the destination.
PDR is the ratio between the number of packets received at the destination to the packets created and
sent by the source node. There can be more than one copy of a particular packet received, but we only
consider one at the destination. The PDR is calculated as follows:

PDR — Packets received at the centralized station (17)
Packets sent by the source node

In Figure 11, the simulation results of PDR are plotted by varying the number of nodes and the
number of transmission ranges. For both protocols, the PDR increases when the number of nodes
increases. It satisfies the fact that when the nodes increase, then in the transmission range of each node,
there will be more numbers of nodes, which causes a reduction in the packet drops and increases the
reliability. The probability of a void hole occurrence is reduced when the network changes from the
sparse towards a denser one. As evident from Figure 11, the PDR of EESEVBF is greater than that
of the ESEVBF because the former considers the second hop PFN while selecting the PFN at the first
hop. There are two possibilities of void hole occurrence, one when there is no PEN and the second
when there is PEN in the range of the source node, but it does not have sufficient energy to forward
the packet. The proposed protocol avoids both cases by considering the holding time of the PEN at the
second hop.

For the transmission range of 500 m, the PDR of EESEVBF is slightly higher than ESEVBF;
however, the difference is small compared to the 700 m transmission range, as shown in Figure 11.
This is because, for small transmission range, the holding time of the proposed protocol is not effective
compared to the large transmission, as shown in Equation (10). In this case, the selection of the node
is purely based on the first hop as in ESEVBF; however, for large transmission range, the selection
is prioritized from the combination of the first and the second hop. When the transmission range
increases for the same number of nodes, the PDR is also increased. In this case, there is an increased
probability of finding a more suitable node with respect to the holding time; however, for lower
transmission range, it is difficult to find the next PFN and the packet cannot reach even at the fourth
hop from the source node. Similarly, as shown in Figure 12, the difference between PDR of the two
protocols is high when the number of nodes is 200 and the transmission range increases compared to
the denser ones. The reason is that in a dense network, there are sufficient nodes in the transmission
range for selecting the PFN, and therefore, the next forwarder of the PFN gets a negligible effect on the
PDR. The converse is true for sparse networks.
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Figure 11. Number of Nodes vs. PDR.
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Figure 12. Number of Nodes vs. PDR.
6.2. Energy Consumption

Energy consumption is the total amount of energy consumed in the network throughout the whole
simulation. It is known that the energy consumption increases when the number of nodes increases,
because more duplicate packets are generated and forwarded. We plot the simulation results of energy
consumption by varying the number of nodes and the number of transmission ranges. The energy
consumption of EESEVBF is lower than that of ESEVBF, as shown in Figures 13-15. The reason is
the instantiation of the duplicate packets. In ESEEVBE, the reproducing nodes generate the duplicate
copies and forward them to their PFNSs, as discussed in Section 4. The transmission energy on the
duplicate packet is consumed from the reproducing node to the sink, which results in increased total
energy consumption. In contrast, our proposed protocol not only selects the favorable path with
respect to the packet advancement and residual energy at the first and second hop, but also tackles the
hidden terminal problem (as discussed in Section 4) resulting in a reasonable reduction in duplicates
packets, as shown in Figures 16-18.
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The energy consumption increases when the number of nodes increases. This is because some of
the packets do not reach their fourth hop in the sparse network, resulting in lower packet delivery
ratio and energy consumption. On the contrary, most of the packets are successfully delivered
causing higher energy consumption. The difference between EESEVBF and ESEVBF is lessened for the
lower number of transmission range and nodes because of the next forwarder selection mechanism.
From Equation (1), it is difficult to find the node at the second hop, which competes with the first-hop
forwarder nodes in case of a sparse network, and the forwarder is purely selected from the weight
of the first-hop PFNSs. Therefore, in large transmission ranges and dense networks, the effectiveness
of our proposed protocol is clearer. The simulation results show that the proposed protocol reduces
the energy consumption by an average of 10.45% in comparison to ESEVBE, as listed in comparison
Table 3.
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Table 3. Overall Energy Consumption improvement of EESEVBF compared to ESEVBE.

Network Size 300 400 450
T, =500 m 0.81 1.16 2.50
550 m 0.10 2.53 5.32
600 m 2.55 7.62 10.21
650 m 131 5.32 10.90
700 m 4.16 8.33 11.12
750 m 4.50 12.51 13.33
800 m 6.96 11.78 14.16
850 m 10.8 10.83 15.81
900 m 9.16 8.33 10.90
% Improvement 4.75% 7.59% 10.45%

6.3. Energy Optimization

Linear programming is used when prime resource allocation is required. Linear programming
is defined under some constraints in the linear objective function. The network performance and
lifetime of any routing protocol can be enhanced by considering the energy consumption. To reduce
the energy consumption, the proposed protocol also uses linear programming techniques. Energy tax

minimization can be achieved as:

Ymax
minimum Z Etax" (r) V1 €t max
r=1

(18)

Energy tax is the energy consumed by each node per packet upon the successful delivery to
its terminus point. It depends on the total energy consumed by the network, the number of nodes,
and the total packets received by the destination node. The mathematical expression of energy tax can

be written as:

Etux =

N

)3

n=1

Etotal

n * Packet_to_sink

(19)
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6.3.1. Constraints

E_node < E_initial (20)
Forwarder(HT!") < MiniForwarder(minHTr)_;) (21)
Try < TryaxVneN (22)

The purpose of the objective function is to reduce total energy consumption. One of the constraints
is that the energy provided to each node should be less than the initial energy as stated in Equation (20).
The second constraint is that the forwarder of each source node is selected on the value of holding
time and is designed in such a way that the node with maximum residual energy will have higher
chances of selection. The last constraint is that the transmission range of each node should be less than
the maximum required transmission range.

6.3.2. Graphical Analysis
Suppose that Nodes;qx = 450 , Tr'. = 500, Tr},, = 900, Eipitin = 50j, Eige = 158 mW,

min

Headers;,, = 11 bits, Payload = 72 bits, Distg = 500 m, E,prmaiized = 0.7], so the below equations are
obtained from the above constraints.

75 < Ep" < 11.11 (23)
1.58 < Erco" < 3.16 (24)
9.08 < Etr" + Erco" < 14.27 (25)

Equations (23)—(25) are drawn to find the feasible region, as shown in Figure 19. The optimal
solution is validated by each vertex of the feasible region. The boundary points of the feasible
region recognize the optimal solution. The points are: P1 (7.5, 1.58) = 9.08 J; P2 (7.5, 3.16) = 10.6 J;
P3(11.11,1.58) =12.69 J; P4 (11.11, 3.16) = 14.27 J.

The bounded region in Figure 19 indicates that the formulation is valid and energy usage in that
specified region will always result in optimal network lifespan.

16
14
12rF S
N I
10 - P,(4.33, 3.16) |
N

N |

8 P433,0159) "\ E +Etota|r\Fv: 14.27
!

P4(11.10, 3.16)

Etotal __ (J)

c total
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Ec, _ (mJ)

total

Figure 19. Feasible Region.
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6.4. End-To-End Delay

End-to-End delay is the time taken by a packet in traversing a distance from the source node to

the centralized station. It includes transmission delay, propagation delay, and the necessary processing
time for the sensor node to forward a packet. The result of the end-to-end delay is plotted by varying
the number of nodes and the transmission range. The end-to-end delay of EESEVBF is lower than that
of ESEVBF, as shown in Table 4 and Figures 20-22. There are two reasons for this:

When a node forwards a packet, the next forwarder is selected based on the holding time
algorithm. ESEVBF protocol only considers the advance distance covered in the 1st hop from
the source to the forwarder in selecting the next PFN and not the one in the second hop of the
respective PEN. On the other hand, the proposed protocol extends the holding time up to the
second hop of the source node, i.e., the holding time mechanism of the forwarder node includes
the distance from the edge of the transmission range of the source node to the forwarder, the
distance of the source node to the second hop forwarder, the distance between the sink and next
forwarder, and the distance from the virtual pipeline.

The EESEVBF uses a container packet in which the nodes exchange their holding times at both the
first and second hops. The nodes found from the holding time of each other set their priorities at
the first and second hop, then only the one with the highest priority at the second hop transmits
the packet within no time.

6

w

—3— ESEVBF T =500m
4 —3¥— ESEVBF T =700m
’ —¥— ESEVBF T =900m
- © - EESEVBF T =500m

Average End-to-End Delay (s)
w

= @ = EESEVBF Tr:700m
= © = EESEVBF T,=900m

200 250 300 350 400 450
Network Size (Nodes)

Figure 20. Number of Nodes vs. End-to-End delay.

Table 4. Overall end-to-end delay improvement of EESEVBF compared to ESEVBE.

Network Size 200 300 400 450
T, = 500m 4.52 16.3 50.1 459
550 m 443 18.3 37.9 35.5
600 m 21.2 43.3 27.1 30.7
650 m 20.3 26.6 244 23.2
700 m 30.2 25.1 15.4 11.3
750 m 21.1 16.7 15.9 11.6
800 m 23.3 12.4 9.50 7.39
850 m 18.2 6.34 5.53 4.90
900 m 12.2 5.80 4.08 4.44

% Improvement 17.1% 18.7% 20.2% 19.5%
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Figure 22. Number of Nodes vs. End-to-End delay.

6.5. Analysis of Duplicate Packets

The total number of duplicate packets forwarded in the network is plotted by varying the
transmission range and the network size, as shown in Figures 16 and 17. The total forwarded copies
in the sparse network are lesser than those in the denser network, as shown in Figure 16. The reason
is that most of the packets do not reach their destinations and are dropped earlier from traversing
even four hops from the source node. For bigger networks and transmission range, a large number
of duplicate packets is forwarded in the network due to the reason that the pipeline radius increases
and the number of PFNs in the potential forwarding zone also increases. The second reason is that the
propagation delay between the two forwarders is greater than the holding time difference.

The number of copies forwarded in ESEVBF is greater than that in EESEVBF, which is due to the
hidden terminal problem, as discussed in Section 3. Although the holding time is expanded in ESEVBF
in such a way that the holding time difference between the two forwarder nodes is greater than the
propagation delay between them; however, due to the hidden terminal problem, the reproducing nodes
initiate duplicate packets. The proposed protocol suppresses the instantiation of the duplicate packets
from the reproducing nodes by using Container and Announcement Packets. For the transmission range
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of 900 m, it forwards, on average, 13.5 lesser copies than the ESEVBF. For lower transmission range
and small network size, ESEVBF performs better in terms of forwarding copies than the EESEVBF
(see Figure 16). The reason is that the source node has the very least number of forwarding nodes in the
transmission zone, and according to the holding mechanism of ESEVBE, the holding time difference is
greater than the propagation delay between them, which causes the suppression of more data packets.
In this case, the proposed protocol is not much effective due to the small number of nodes and the
higher probability that all nodes are in the transmission range of one another, thus overcoming the
occurrence of the hidden terminal problem. In contrast, for higher transmission, by solving the hidden
terminal problem, the proposed protocol suppresses duplicate packets more than those by ESEVBE.
The similar trends can be seen from Figure 17, when the transmission range increases for the same
number of nodes, the difference between the forwarded copies of the two protocols is also increased.
The effectiveness of the proposed protocol increases as the transmission range increases and the reason
is clear, i.e., the suppression of duplicate packets initiated by the reproducing nodes.

7. Conclusions

In Underwater Wireless Sensors Networks (UWSNSs), the sensor nodes are sparsely deployed due
to deployment and high manufacturing cost in large deployment regions. To improve the reliability and
reduce the energy consumption, we proposed a reliable and energy-efficient Extended Energy-Scaled
and Expanded Vector-Based Forwarding Protocol (EESEVBEF). The existing ESEVBF protocol fails
when there is a void or energy hole at the second hop, which decreases the reliability of the system.
The proposed protocol extends the holding time mechanism of the first-hop forwarder to the second
hop for finding the best satisfactory path. EESEVBF overcomes the occurrence of void hole, whether it
occurs to an energy hole or lack of a potential forwarding node in the transmission range. Moreover,
the proposed protocol also tackles the hidden terminal problem due to which a reasonable reduction
occurs in duplicate packets initiated by the reproducing nodes. The simulation results show that
EESEVBEF is 6.66% (approximately) more energy-efficient, experiences 20.2% less delay, and generates
about 11.26% fewer data packets, compared to ESEVBE. Our experimental results demonstrate the
efficiency of our proposed EESEVBF protocol over ESEVBE The only overhead of our approach is the
added complexity of computation in timer values, i.e., for a single routing decision, the system needs
to exchange several control packets to estimate the timer values for all nodes up to the second hop in
the locality of the source node. However, such calculations do not come with a high cost, i.e., the size
of control packets range from 50-70 bits, which consumes negligible bandwidth and energy compared
to the data packets.

In our current work, sensor nodes are deployed at random locations in the underwater network.
One of the future works is to deploy sensor nodes at such locations that can balance the energy
consumption. This may be possible by using some statistical distribution (e.g., Gaussian distribution)
for the deployment of sensor nodes with respect to the virtual pipeline and sink nodes. In addition,
the use of radio frequencies can also be investigated in our proposed EESEVBF protocol in future.
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