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Abstract: Multi-input multi-output (MIMO) is usually defined as a radar system in which the transmit
time and receive time, space and transform domain can be separated into multiple independent
signals. Given the bandwidth and power constraints of the radar system, MIMO radar can improve
its performance by optimize design transmit waveforms and receive filters, so as to achieve better
performance in suppressing clutter and noise. In this paper, we cyclicly optimize the transmit
waveform and receive filters, so as to maximize the output signal interference and noise ratio (SINR).
From fixed pulse-to-pulse waveform to pulse-to-pulse waveform variations, we discuss the joint
optimization under energy constraint, then extend it to optimizations under constant-envelope
constraint and similarity constraint. Compared to optimization with fixed pulse-to-pulse waveform,
the generalized optimization achieves higher output SINR and lower minimum detectable velocity
(MDV), further improve the suppressing performance.
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1. Introduction

Multi-input multi-output (MIMO) radar is a type of radar that uses multiple transmit antennas and
multiple receive antennas. MIMO radar makes full use of the radar’s transmit freedom and can form a
longer equivalent baseline [1,2], that means it have great potential in ground moving target indication
(GMTI). MIMO system also provides more flexibility in the beampattern design, which makes the joint
transceiver design of MIMO radar system to be possible [3–5]. MIMO radar also improves localization
performance attainable thanks to the improved spatial diversity [6,7]. Its performance of detecting
complex targets and invisible targets is obviously improved, the identifiability of the target parameters
has also been significantly improved [8].

The waveform design of MIMO GMTI radar is divided into orthogonal waveform design [9–11]
and non-orthogonal waveform design. MIMO GMTI radar can transmit orthogonal waveform
and separate the transmit waveform with receive filters, so that to get longer virtual aperture and more
data channels. Longer virtual aperture is beneficial in improving the performance of the MIMO GMTI
radar and it also makes it possible for the radar to get more accurate parameter estimation and achieve
smaller minimum detectable velocity (MDV) [12–15].

With the growing target detection requirements, as well as the continuous development of digital
array technology and improvement of adaptive algorithm, cognitive-based transmitter-adaptive
technology has become a hot topic in current MIMO radar research field. MIMO GMTI based
on non-orthogonal waveform can improve moving target detection performance in certain tasks.
Maximum output signal interference and noise ratio (SINR) criterion [16–18], mutual information (MI)
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criterion [19–21], minimum mean-square error (MSE) criterion [22] and ambiguity function [23,24]
are usually used in waveform optimization. The adaptive waveform design under these criteria are
discussed in Reference [25].

Recent years, with the swift development and wide application of MIMO radar, joint optimization
of waveform and receive filters began to become a new research hot spot. The emergence of cognitive
radar makes MIMO radar waveform design achieve great potential. It is also possible to optimize the
transmit waveforms and receive filters together, so that to achieve better detection performance [26,27].
Waveform optimization based on Cramér-Rao bounds (CRB) matrix is discussed in Reference [28],
which demonstrates that minimize the traces of CBR matrix can improve the detection performance.
The situation that extended targets exist and prior information is known is discussed in Reference [29],
which uses cyclic iteration to jointly design transmit waveform and receive filters to achieve an
optimized MIMO radar output SINR. Positive semi-definite relax algorithm is used in Reference [30]
to transform the non-convex quadratic programming problem into convex problem, this provides an
effective solution for MIMO GMTI radar waveform optimization.

Following the ideas above, the problem of cognitive transmit signal and receive filter design for
a point-like target embedded in a high-reverberating environment is discussed in References [31,32].
The robust joint design of the transmit waveform and filter structure for polarimetric radar is discussed
in Reference [33]. The joint design of transmit waveform and receive filters for MIMO radar STAP with
fixed transmit waveform is discussed in Reference [2]. Reference [34] also discusses the transmit-receive
filter design with covert communications focus. But for joint optimization with pulse-to-pulse
waveform variations, these papers did not discuss it deeply.

In this paper, we use maximum output SINR criterion, generalize the transceiver optimization to
MIMO radar system with pulse-to-pulse waveform variations. Compared to optimization with fixed
pulse-to-pulse waveform, the output SINR is obviously increased. The output SINR is decided
by transmit waveform and Space Time Adaptive Processing (STAP) optimized weight, we use
cyclic iteration to jointly design transmit waveform and receive filters, so as to improve the MIMO
GMTI performance.

The rest of paper is organized as follows. Section 2 establishes the signal model of target, clutter,
jamming and noise. Section 3 is a review of transceiver joint optimization with fixed pulse-to-pulse
waveform. Section 4 proposes the algorithms of transceiver joint optimization with pulse-to-pulse
waveform variations. Section 5 provides numerical simulations to demonstrate the performance of the
proposed algorithms. Finally, we draw the conclusion in Section 6.

Notations: Throughout this paper, matrices are denoted by bold capital letters and vectors are
denoted by bold lowercase letters. Superscript (·)T and (·)H denote transpose and conjugate transpose,
respectively. vec(·) denotes the operator of column-wise stacking a matrix and ⊗ represents Kronecker
product. E[·] denotes the expectation of a random variable. tr(·) represents the trace of a square matrix.
‖ · ‖F represents the Frobenius norm of a square matrix. A � B(A � B) means A− B is positive
definite (semi-definite).

2. Signal Model

Consider a MIMO radar with NT transmit antennas and NR receiver antennas, denote the
waveform matrix of this system as S, where S ∈ CNT×L , L is the code length.

2.1. Target

Let S = [s1,m, s2,m, · · · sNT ,m]
T ∈ NT×L denotes the waveform of the mth pulse, in which sn,m

denotes the digital sampling of the nth transmitter in the mth pulse. To model the received signal of
the targets, the return signal of a certain target direction at the mth pulse tm is written as:

Tm = αtej2π(m−1) fdTr aR(θt)aT
T(θt)Sm. (1)
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So the vectorized target return signal could be written as:

tm = vec(Tm) = αtej2π(m−1) fdTr (IL ⊗A(θt))ŝ, (2)

in which θt is the target direction of arrival (DOA), A(θt) = aR(θt)aT
T(θt), ŝ = vec(S), aT(θt) ∈ CNT×1

is the transmit array steering vector of θt and aR(θt) ∈ CNT×1 is the receive array steering vector, αt

denotes the target amplitude and fd denotes the target Doppler frequency. IL is a L- dimensional
unit matrix.

2.2. Clutter

During the GMTI process, clutter suppression is a significant part. As the clutter distributes
both in range and azimuth, it is generally defined as the superposition of all the scatters from all the
distance units within the beam irradiation range. According to the range resolution of the radar system,
the radar irradiation range is divided into multiple clutter rings, each of which is further divided into
multiple independent clutter patches, all these clutter patches are regarded as scatters. The clutter
patch division strategy is shown in Figure 1.

Figure 1. Schematic diagram of clutter unit division.

Here, we define a shift matrix: Pl = PT
−l ∈ CL×L:

Pl(m, n) =

{
1, if m− n + l = 0
0, if m− n + l 6= 0

. (3)

If the target is located in the rth range cell, the vectored return signal of the kth clutter patch in
the (r + l) range cell is written as:

cl,k = αc,l,k(IM ⊗ INR ⊗ PT
l ST)(u( fc,l,k)⊗ aR( fc,l,k)⊗ aT( fc,l,k)), (4)

where u( fc,l,k) = [1, . . . , ej2π(M−1) fc,l,kTr ]T .
While computing the clutter covariance matrix, consider 2K + 1 neighborhood range cells, each of

which is divided into Nc clutter patches, then the clutter is modeled as:

c =
K

∑
l=−K

Nc

∑
k=1

cl,k. (5)
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The clutter covariance matrix is written as:

R̃c = E[ccH ] =
K

∑
l=−K

Nc

∑
k=1

σ2
c,l,kS̃T

l vc,l,kvH
c,l,kS̃∗l , (6)

where S̃l = IM ⊗ INR ⊗ SPl , vc,l,k = u( fc,l,k)⊗ aR(θc,l,k)⊗ aT(θc,l,k).

2.3. Jamming

For simplicity, in this paper, only take barrage noise jamming into consideration. The return
signal of jamming is modeled as:

j = [jT
1 , jT

2 , · · · jT
M], (7)

where jm =
Nj

∑
n=1

aR(θj,n)⊗ sj,n,m denotes the return signal of jamming at the mth pulse, sj,n,m ∈ L×1

contains the nth jamming signal, Nj is the total number of jamming, θj,n is the direction of the
nth jamming.

So the jamming covariance matrix is written as:

R̃j = E[jjH ] = IM ⊗Rj ⊗ IL

Rj =
Nc
∑

n=1
σ2

j,naR(θj,n)aT
R(θj,n).

(8)

2.4. Noise

Noise is usually considered as additive white Gaussian noise, its power is expressed as:

σ2 = kbT0BF, (9)

where kb = 1.38× 10−23 J/K is the Boltzmann constant, T0 is the noise temperature, which is usually
taken as 290 K, B is the equivalent sampling bandwidth, F is the noise coefficient. During the simulation
process, the noise signal is generated by a zero-mean complex Gaussian random distribution which
takes the noise power as the variance.

The noise covariance matrix is written as:

R̃n = E[nnH ] = σ2IMNR L. (10)

3. Review of Transceiver Joint Optimization with Fixed Pulse-to-Pulse Waveform

The joint optimization with fixed pulse-to-pulse waveform is the basis of joint optimization
with pulse-to-pulse variations. This is a joint design of transmit waveforms and receive filters for
MIMO radar systems. The aim is to maximize the output SINR so that to achieve enhanced detection
performance for slow-moving targets that might be obscured by clutter and jamming [2]. Here we
review the basic joint optimization under energy constraint.

Assume that sn(t) denotes the transmit waveform of the nth transmitter, within a coherent
processing interval (CPI) which contains M pulse, the transmit waveform of the nth transmitter is
expressed as:

s̃n(t) =
M

∑
m=1

sn(t−MTr), (11)

in which Tr = 1/ fr denotes the pulse repetition interval (PRI) and fr denotes the pulse repetition
frequency (PRF). Assume that the waveform matrix of the system is expressed as S = [s1, · · · , sNT ]

T ∈
CNT×L , where sn denotes the digital sampling of sn(t) .
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The transceiver joint optimization under maximum output SINR criterion is aimed at optimize
both the transmit waveform and the receive filters at the same time, so as to get the maximal
output SINR.

Let w = [wT
1 , wT

2 , · · · , wT
NR

]T denotes the receive filters, in which wj ∈ CML×1, j = 1, 2, · · · , NR
denotes the jth receive filter. The objective function of the maximum output SINR is written as:

max
w,S

SINR(w, S) =
|αt |2|wH S̃Tvt|2
wH(R̃c+R̃jn)w

,

s.t.tr(SSH) = Met.
(12)

where S̃ = IM ⊗ INR ⊗ S , vt = u( fd) ⊗ aR(θt) ⊗ aT(θt), u( fd) = [1, · · · , ej2π(M−1) fdTr ]T denotes
the temporal steering vector. R̃jn = R̃j + R̃n , et denotes the total energy, tr(SSH) = Met is the
energy constraint.

During the cyclic optimization process, we always optimize the waveform with fixed receive
filters and optimize the receive filters with fixed waveform within one iteration, continue this cycle
until the output SINR contract to maximum, so as to get good clutter suppressing results.

The derivation process is similar to Reference [2], to jointly optimize the transceiver with fixed
pulse-to-pulse waveform, while optimizing the receive filters with fixed waveform, regard (11) as a
generalized Rayleigh quotient, then we get the optimal solution of receive filters:

wopt = (R̃c + R̃jn)
−1S̃Tvt. (13)

When optimize waveform with fixed receiver filters, the optimal solution of waveform is:

sopt =
√

Meth ∗ (W)/‖h(W)‖2 (14)

where h(W) = R̃−1
DL(W)(W ∗ ⊗INT )vt , R̃DL(W) = R̃c(W) + β(W)ILNT , β(W) = wHR̃jnw/et, refer to

Reference [2] for detailed deduction.
The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute the clutter covariance matrix R̃c using equation (6), compute the

optimal receive filter w(n) using equation (13);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and t(W(n)), then compute the optimal waveform of this

iteration using Equation (14);
Step 4: Repeat step 2 and step 3, until the output SINR converges.

As to the computational complexity of transceiver joint optimization with fixed pulse-to-pulse
waveform under energy constraint, it is linear w.r.t. the number of iterations and the complexity
involved in each iteration. At each iteration, the optimization of w (with (13)) requires O((LMNR)

3)

operations and the optimization of S (with (14)) requires O((LNT)
3) operations.

4. Transceiver Joint Optimization with Pulse-to-Pulse Waveform Variations

The joint optimization with pulse-to-pulse waveform variations is generalized form joint
optimization with fixed pulse-to-pulse waveform.

To jointly optimize the transceiver with pulse-to-pulse waveform variations, let S =

[s1,m, s2,m, · · · sNT ,m]
T ∈ CNT×L denotes the system’s waveform matrix at the mth pulse, in which

sn,m denotes the digital sampling of the transmit waveform form the nth transmit antennas at the mth
pulse. Then the return signal of the target direction at the mth pulse is written as:

Tm = αtej2π(m−1) fdTr aR(θt)aT
T(θt)Sm. (15)
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The vectored result of Tm is:

tm = vec(Tm) = αtej2π(m−1) fdTr (IL ⊗A(θt))ŝm, (16)

where A(θt) = aR(θt)aT
T(θt), ŝm = vec(Sm).

Assume that T = [t1, t2, · · · tM], Ŝ = [ŝ1, ŝ2, · · · ŝM] , D( fd) = diag([1, · · · , ej2π(M−1) fdTr ]) , ŝ =

vec(Ŝ) , t = vec(T) , then we get:

T = αt(IL ⊗A(θt))ŜD( fd). (17)

And the vectored result is:
t = αt(D( fd)⊗ IL ⊗A(θt))ŝ. (18)

Use a compute process similar to Section 3, the vectored result of clutter return signal is:

c =
K

∑
l=−K

Nc

∑
k=1

αc,l,k(D( fc,l,k)⊗ P−l ⊗A(θc,l,k))ŝ. (19)

In this way, the clutter covariance matrix is written as:

R̃c(ŝ) =
K

∑
l=−K

Nc

∑
k=1

σ2
c,l,k(D( fc,l,k)⊗ P−l ⊗A(θc,l,k))ŝŝH(DH( fc,l,k)⊗ Pl ⊗AH(θc,l,k)). (20)

Compared with the transceiver joint optimization with fixed pulse-to-pulse waveform, when the
optimization is generalized to condition with pulse-to-pulse waveform variations, as it increases a
changing dimension, the contract speed will be slower and the computational complexity will increase.
But the output SINR reaches a relatively higher level, so the clutter suppressing performance will
also be superior and the processing result will be better accordingly. Its advantage also reflected in
achieving a lower minimum detectable velocity (MDV), that is important in many practical applications.
Also, this method will be meaningful of the multi-target detection and the design of a more robust
detection algorithm.

Based on the computations above, with pulse-to-pulse waveform variations, the output SINR is
written as:

SINR(w, ŝ) =
|αt|2

∣∣wH(D( fd)⊗ IL ⊗A(θt))ŝ
∣∣2

wH(R̃c(ŝ) + R̃jn)w
. (21)

4.1. Joint Optimization under Energy Constraint

Firstly, we discuss the optimization under energy constraint which is a basic constraint of the
transceiver joint optimization. The objective function of the transceiver joint optimization with
pulse-to-pulse waveform variations is written as:

max
w,ŝ

|wH(D( fd)⊗IL⊗A(θt))ŝ|2
wH(R̃c(ŝ)+R̃jn)w

,

s.t.ŝH ŝ = Met.
(22)

Similar to the optimization with fixed pulse-to-pulse waveform, cyclic optimization process is
also used in this situation. During the optimization, while optimizing the receive filters with fixed
waveform, regard (21) as a generalized Rayleigh quotient, then we get the optimal receive filters:

wopt = (R̃c(ŝ) + R̃jn)
−1(D( fd)⊗ IL ⊗A(θt))ŝ. (23)
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When optimizing the waveform with fixed receiver filters, the optimal solution of waveform is:

ŝopt =
√

Metg(W)/‖g(W)‖2 (24)

where g(W) = (R̃c(w) + γ(w)IMLNT )
−1(DH( fd)⊗ IL ⊗AH(θt))w, γ(w) = wHR̃jnw/Met, R̃c(w) =

K
∑

l=−K

Nc
∑

k=1
σ2

c,l,k(D
H( fc,l,k)⊗ Pl ⊗AH(θc,l,k))wwH(D( fc,l,k)⊗ P−l ⊗A(θc,l,k)) .

Cyclicly optimize the transmit waveform and receive filters using (22) and (23), let SINR(n)

denotes the output SINR after the nth iteration. According to the practical need, set a threshold value
ε, ε > 0, if we have: ∣∣∣SINR(n) − SINR(n−1)

∣∣∣
SINR(n−1)

< ε. (25)

Then the output SINR has contracted to maximum, the results we get are considered as the
optimal transmit waveform and receive filters. As the output SINR is at its maximum at this time,
the clutter suppressing performance will be superior.

The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute the clutter covariance matrix R̃c using Equation (20), compute the

optimal receive filter w(n) using Equation (23);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and t(W(n)), then compute the optimal waveform of this

iteration using Equation (24);
Step 4: Repeat step 2 and step 3, until the output SINR converges.

4.2. The Addition of Constant-Envelope Constraint

During the MIMO GMTI Radar waveform optimization, constraints of the transmit waveform
are always been considered, so as to make the transmit waveform meet some practical requirements.
For example, consider the cost of the transmitter and the affordability of the transmit antennas, we need
to constrain the total transmit energy; in order to avoid the distortion of the transmit waveform due
to power amplification, constant-envelope waveforms are usually used; and the similarity constraint
can control the shape of the ambiguity function of the waveform and avoid the drawbacks of the
waveforms under energy constraint and constant-envelope constraint. In addition, there are constraints
such as peak-to-average ratio [22] and spectrum compatibility.

In the discussions in Sections 4.2 and 4.3, we not just focus on the clutter suppression performance
of the algorithms but also consider when add these constraints, apply our joint optimization methods,
how the overall performance of the system will change.

Constant-envelope waveforms are usually used in practice, in order to make the amplifier work
at maximum efficiency and avoid the unnecessary non-linear effects of the transmitter.

In this subsection, based on the optimization under energy constraint, we add constant-envelope
constraint to the optimization and the objective function is written as:

max
w,ŝ

|wH(D( fd)⊗IL⊗A(θt))ŝ|2
wH(R̃c(ŝ)+R̃jn)w

,

s.t. |s (i)| = √ps, i = 1, · · · , NT L,
(26)

in which ps = Met/NT L .

4.2.1. Optimization Based on Relaxation and Randomization

As the optimization problem under constant-envelope constraint is non-convex, we consider the
optimization based on relaxation and randomization [31]. We also solve it with convergence guarantee



Sensors 2019, 19, 5575 8 of 20

resorting to Reference [35]. In particular, we may optimize one phase at a time as well as the receive
filter in either a cyclic way or resorting to the MBI.

The objective function (25) is written as:

SINR(w,Rs) =
|wH(D( fd)⊗IL⊗A(θt))ŝ|2

wH(R̃c(ŝ)+R̃jn)w

= wHK(Rs)w
wH(R̃c(ŝ)+R̃jn)w

= tr[X(w)Rs ]
tr[RDL(w)Rs ]

,

(27)

in which Rs = s∗sT , X(w) = (D( fd) ⊗ IL ⊗ A(θt))wwH(D( fd)⊗ IL ⊗A(θt))H , K(Rs) = (D( fd) ⊗
IL ⊗A(θt))Rs(D( fd)⊗ IL ⊗A(θt))H , R̃DL(w) = R̃c(w) + γ(w)IMLNT .

Using formulation (26), we reformulate the optimization problem (25) as following:

max
w,Rs

SINR (w, Rs)

s.t. diag (Rs) = ps · 1, rank (Rs) = 1, Rs � 0.
(28)

Here, we use relaxation process firstly to tackle the rank constraint of (27) by drop the rank
constraint of Rs, then we get the associated relaxed problem:

max
w,Rs

SINR (w, Rs)

s.t. diag (Rs) = ps · 1, Rs � 0.
(29)

Similar to the optimization under energy constraint, cyclic optimization process is also used
in this situation. During the optimization, while optimizing the receive filters with fixed transmit
waveform, consider the objective function as:

SINR(w,Rs) =
wHK(Rs)w

wH(R̃c(ŝ) + R̃jn)w
. (30)

Regard (29) as a generalized Rayleigh quotient, then we get the optimal solution of receive filters:

wopt = R̃−1/2
u P

(
R̃−1/2

u K (Rs) R̃−1/2
u

)
, (31)

in which, R̃u = R̃c (Rs) + R̃jn and P
(

R̃−1/2
u K (Rs) R̃−1/2

u

)
denotes the principal eigenvector associated

with the largest eigenvalue of matrix R̃−1/2
u K (Rs) R̃−1/2

u .
While optimizing the transmit waveform with fixed receive filters, consider the objective

function as:
max

Rs

tr[X(w)Rs ]

tr[R̃DL(W)Rs]
s.t. diag (Rs) = ps · 1, Rs � 0.

(32)

As the problem (31) is quasiconcave, according to the Charnes-Cooper transform, we consider
the following semi-definite programming (SDP) to resolve the linear fractional programming
problem above:

max
M,t

tr [X (W, vt)M]

s.t. tr
[
R̃DL (W)M

]
= 1, diag (M) = tps · 1, M � 0.

(33)

The optimization problem above is convex and the optimized solution is written as:

Ropt
s = Mopt/topt. (34)
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Cyclicly optimize the transmit waveform and receive filters until the output SINR grows less than
the predetermined threshold . Let R∗s be the final waveform matrix after the circulation is over. If this R∗s
is of rank 1, that is, R∗s = s∗(s∗)H , then we get the constant-envelope waveform is gotten immediately.

If this R∗s is not of rank 1, use the randomization process proposed in Reference [36] to get the
constant-envelope waveform form R∗s . During the randomization process, generate r random vectors:
e1, e2, · · · , er, which are with a circular symmetric complex Gaussian distribution with the mean of 0
and the variance of 1. Define vk =

√
ps exp(j 6 ek), k = 1, 2, · · · , r, compute:

SINR (yk) =

∣∣yT
k (D( fd)⊗ IL ⊗A(θt))w

∣∣2
yT

k
(
R̃c (w) + γ (w) IMLNT

)
y∗k

, k = 1, · · · r. (35)

Then the constant-envelope waveform is:

s = arg max
yk

SINR (yk) , (36)

where arg max
yk

is the set of all yk that maximize the expression above.

The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute K(Rs), compute the optimal receive filter w(n) using Equation (31);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and X(w(n));
Step 4: Solve the semi-definite programming of Equation (33), find the optimal {M(n), t(n)},

then Rs
(n) = M(n)/t(n);

Step 5: Repeat step 2 and step 3, until the output SINR converges, then get the constant-envelope
waveform using Equation (36).

4.2.2. Optimization Based on Fractional Programming and Power-Like Iteration

In this section, an optimization based on the method of fractional programming and power-like
iteration is used to deal with the non-convex optimization problem.

In this method, optimize the receive filters with the fixed transmit waveforms using the previous
design method, also use the maximization output SINR as the criterion. The following is focused on
the process of designing constant-envelope waveform with fixed receive filters.

The objective function of the constant-envelope waveform design can be re-represented as:

max
s

sTX(w)s∗

sTR̃DL(w)s∗

s.t. |s (i)| = √ps, i = 1, · · · , NT L.
(37)

The problem is then addressed using the fractional programming approach and the proposed
method involves iterative process.

Let s(n,k) be the waveform in the (n, k)th iteration, where n denotes the ordinal of the outer
iteration and k denotes the ordinal of the inner iteration, f (n,k) representing the corresponding target
value of s(n,k), then the optimization problem in the (n, k + 1)th iteration can be expressed as:

max
s

sT
[
X
(

w(n)
)
− f (n,k)R̃DL

(
w(n)

)]
s∗

s.t. |s (i)| = √ps, i = 1, · · · , NT L.
(38)

Let Q(n,k) = X
(

w(n)
)
− f (n,k)R̃DL

(
w(n)

)
, T(n,k) = Q(n,k) + µI, where µ is a guaranteed constant.

It is easy to prove that the formula (37) is equivalent to the following objective function:

max
s

sTT(n,k)s∗, s.t. |s (i)| = √ps, i = 1, · · · , NT L. (39)
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Set the initial point s(n,k) and the algorithm converges at a local maximum or saddle point.
Let g (s) represent the objective function of expression (37), s(n,k+1) represent the solution of the
iterative method, so there are:

g
(

s(n,k+1)
)
≥ g

(
s(n,k)

)
= 0. (40)

And there are:

f (n,k+1) =

(
s(n,k+1)

)T
X
(

w(n)
) (

s(n,k+1)
)∗

(
s(n,k+1)

)TR̃DL
(
w(n)

) (
s(n,k+1)

)∗ ≥ f (n,k) (41)

Therefore, the method is convergent, since f (n,k) is not decrementally associated with k.
The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute K(Rs), compute the optimal receive filter w(n) using Equation (31);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and X(w(n)). k=0, let s(n,0) = vec(S(n−1)) and f (n,0)

denotes the objective function value corresponding to s(n,0);
Step 4: Compute Q(n,k) and T(n,k), then get the optimal waveform that satisfy Equation (39);
Step 5: k = k + 1, repeat step 4 until

∣∣∣ f (n,k) − f (n,k−1)
∣∣∣ / f (n,k) < δ, δ > 0;

Step 6: Repeat steps 2 to 4, until the output SINR converges.

4.3. The Addition of Similarity Constraint

In this section, we consider to add similarity constraint to the joint optimization of the
transmit waveform and receive filters. The similarity constraint controls the shape of the ambiguity
function of the waveform and avoid the drawbacks of the waveforms under energy constraint and
constant-envelope constraint.

Let s0 to be the reference waveform, which has good features like high range resolution, low
side-lobe and constant envelope. The similarity constraint is written as:

‖s− s0‖2
2 ≤ δ, (42)

in which δ is a threshold value that users selected to rule the size of similarity region and 0 ≤ δ ≤ 2et.
Generalize the algorithm above to similarity constrained waveform and the optimization problem

is written as:

max
{
|ŝT(D( fd)⊗IL⊗A(θt))w|2
ŝT(R̃c(w)+γ(w)IMLNT )ŝ

∗

}
s.t. sTs∗ = Met, ‖s− s0‖2

2 ≤ δ.
(43)

Here, cyclic optimization process is also used in this situation. Regard (37) as a generalized
Rayleigh quotient, then we get the optimal solution of receive filters [32]:

wopt = (R̃c(ŝ) + R̃jn)
−1(D( fd)⊗ IL ⊗A(θt))ŝ. (44)

4.3.1. Optimization Based on Relaxation and Rank-One Decomposition

To optimize the transmit waveform, we also choose relaxation and rank-one decomposition to
deal with this problem.

The similarity constraint in (37) is reformulate as sH
0 ssHs0 ≥ η and η = (et − δ/2)2. So the

objective function (37) is reformulate as:

max
{
|ŝT(D( fd)⊗IL⊗A(θt))w|2
ŝT(R̃c(w)+γ(w)IMLNT )ŝ

∗

}
s.t. sTs∗ = et, sH

0 ssHs0 ≥ η.
(45)
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Objective function (39) is equivalent to the following objective function:

max
Rs

tr[X(w)Rs ]

tr[R̃DL(W)Rs]
s.t. tr (Rs) = et, tr (RsR0) ≥ η, Rs ≥ 0, rank (Rs) = 1,

(46)

where R0 = sT
0 s∗0 . Here, we also use relaxation process to tackle the rank constraint of (40) by drop the

rank constraint of Rs , then we get the associated relaxed problem:

max
Rs

tr[X(w)Rs ]

tr[R̃DL(W)Rs]
s.t. tr (Rs) = et, tr (RsR0) ≥ η, Rs ≥ 0.

(47)

Similar to the solution process in Section 4.2, use the Charnes-Cooper transform, we solve the
following SDP to get the solution of (41):

max
Msim ,ς

tr [X (w)Msim]

s.t. tr
[
R̃DL (w)Msim

]
= 1, tr (Msim) = ςet, tr (MsimR0) = ης, Msim ≥ 0.

(48)

The optimal solution of (42) is expressed as
{

Mopt
sim, ςopt

}
, then we get:

Ropt
s = Mopt

sim/ςopt. (49)

If Ropt
s is rank 1, we get the optimal transmit waveform directly; otherwise, use the matrix

decomposition theorem in Reference [36] to extract the similarity-constrained waveform.
If rank

(
Ropt

s

)
≥ 2, we find a vector sopt which meet the following equation:

(
tr
(

Ropt
s X (w)

)
, tr
(

Ropt
s RDL (w)

)
, tr
(

Ropt
s IMNT L

)
, tr
(

Ropt
s R0

))
=
((

sopt)HX (w) sopt,
(
sopt)HRDL (w) sopt,

(
sopt)Hsopt,

(
sopt)HR0sopt

)
.

(50)

Therefore, we get:

tr
(

sopt(sopt)H
)
= tr

(
Ropt

s

)
= et,

tr
(

sopt(sopt)HR0

)
= tr

(
Ropt

s R0

)
> η, sopt(sopt)H ≥ 0.

(51)

So that sopt(sopt)H is feasible for (41) and:

tr
[
X (w) sopt(sopt)H

]
tr
[
R̃DL (w) sopt(sopt)

H
] =

tr [X (w)R∗s ]
tr
[
R̃DL (w)R∗s

] . (52)

So sopt(sopt)H is the optimal rank 1 solution and sopt is the optimal solution of (39).
The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute R̃c, compute the optimal receive filter w(n) using Equation (31);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and X(w(n));
Step 4: Solve the semi-definite programming of Equation (33), find the optimal {Msim

opt, ζopt},
then Rs

opt,(n) = Msim
opt,(n)/ζopt,(n);

if rank(Rs
opt,(n)) = 1, get the optimal waveform ^s

(n)
directly; if rank(Rs

opt,(n)) = 2, ^s
(n)

=

D2(X(w(n)), R̃DL(w(n)), I, R0);
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if rank(Rs
opt,(n)) ≥ 3, ^s

(n)
= D1(X(w(n)), R̃DL(w(n)), I, R0);

Step 5: Repeat step 2 to step 4, until the output SINR converges.

4.3.2. Optimization Based on Fractional Programming and the SWORD Method

For the non-convex optimization problem represented by the formula (42), the design idea based
on the fractional programming and the SWORD method is also utilized.

Its iterative approach is similar to Section 4.2.2, which solves the following problems in the (n, k)th
iteration:

max
s

sT
[
X
(

w(n)
)
− f (n,k)R̃DL

(
w(n)

)]
s∗

s.t. sTs∗ = et, ‖s− s0‖2
2 ≤ δ.

(53)

Using the same concept in Section 4.2.2, the optimization problem of processing (52) is equivalent
to processing:

max
s

sTT(n,k)s∗, s.t. sTs∗ = et, ‖s− s0‖2
2 ≤ δ. (54)

Its optimal solution is:

s(n,k+1) = λ
(n,k+1)
1

(
λ
(n,k+1)
2 I−

(
T(n,k)

)∗)−1
s0. (55)

Among them λ
(n,k+1)
1 = (et − δ/2) /

(
sH

0

(
λ
(n,k+1)
2 I−

(
T(n,k)

)∗)−1
s0

)
, λ

(n,k+1)
2 is the solution of

the following formula:

sH
0

(
λ2I−

(
T(n,k)

)∗)−2
s0[

sH
0

(
λ2I−

(
T(n,k)

)∗)−1
s0

]2 =
et

(et − δ/2)2 . (56)

The whole optimization process can be summarized as the following steps:

Step 1: n = 0, initialize the waveform S(n);
Step 2: n = n + 1, compute K(Rs), compute the optimal receive filter w(n) using Equation (31);
Step 3: Compute R̃c(W(n)), R̃DL(W(n)) and X(w(n)). k=0, let s(n,0) = vec(S(n−1)) and f (n,0)

denotes the objective function value corresponding to s(n,0);
Step 4: Compute Q(n,k) and T(n,k), then get the optimal waveform using Equation (55);
Step 5: k = k + 1, repeat step 4 until

∣∣∣ f (n,k) − f (n,k−1)
∣∣∣ / f (n,k) < δ, δ > 0;

Step 6: Repeat steps 2 to 4, until the output SINR converges.

4.4. Discussion of Computational Complexity

As to the computational complexity of transceiver joint optimization with fixed pulse-to-pulse
waveform under energy constraint, the discussion is similar to the optimization with fixed
pulse-to-pulse waveforms. For each iteration, the optimization of w (with (13)) requires O((LMNR)

3)

operations and the optimization of S (with (14)) requires O((LMNT)
3) operations.

For the computational complexity of both transceiver joint optimization algorithms under
constant-envelope constraint, we focus on the complexity involved in each (outer) iteration.
For optimization based on relaxation and randomization, the optimization of w requires O((LMNR)

3)

operations and the optimization of Rs through solving the SDP requires O((NT ML)4.5) operations.
Optimization based on fractional programming and power-like iteration involves O((LMNR)

3)

operations to optimize w and O(Nin M(NT L)2) operations to tackle (39) with Nin denoting the number
of (inner) iterations of the proposed fractional programming.

For the computational complexity of both transceiver joint optimization algorithms under
similarity constraint, the discussion is similar to algorithms under constant-envelope constraint.
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5. Simulation Results

Consider a side-looking MIMO radar with 4 transmit antennas and 4 receiver antennas, the
direction of the radar’s linear array is parallel to the radar’s moving direction. The simulation
parameters are are organized into three groups: target parameters, jamming parameters and clutter
parameters in Table 1.

Table 1. Simulation Parameters.

Parameters Symbol Value

Radar system parameters

Transmitter number NT 4
Receiver number NR 4
CPI M 16
Transmit energy et 1
Carrier frequency f0 1 GHz
Inter-element spacing of receivers dr 0.15 m
Wavelength λ 0.3 m
PRF fr 1000 Hz
Platform velocity Va 150 m/s
Platform hight H 9000 m
Code length L 8
Inter-element spacing of transmitters dt 0.6 m
Cyclic threshold value ε 1 × 10−3

Similarity constraint value δ et

Target parameters

Target range Rt 12,728 m
Target velocity vt 45 m/s
Target azimuth θt 0◦

Jamming parameters

Jamming direction θj 30◦

Jammer to noise ratio JNR 35 dB

Clutter parameters

Clutter patch number Nc 361
Clutter patch variance σ2

c,l,k 1
Nearest clutter patch number K 1

Figure 2 shows the space-time cross-ambiguity of different optimizations. The space-time
cross-ambiguity is defined by:

Pw,S =
∣∣∣wHS̃Tvt

∣∣∣2 =
∣∣∣wH(D( fd)⊗ IL ⊗A(θt))ŝ

∣∣∣2. (57)
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(a) (b) (c)

Figure 2. Space-time cross-ambiguity of (a) Joint optimization with fixed pulse-to-pulse waveform
under energy constraint, (b) Joint optimization with pulse-to-pulse waveform variations, (c) Joint
optimization with pulse-to-pulse waveform variations with 6× 6 radar configuration.

Compare the detection results of the joint optimization with fixed pulse-to-pulse waveform
and pulse-to-pulse waveform variations, both are under energy constraint. From the space-time
cross-ambiguity results, we observe that the mainlobe of both the optimization is at the moving
target’s location: the normalized Doppler frequency is 0.3 (the corresponding speed is 45 m/s) and the
normalized spatial frequency is 0 (the corresponding azimuth is 0◦). It can be seen from the comparison
result that the optimization with pulse-to-pulse variations has a better clutter and jamming suppression
performance, so that the target detection result is more accurate.

For the sake of completeness, we also conduct simulations of a larger MIMO radar configuration
with 6 transmit antennas and 6 receiver antennas and other parameters are the same as the simulations
above. Figure 2c shows the Space-time cross-ambiguity of this radar system. The result shows that the
algorithm is also valid in larger MIMO radar configuration and the concentration of the main-lobe is
better than the 4× 4 radar configuration, the output SINR is also increased as their are more antennas.
Based on the author’s current research projects and the next research plan, subsequent simulations are
still based on MIMO radar with 4 transmit antennas and 4 receiver antennas.

Then we discuss the convergence of the two optimizations. Compare the relationship between
output SINR and iteration number of joint optimization with fixed pulse-to-pulse waveform and
pulse-to-pulse waveform variations, also use the optimization under energy constraint as a benchmark.
The comparing result is shown in Figure 3.

Figure 3. Comparison of the relationship between output signal interference and noise ratio (SINR)
and iteration number.

From Figure 3, the output SINR of both two methods contract to maximum: the output SINR of
joint optimization with fixed pulse-to-pulse waveform contracts to 22.87 dB after 12 iterations and
the output SINR of joint optimization with pulse-to-pulse waveform variations contracts to 23.58 dB
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after 16 iterations. The computation complexity of the generalized approach is higher because the
waveform is varying between pulses and the iteration number is increasing. Although the method
with pulse-to-pulse waveform variations needs more iterations and the contract speed is slower but
this method obviously increases the output SINR, which means the method achieves a more accurate
detection result.

The advantage of joint optimization with pulse-to-pulse waveform variations also reflected in the
minimum detectable velocity (MDV), which is defined as the velocity closest to that of the main-lobe
clutter at which acceptable SINR loss is achieved. Compare the MDV achieved by joint optimization
results of fixed pulse-to-pulse waveform and pulse-to-pulse waveform variations. Moreover, linear
frequency modulation (LFM)waveform is plotted as benchmark. Here, the LFM waveform means a
group of scaled version of LFM waveform. The receive filters of the LFM waveforms are designed
by (12). The comparison of MDV is reflected by the SINR loss of the three methods respectively, the
comparison result is shown in Figure 4.

Figure 4. Comparison of minimum detectable velocity (MDV).

It can be seen from the comparison result that all the methods have strong suppressing effect
when the Doppler frequency is close to 0, so all of them achieve relatively well clutter suppression
performances. Under the allowed SINR loss, the narrower the notch, the lower the MDV, the better the
detection effect. A method with low MDV means it can detect target with very low velocity. Figure 4
focuses on the low Doppler frequency part, as it is of greater interest of the applications. A detecting
method has better performance at low Doppler frequency means it has better performance in detecting
low-velocity target. But at high Doppler frequency, the performance of LFM waveforms is similar to
our algorithm. The result in Figure 4 shows that the joint optimization with pulse-to-pulse waveform
variations has the lowest MDV, it proves that this method has the best detection performance.

Then we use a set of numerical simulations to observe the difference in performances of the
optimizations after adding the constant-envelope constraint and similarity constraint.

Firstly, consider the constant-envelope constraint. Also consider a side-looking MIMO radar
with 4 transmit antennas and 4 receiver antennas, the direction of the radar’s liner array is parallel to
the radar’s moving direction. The simulation parameters of the system are shown in Table 1, set the
randomization parameters: r = 100.

Firstly, the relationship between the output SINR and the number of iterations of the joint
optimization with pulse-to-pulse waveform variations by methods which Sections 4.2.1 and 4.2.2
sections are analyzed. (For the sake of simplicity, let method 1 refers to the optimization method based
on relaxation and randomization; method 2 refers to method based on the fractional programming
and the power-like iterative), the threshold ε for determining whether the output SINR has converged
is 1 × 10−3 and the result is shown in Figure 5:
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Figure 5. Comparison of iteration number.

From the figure, the output SINR of the three algorithms is convergent. The energy-constrained
joint optimization algorithm converges to 23.58 dB after 28 iterations and the constant-envelope
constraint method 1 converges to 23.44 dB after 24 iterations; method 2 converges to 23.46 dB after
21 iterations. It can be seen that after the constant-envelope constraint is added, the resulting output
SINR reaches convergence and the level does not decrease significantly.

The relationship between the output SINR and the Doppler frequency of Method 1 and Method 2
under constant-envelope constraint is compared. Based on the optimization method under energy
constraint, the comparison results are shown in Figure 6:

Figure 6. Comparison of MDV.

From the comparison results in the Figure 6, all of the three methods have strong suppression
effect when the Doppler frequency is close to zero and the notches are relatively narrow, indicating
that the purpose of suppressing the clutter is well achieved. This also shows that the performance of
the joint optimization method will not be significantly reduced after the constant-envelope constraint
is added.

Then we consider the similarity constraint. Also consider a side-looking MIMO radar with 4
transmit antennas and 4 receiver antennas, the direction of the radar’s liner array is parallel to the
radar’s moving direction. The simulation parameters of the system are shown in Table 1.
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Firstly analyse under the similarity constraint when the similarity parameters are different, how
the relationship between the output SINR and the number of iterations of the algorithm changes (for
the sake of simplicity, the optimization method based on relaxation and rank 1 decomposition is the
method 1, based on fractional programming and the SWORD method method are the methods 2),
the threshold ε for determining whether the output SINR has converged is 1 × 10−3 and the similarity
parameters δ are taken 1et, 0.5et, 0.1et separately. The method 1 of the similarity constraint is taken as
an example. The relationship between the output SINR and the number of iterations processed by the
method 1 under the similarity constraint is shown in Figure 7:

Figure 7. Comparison of iteration number.

It can be seen from the results in the figure that when the similarity parameter increases, the output
SINR performance of the algorithm will increase correspondingly but the convergence performance
of the algorithm will decrease accordingly. The similarity parameters are respectively converge to
23.58 dB, 22.64 dB and 19.63 dB after 24, 17 and 12 iterations.

The relationship between the output SINR and the Doppler frequency of Method 1 and Method
2 under constant mode constraint is compared. Based on the optimization method under energy
constraint, the comparison results are shown in Figure 8:

Figure 8. Comparison of MDV.
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From the comparison results in the figure, the coincidence of the three curves is very high and all
of the three have strong suppression effects when the Doppler frequency is close to zero. The notches
of the three methods are relatively narrow, which means that the three methods achieve the purpose of
suppressing clutter better. This also shows that the performance of the joint optimization method will
not be significantly reduced after the constant-envelope constraint is added.

6. Conclusions

The MIMO GMTI based on non-orthogonal waveform improves the detection performance in
specific tasks, especially the detection of low-velocity moving targets. In this paper, we conduct the
joint optimization under maximum output SINR criterion, improve the target detection performance
by cyclic joint optimization of the receiver filter and transmit waveform. We also generalize
the optimization to MIMO radar system with pulse-to-pulse waveform variations, discuss the
optimizations under energy constraint, constant-envelope constraint and similarity constraint.
Compared to optimization with fixed pulse-to-pulse waveform, we prove that the optimization
with pulse-to-pulse variations obviously improves the output SINR and the optimizations under
all the three constraints gets relatively good jamming and clutter suppressing performances. Also,
cyclic optimization is used to achieve the transceiver joint design, so as to get a better suppressing
performance of clutter and noise. Given that the joint optimization with pulse-to-pulse variations
increases the detection performance, it also increase the algorithm’s computation complexity. To make
the optimization method more practical, more efficient and fast algorithm should be studied.
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