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Abstract: This paper describes a Fault Tolerant Control structure for the Induction Motor (IM) drive.
We analyzed the influence of current sensor faults on the properties of the vector-controlled IM drive
system. As a control algorithm, the Direct Field Oriented Control structure was chosen. For the
proper operation of this system and for other vector algorithms, information about the stator currents
components is required. It is important to monitor and detect these sensor faults, especially in
drives with an increased safety level. We discuss the possibility of the neural network application in
detecting stator current sensor faults in the vector control algorithm. Simulation and experimental
results for various drive conditions are presented.

Keywords: induction motor; Direct Field Oriented Control (DFOC); Fault Tolerant Control (FTC);
neural network; current sensor; fault detector

1. Introduction

The efficiency and performance levels of electrical machines gradually deteriorate as a result of
their wearing and aging processes. Therefore, the reliability of entire technological processes decreases,
which simultaneously increases the risk of basic system components failure [1]. The most common
examples of well-known abnormalities are actuator lock, partial or full loss of sensor signal, short
circuits, and system component sudden disconnection [2]. These may cause intermittent operation
of the controllers or significant measurement errors. Consequently, this leads to reduced system
performance and even to total system failure. In order to prevent damage, or to enable early detection,
various diagnostic techniques are used and tested [1], including adequate protection of key components,
and redundancy and technical diagnostics [3–8].

To ensure the safe and efficient operation of any industrial process regardless of its complexity, it is
necessary to continuously monitor its operation by means of special measuring devices. The growing
demand for increasingly reliable high performance installations, due to increased security regulations
and a more competitive market [1,4,5], requires the implementation of effective diagnostic systems,
such as Instrument Fault Detection and Identification (IFDI) [3,6], Fault Detection and Diagnosis
(FDD) [3], and Fault Tolerant Control Systems (FTCS) [3,6,8,9].

Increased system reliability can be achieved through the implementation of additional diagnostics
that perform three essential functions [1,6]: detection, identification, and isolation of a fault.
In automatic control systems, the failures of actuators, control systems, and measuring systems
are considered. In practical applications, diagnostic systems monitor and identify faults by applying
hardware redundancy or software redundancy [1,5,7,8].
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Hardware redundancy uses several identical executive, control, or measurement elements with
the same input signal to compare their responses [10].

The occurrence of the failure is determined based on the analysis of the difference between the
received output signals. Fault isolation is performed by turning off the faulty element and using
one of the correct components. Because of their simplicity and reliability, this remains the most
frequently used solution [1,5–10]. Their major drawback is the application of additional hardware,
which increases operational costs. In practical applications, due to its high cost and limited work space,
only key components can be duplicated.

The development of control theory led to the development of diagnostic techniques based on
analytical redundancy [1,5,10–13]. Diagnostic methods based on the concept of analytical redundancy
do not require additional components, but rely on mutual relationships between measured and
available signals [1,5,10]. Based on the input and output signals, it is possible to detect and identify
failures in real time during system operation.

Compared with hardware redundancy techniques, analytical methods are more efficient and
cheaper, but simultaneously more difficult in practical implementation. The main problem is the
processing of the measured signals, their quality, and the susceptibility to external signals [11].
In addition, complex control systems require more complex diagnostic methods. Based on this
information, monitoring techniques can be divided into three categories [1,3,10]: mathematical
model-based methods, signal analysis-based techniques, and heuristic methods.

The mathematical models of the analyzed objects are used in the diagnostic and monitoring
approach. This is one of the most important tasks in those systems.

The first solution, based on the mathematical models (MM), was proposed by Beard [14] in
1971. It was an alternative system for the well-known hardware redundancy methods [1,15,16].
Methods based on MM require information about the physical model of the observed
system [3,10]. This developed mathematical model is used for developing fault diagnostic and
monitoring algorithms [3,10,17–20]. The mathematical model of the developed system should be equal
to the real model. The mathematical model should reflect the actual system as accurately as possible.
Diagnostic methods based on mathematical models provide ample development opportunities as they
are based mainly on various techniques of state variables estimation, which are currently popular.
In addition, the rapid progress in the computer science and electronics fields, especially related to
digital signal processors and field programmable gate array (FPGA) systems with high computing
power, has enabled the application of a combination of algorithms based on mathematical models and
other diagnostic methods, e.g., fuzzy logic, neural networks, or statistical techniques. This has resulted
in the increased reliability of these systems while reducing their sensitivity to noise, ensuring high
quality performance and security of complex industrial applications. The issue of monitoring and
detection of failures based on mathematical models is a well-developed subject of research [20].

Another group of diagnostic methods used in drives applications are algorithms based on signal
analysis (SA) [3,20]. They are based solely on advanced mathematical tools and data processing
techniques for extracting essential features that are fundamental for a diagnostic evaluation of object
condition. The occurrence of any failure in the monitored system is reflected in the measured signals,
which facilitates diagnostic decisions. Relevant information from measurements is extracted by suitable
processing tools, whose choice is highly dependent on the type of the monitored object. Signals can be
analyzed in a continuous or discrete time domain [20–23]. Diagnosis based on signal analysis methods
requires knowledge about the possible faults symptoms and the interpretation of current data obtained
from measurements and their analysis [21].

Basic SA monitoring methods are based on the classic inference rules, where expert knowledge
on the diagnosed object and its ability to perceive the characteristic features of the variables describing
various states of system operation are crucial [21]. Modifications of these methods with additional
units of analysis and assessment of fault symptoms based on the theory of artificial intelligence
(neural networks—NN, fuzzy logic—FL, and neural-fuzzy networks—NFN) are becoming increasingly
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popular [24–33]. These systems produce better evaluation and accurate diagnosis possibilities of the
inference system based on the characteristic properties of the measured signals [19].

Diagnostic techniques based on the heuristic approach have been mainly used in complex
applications that have rich databases containing relevant information about the operating conditions
of the system in the past. Based on this knowledge, various methods for the extraction of intermediate
dependencies between individual variables of the monitored process state and failure symptoms may
be applied [29–31]. Fault diagnosis is conducted by checking the conformity of the collected (historical)
and currently measured data with the entire system. Heuristic knowledge includes observation,
inspection, and collecting information in various forms: tones, vibrations, colors, temperatures, and
signal amplitudes. The key source of this knowledge is the history of a given process, and above all:
previous failures, maintenance, and repair operations experiences as well as statistical data collected
from similar objects [3]. Notably, diagnostic algorithms based on heuristic knowledge use huge
amounts of process data in real time and process the data online. For this reason, these methods are
defined in the literature as techniques based on data analysis. A schematic diagram of these diagnostic
methods is presented in Figure 1.
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In the methods based on data analysis, the fuzzy logic theory may be implemented in diagnostic
systems due to its high applicability, especially in the inference process and in decision-making
units [7,20]. These techniques are usually used for the advanced analysis of measured signals carrying
essential information about the state of the monitored object [26]. In addition, hybrid systems [31,32]
based on various methods of data analysis, e.g., neural networks and fuzzy logic, are increasingly
being designed and analyzed in order to obtain a more effective and faster diagnosis of failure [33].

One of the most complex diagnostic methods is the technique based on artificial neural networks
(ANN) for the faults symptoms extraction of a specific sensor [12,34]. Designed ANN detectors are
trained on the basis of monitored transients of chosen measured signals in a wide range of the motor
speeds. At appropriate time points, the failure of the tested sensor can be simulated. Based on the
received teaching vector, the neural network is able to identify failure occurrence in real time. In this
method, neither the mathematical model of the system nor the calculation of threshold limits for
diagnostic signals are needed.

One of the disadvantages of this approach is the requirement properly choosing the teaching
vector that should contain as much information as possible about the monitored object state variable in
both normal and emergency operation. In the neural network design process, its structural topology,
number of hidden layers, neurons in each layer, and the choice of the learning algorithm also play
a crucial role. Designing a properly functioning fault detector based on a neural network is not an easy
task and requires considerable experience and knowledge about the diagnosed object and the theory
related to artificial intelligence [35–38].

Thus, the main goal of this paper was to demonstrate a stator current transducers fault detection
algorithms for the vector control (DRFOC) of an induction motor drive system based on an active
detection system [20]. The proposed system guarantees stable operation of the drive during faulted
conditions. This system is based on an artificial neural network trained with signals obtained from
the internal control structure. The diagnostic method was analyzed and tested in different drive



Sensors 2019, 19, 571 4 of 16

operation conditions. The simulations and experimental results of the proposed Fault Tolerant Control
are presented.

2. Current Sensor Faults Analysis

A stator current sensor is necessary for the proper operation of electrical drives controlled using
vector control algorithms [3,4]. Stator current signals are used in the internal control loop for state
variable estimation [2,39] and in the internal control loop. One of the most popular transducers, used
in industry and research, is the closed-loop hall-effect current sensor presented in Figure 2.
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Basic fault types of the stator current sensor are presented in Table 1.

Table 1. Basic faults types of the current sensor, where ism is measured current, ia is the real current, n(t)
is white noise, γ is the constant value from the range <−1,1>, isat is the limited current, ωoffset = 10 Hz
phase shift, and A is current amplitude.

Type of the Fault Current Value

Variable gain im
s = (1− γ)ia

Phase shift im
s = ia + io f f set

Signal limit im
s = isat

Noise im
s = ia + n(t)

Lack of signal im
s = 0

Intermittent signal im
s = [0, 1]

In the next part of the paper, the influence of broken stator current sensor (in phase A) on the
performance of the motor drive is shown and described. The selected fault cases were examined
simulation software upon the well-known Direct Field Oriented Control (DFOC) structure for induction
motor (shown in Figure 3).

An incremental encoder was applied to measure speed (5000 imp/rev). The direct current (DC)
bus voltage and the IGBT (insulated gate bipolar transistor) states were used to calculate the stator
voltage components. Stator currents in the healthy condition of the drive were measured by the two
closed-loop halleffect current sensors in phases A and B (Figure 2). The third transducer can be used
only in the sensor failure scenario.
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Information about the rotor flux is necessary for the proper operation of the drive. This value can
be obtained by a simulator based on the current model of a rotor flux:
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For the rotor speed estimation, the Model Reference Adaptive System (MRASCC) estimator can
be used [36,40]. The current estimator used in MRASCC can be obtained by:
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where ωe
m is the estimated rotor angular speed; rs, rr, xs, xr, and xm are the stator and rotor resistances,

stator and rotor leakage reactances, and mutual reactance; us, ie
s, and Ψi

r are the stator voltage, estimated
stator current, and rotor flux vectors, respectively; σ = 1− x2

m/xsxr; and TN = 1/2π fsN .
The current model in Equation (2) and rotor flux model in Equation (1) are used in the adaptation

mechanism for speed reconstruction [3]:

ωe
m = KP

(
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rβ − eisβ

Ψi
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)
+ KI

∫ (
eisα

Ψi
rβ − eisβ

Ψi
rα
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where eisα,β = isα,β − ie
sα,β is the error between the estimated and measured stator current.

The mathematical model and detailed analysis (including stability analysis [36,41]) of the MRASCC

estimator was described in detail [36]. Figure 4 presents the simulation analysis for the vector controlled
drive system, with a broken current sensor in phase A (lack of signal). The current sensor was destroyed
(in time t = 0.5 s). The effects of this fault are visible on all the analyzed transients.
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Figure 4. Results for the drive system with a broken current sensor in phase A (lack of signal), (rotor
speed (a), stator current (b), stator current components x,y (c)), iA’ = 0.

Figure 5 presents a similar test. We assumed that in this test the current sensor in phase B
is faulted.

The current sensor was broken for t = 1 s (Figure 4) and for t = 2 s (Figure 5).
The control structure cannot compensate for the behavior of the drive after faults. The fault

symptoms are also visible in the measured and estimated speed values and in the stator current
components transients.
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Figures 6 and 7 present state variable transients for the induction motor drive operation with
a gain error and with white noise, respectively.

For the stator current errors, oscillations in the measured and estimated speed can be observed.
For both types of faults, the electrical drive is stable and can work properly with a broken sensor.

The lack of signal from the stator current sensors is the most dangerous fault for the drive.
It is extremely harmful for the stability and safety of operation. It is necessary to implement other
diagnostic systems to prevent these situations.
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3. Fault Tolerant Control (FTC) Analysis

This part of the paper presents a detector based on the neural network (NN) for stator current
sensor faults in the DFOC drive. The complete scheme of the FTC structure with an additional detection
algorithm and a fault compensation mechanism is presented in Figure 8.
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Designing the process of an artificial neural network for diagnostic purposes consists of several
basic stages carried out cyclically in a multi-loop structure (Figure 9), in which the following elements
can be distinguished:

(1) Defining the types of analyzed faults;
(2) Determining the normal state of system operation (without faults) and emergency state operation

of the drive (after failure occurrence);
(3) Designing a neural fault detector: selection of learning signals, network structure, and learning

algorithm; simulation testing using computer simulators of neural networks (e.g., MATLAB
Neural Network Toolbox); and

(4) Implementation of a neural network on a real object and its experimental testing.

The first, and main stage of the NN design process is the proper selection of learning signals. In the
analyzed case of the measurement sensors fault-tolerant system, the state variables, whose failure
affects the system directly or indirectly but substantially, were used. Thus, for the DRFOC structure,
the following signals were considered: Abs(isy-isy

ref), Abs(Ψr
est-Ψr

ref), and stator currents isA, isB.
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The next step is to define the cycle of motor drive operation in a wide range of speed changes,
during which NN will be taught the emergency states. The cycle of work shown in Figure 10 was used
to teach the neural network.
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At the beginning, the system was started at the nominal speed. The speed was reduced by 20%
after 2 s of drive operation. For the drive operation, the stator current sensor fault was simulated (the
total interruption). Figure 10 depicts the transients of the measured, real, and estimated motor speed
during described operation.

The proper selection of a neural network type, an appropriate number of hidden layers,
and neurons is one of the most important tasks.

For diagnostic applications in electric motor drives, multilayer feedforward networks and
self-organizing Kohonen’s neural networks [17] are used most often.

In this paper, a multilayer feedforward network is used, characterized by a lack of feedback
connections between individual layers and neurons, layered placed neurons, and a unidirectional
information flow. The main task of the neurons in the input layer is the preprocessing of signals,
whereas information decision processing occurs in the hidden and output layers. The network’s
response is obtained from the output of the neurons in the last layer. Choosing the proper structure for
a multilayer neural network is a difficult task because there are no strictly defined criteria and rules
for determining the optimal network configuration. Thus, this stage of the NN design process was



Sensors 2019, 19, 571 10 of 16

completed using the experimental method. The research was conducted for networks with two hidden
layers and different numbers of neurons in particular layers. The simulation tests included five NN
structures based on the constructive principle [2], which aims to start the NN learning process with
a small number of neurons and gradually increasing it until the best results are obtained:

(1) (N) - (2N+1) - (2) - (1),
(2) (N) - (2N+1) - (4) - (1),
(3) (N) - (2N+1) - (8) - (1),
(4) (N) - (2N+1) - (10) - (1), and
(5) (N) - 2(2N+1) - (2) - (1),

where N is the number of neurons in the input layer.
The Levenberg-Marquardt (L-M) algorithm [16,33,34] was used for the learning process. This

algorithm combines the convergence of the Gauss-Newton algorithm near the minimum and the
method of gradient descent for the greater distance from the minimum [42]. The L-M algorithm is one
of the most reliable and fastest algorithms used in different applications. The disadvantage of this
method is that the memory requirements increase proportionally with the square of the number of
weights in the network [37,38,42]. The L-M algorithm uses a compromise learning strategy between
the classical linear approach and the gradient method approach in each iteration. Moving the point of
seeking the optimum weight is acceptable only if it leads to error reduction [2].

In the next step, the obtained NN detectors were tested for three different drive operation modes
with: (1) nominal rotor speed value without the load torque, (2) nominal rotor speed value and load
torque value, and (3) low rotor speed value without the load torque.

In each of the above cases, the operation cycle lasts 2 s, and the moment t = 1 s the total failure
to the current transducer is simulated. To assess the effectiveness of the designed neural networks,
two quality indicators: ITSE (integral of square of the error) and ITAE (Integral time absolute error),
and detection time ∆tdet were used. ITSE and ITAE are described by dependencies in Equations (4)
and (5), respectively:

ITSE =
1
n

n

∑
i=1

t=2∫
t=0

t · e2(t) dt, (4)

ITAE =
1
n

n

∑
i=1

t=2∫
t=0

t · |e(t)| dt, (5)

∆tdet = tA − tD,

where e (t) is the error between reference value failure simulator output signal and detector response,
tA is the time a failure was simulated, and tD is the time a failure was detected.

The proposed fault detection algorithm is based on a neural network that operates in the open
loop without any connection to the control algorithm. This methodology is based on the signals from
the internal control structure. Thus, the neural network does not affect the internal control signals or
structure in normal operating condition. Before and after fault occurrence the electrical drive is stable
because it is based on conventional solutions (classical DFOC algorithm with current model to the
rotor flux estimation). The only unstable condition applies to the duration of the failure. The stability
of the drive depends on the stability of the flux and speed estimator. This analysis was presented in
detail in previous studies [12,19,36,43–48].

Figure 11 presents the values of these two quality indicators and the detection time for each of the
analyzed neural networks. The obtained results indicate that there is at least one network structure
that provides a short detection time (∆tdet = 0.22 ms) and results in low quality indicator values for all
drive operation modes. For both the rated speed and its low values, very good results were obtained
for each analyzed algorithm. The best result was obtained for the neural network in the configuration
[4-9-8-2].
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Figure 12 provides a diagram of the proposed neural network current fault detector for the
DRFOC vector control structure. On the input layer of the neural network detector, the signals from
the internal control loop (from DFOC) are used. The signal (binary) related to the fault is on the NN
detector output.
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speed and load torque values, (c, f) low speed value failure detection of the current transducer phase A
(a, b, c) and phase B (d, e, f), simulation results.
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The next step in designing the NN-based detector is its experimental verification. In these tests,
the motor was started from zero to reference speed. The stator current sensor was faulted at the
moment of time t = 3 s. Three fault types were analyzed: total failure of the measuring transducer
(Figure 13a), gain error of the current transducer (Figure 13b), and sensors output signal with white
noise (Figure 13c).
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Figure 13. Measured, real, and estimated rotor speed during total failure of the phase A current
transducer: (a) ωm = ωmN, mo = moN, (b) ωm = 0.05ωmN, and (c) ωm = ±ωmN, mo = moN reverse
operation—experimental results.

The drive was also tested for the field weakening region (Figure 14).

Figure 14. Experimental results of (a) measured, real, and estimated rotor speed during: (b) total
failure of the phase B current transducer, (c) white noise, and (d) gain change, ωm = 1.25ωmN
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The experimental tests indicate that, in most cases, the proposed neural network was able to
detect the damage of the stator current transducers in phases A and B used in the field-oriented control
structure of an induction motor (Figure 15). The most significant failure, which is the lack of signal
from the sensor, was quickly diagnosed for each analyzed operating state (Tables 2 and 3), which
allowed for the safe reconfiguration of the measurement system and continuation of operation.

Less significant current sensors failures (such as noise or gain change) had much slower detection
times. In some cases, they were not detected at all (symbol ND in Tables 2 and 3).
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Figure 15. Experimental results of the transients of the output signals from a neural detector
during failures of the phase A current transducer: ωm = ωmN, mo = moN (a,d,g), ωm = 0.05ωmN

(b,e,h), ωm = ωmN, mo = moN reverse operation (c,f,i)—total failure of the sensor (a,b,c), white noise
(b,c,d) and gain change (g,h,i).

Table 2. Experimental results of detection times ∆t (ms) of the current sensor fault in phase A for a NN
fault detector (Direct Field Oriented Control structure).

Type of Operation—Experimental Results (Phase A)

Fault type ωm = ωmN
mo = moN

ωm = 0.05ωmN ωm = 1.25ωmN

ωm = ωmN,
mo = moN
(reverse)

Total failure 0.8 ms 0.6 ms 0.4 ms 0.6 ms
White noise 210.6 ms 175.1 ms 1.45 s 1.16 s
Gain change 143.7 ms 987.2 ms ND ND

Table 3. Detection times ∆t (ms) of the current sensor fault in the phase B for the NN fault detector
(Direct Field Oriented Control structure) from the experimental tests.

Type of Operation—Experimental Results (Phase B)

Fault type ωm = ωmN
mo = moN

ωm = 0.05ωmN ωm = 1.25ωmN

ωm = ωmN,
mo = moN
(reverse)

Total failure 0.2 ms 8.0 ms 3.0 ms 0.8 ms
White noise 320.1 ms 1.34 s 214.0 ms 2.03 s
Gain change 127.1 ms ND 252.0 ms 342.0 ms

This is mainly due to their negligible influence on the state of the engine monitored and provided
to the input of the neural network. The exact detection times are shown in Table 2 for the damage
results of the A phase current transducer, and in Table 3 for the B phase transducer.
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4. Conclusions

In this paper, we presented and described the novel neural network based detector. Except for the
current sensors fault detection methods used in phase A and phase B, the signals from the internal
control structure were used (stator current components, rotor flux vector, stator current in measured
phases A and B). The proposed algorithm was trained using the Levenberg-Marquardt (L-M) algorithm.
The best results were obtained for the L-M learning algorithm, which is a time consuming method,
especially for non-single output neural networks. Thus, a proper methodology for choosing the best
neural-network-based detector is needed, which can facilitate and hasten the process were practical
implementation. The simulation results for each of the presented NN detectors are compared using
dedicated indicators (ITSE, ITAE, and detection time). From those tests, it was possible to choose the
best NN detector for a given motor.

The network was only trained for the totally broken current sensor in phases A and B. Different
topologies of the neural network were checked and compared. This solution may be used for
different control algorithms (for example, Direct Torque Control (DTC-SVM)) after amending the
learning signals.

We showed that detection times depend on the topology of the neural network. Not all kinds of
current sensor faults can be detected in the vector controlled induction motor drive system.

The most dangerous fault was always detected for different drive operation values over a wide
range of reference speeds and load torques.

The proposed solution is based on one neural network detector with two output diagnostic signals.
Previous studies focused mainly on separate detectors for each of current transducers.
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