Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection
Abstract
:1. Introduction
2. Printed Monopole Antennas
3. Material and Methods
3.1. Bio-Inspired Antenna Design
3.2. Laboratory Tests
3.2.1. Reflection Coefficient and Gain Measurements
3.2.2. PD detection sensitivity test
4. Results
4.1. Reflection Coefficient and Gain
4.2. PD Detection Sensitivity
Special Case: Corona Detection
5. Conclusions
- (1)
- The application of the Inga Marginata leaf geometry to a PMA resulted in a UWB sensor with operating bandwidth (340 MHz–8 GHz) that covers almost the entire frequency range of PD activity (300–1500 MHz);
- (2)
- The implementation of the Inga Marginata geometry resulted in an omnidirectional behavior, allowing the application to PD detection in open area environments (such as substations) and favoring the employment of PD source location algorithms;
- (3)
- Through measurements in an anechoic chamber and the Friis formulation, the calculated mean gain for the bio-inspired PMA was equal to 3.63 dBi, representing a good detection sensitivity for PD application;
- (4)
- In PD laboratory tests, the bio-inspired PMA was able to detect PD pulses with apparent charges above 65 pC, generated in a point-to-plane electrode configuration immersed in an oil cell;
- (5)
- The bio-inspired PMA presented a measured voltage with half the magnitude obtained from the IEC 60270 standard method, resulting in a PD detection sensitivity that is good for a radiometric based method;
- (6)
- Lastly, the bio-inspired antenna presented itself as immune to corona discharges, which is the main source of interference for monitoring techniques in substations, which is an additional feature that emphasizes the antenna’s potential for PD detection.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Electrotechnical Commission. High Voltage Test Techniques: Partial Discharge Measurements. IEC 60270, 2000; IEC: Geneva, Switzerland, 2000. [Google Scholar]
- Tenbohlen, S.; Denissov, D.; Hoek, S.M.; Markalous, S.M. Partial discharge measurement in the ultra high frequency (UHF) range. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1544–1552. [Google Scholar] [CrossRef]
- Rutgers, W.R.; Fu, Y.H. UHF PD detection in a power transformer. In Proceedings of the 10th International Symposium High Voltage Engineering (ISH), Montréal, QC, Canada, 25 August 1997. [Google Scholar]
- Judd, M.; Pryor, B.; Kelly, S.; Hampton, B. Transformer monitoring using the UHF technique. In Proceedings of the 11th International Symposium High Voltage Engineering (ISH), London, UK, 27–23 August 1999. [Google Scholar]
- Hampton, B.F.; Meats, R.J. Diagnostic measurements at UHF in gas insulated substations. IEEE Proc. 1988, 135, 137–144. [Google Scholar] [CrossRef]
- Yuen, D.C.M.; Chan, S.H. UHF partial discharge monitoring of 400 kV GIS castle peak substation. In Proceedings of the IEE International Conference on Advances in Power System Control, Operation and Management, Hong Kong, 5–8 November 1991; pp. 415–419. [Google Scholar]
- Masaki, K.; Sakakibara, T.; Murase, H.; Akazaki, M.; Uehara, K.; Menju, S. On-site measurement for the development of on-line partial discharge monitoring system in GIS. IEEE Trans. Power Del. 1994, 9, 805–810. [Google Scholar] [CrossRef]
- Judd, M.; Farish, O.; Pearson, J. UHF couplers for gas-insulated substations: A calibration technique. IEE Proc. Sci. Meas. Technol. 1997, 144, 117–122. [Google Scholar] [CrossRef]
- Judd, M.; Yang, L.; Hunter, I. Partial discharge monitoring for power transformer using UHF sensors. Part I: Sensors and signal interpretation. IEEE Electr. Insul. Mag. 2005, 21, 5–14. [Google Scholar] [CrossRef]
- Judd, M.; Yang, L.; Hunter, I. Partial discharge monitoring for power transformer using UHF sensors. Part 2: Field Experience. IEEE Electr. Insul. Mag. 2005, 21, 5–13. [Google Scholar] [CrossRef]
- Lee, C.H.; Lin, Y.C.; Chiu, M.Y.; Huang, C.H.; Yen, S.S.; Haeng, C. The study on diagnostics for aging trend of cable termination. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008. [Google Scholar]
- Balanis, C. Antenna Theory—Analysis and Design; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ahmed, O.M.H.; Sebak, A.R. A Novel Maple-Leaf Shaped UWB Antenna with a 5.0–6.0 GHz Band-Notch Characteristic. Prog. Electromagn. Res. 2009, 11, 39–49. [Google Scholar] [CrossRef]
- Ahmed, O.M.H.; Sebak, A.R. Numerical and Experimental Investigation of a Novel Ultra Wideband Butterfly Shaped Printed Monopole Antenna with Bandstop Function. Prog. Electromagn. Res. C 2011, 18, 111–121. [Google Scholar] [CrossRef]
- Ebnabbasi, K. A bio-inspired printed-antenna transmission-range detection systems. IEEE Antennas. Propag. Mag. 2013, 55, 193–200. [Google Scholar] [CrossRef]
- Moura, L.C.M.; Cruz, J.N.; Costa, A.P.; Silva, P.H.F.; Silva, J.C. UWB cotton leaf design microstrip-fed printed monopole antenna. In Proceedings of the 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, Brazil, 3–6 November 2015. [Google Scholar]
- Silva Jr, P.F.; Freire, R.C.S.; Serres, A.J.R.; Silva, P.H.F.; Silva, J.C. Wearable Textile Bioinspired Antenna for 2G, 3G and 4 G Systems. Microw. Opt. Technol. Lett. 2016, 58, 2018–2023. [Google Scholar] [CrossRef]
- Serres, A.J.R.; Serres, G.K.F.; Silva, P.F., Jr.; Freire, R.C.S.; Cruz, J.N.; Albuquerque, T.C.; Oliveira, M.A.; Silva, P.H.F. Bio-Inspired Microstrip Antenna. Intechopen 2017, 87–109. [Google Scholar] [CrossRef]
- Bin, L.; Jingle, A.; Weidong, Z.; Youlin, X. A Design of Multi-band UHF Sensor for Partial Discharge Detection. Trans. Tech. Publ. Appl. Mech. Mater. 2013, 394, 435–440. [Google Scholar]
- Liu, J.; Zhang, G.; Dong, J.; Wang, J. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment. Sensors 2015, 15, 29434–29451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Qian, Y.; Dong, Y.; Sheng, G.; Jiang, X. Development of multi-band ultra-high-frequency sensor for partial discharge monitoring based on the meandering technique. Iet Sci. Meas. Technol. 2014, 8, 327–335. [Google Scholar]
- Li, J.; Wang, P.; Jiang, T.; Bao, L.; He, Z. UHF stacked Hilbert antenna array for partial discharge detection. IEEE Trans. Antenn. Propag. 2013, 61, 5798–5801. [Google Scholar] [CrossRef]
- Yao, C.; Chen, P.; Huang, C.; Chen, Y.; Qiao, P. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears. Sensors 2013, 13, 17362–17378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yongqiang, W.; Zhuang, W.; Jianfang, L. UHF Moore Fractal Antenna for Online GIS PD Detection. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 852–855. [Google Scholar]
- Lopez-Roldan, J.; Tang, T.; Gaskin, M. Optmisation of a sensor for onsite detection of partial discharges in power transformers by the UHF method. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 1634–1639. [Google Scholar] [CrossRef]
- Chai, H.; Phung, B.T.; Zhang, D. Development of UHF Sensors for Partial Discharge Detection in Power Transformer. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Yang, F.; Peng, C.; Yang, Q.; Luo, H.; Ullah, I.; Yang, Y. An UWB Printed Antenna for Partial Discharge UHF Detection in High Voltage Switchgears. Prog. Electromagn. Res. C 2016, 69, 105–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Lazaridis, P.; ABD-Alhameed, R.; Glover, I. A compact wideband printed antenna for free-space radiometric detection of partial discharge. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1291–1299. [Google Scholar] [CrossRef]
- Mukhtar, S.M.; Isa, M.; Al-Hadi, A.A. Design of UHF Antenna Sensor for Partial Discharge Detection in High Voltage Substation. Iop Conf. Ser. Mater. Sci. Eng. 2018, 318, 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Chen, W.; Wang, Y. Design of a UHF Antenna for Partial Discharge Detection of Power Equipment. J. Sens. 2014, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Glover, I. Design of an Ultrawideband VHF/UHF Antenna for Partial Discharge Detection. In Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 5–8 August 2014. [Google Scholar]
- Marchal, A.; Monedero, M.; Le Thuc, P.; Staraj, R. Ultra-wide band antenna for partial discharge detection inside switchgear for on-line monitoring. In Proceedings of the 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), Vasteras, Sweden, 3–6 September 2018. [Google Scholar]
- Bao, L.X.; Ammana, M.J. Investigation on UWB printed monopole antenna with rectangular slotted ground plane. Microw. Opt. Technol. Lett. 2007, 49, 1578–1585. [Google Scholar] [CrossRef]
- Azenui, N.C.; Yang, H.Y.D. A Printed Crescent Patch Antenna for Ultrawideband Applications. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Cheng, P.; Liu, H.; Kang, K.; Yang, F.; Liu, K. Research on the UHF microstrip antenna for partial discharge detection in high voltage switchgear. In Proceedings of the IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016. [Google Scholar]
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 3rd ed.; Instituto Plantarum: Nova Odessa, Brazil, 2009; Volume 2. [Google Scholar]
- Pickering, T.; Wyatt, G. Inga Marginata, Leaves. Available online: www.discoverlife.org/mp/20p?see=I_BC1493&res=640 (accessed on 31 January 2019).
- Skolnik, M.I. Radar Systems; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Ogihara, H. Detection and location of coronas in oil immersed transformers with corona detector. Electr. Eng. Jpn. 1964, 84, 12–21. [Google Scholar]
- Bartnikas, R.; McMahon, E. Engineering Dielectrics I Corona Measurement and Interpretation; STP669-EB; ASTM International: West Conshohocken, PA, USA, 1979. [Google Scholar]
- Nattrass, D.A. Partial Discharge Measurement and Interpretation. IEEE Electr. Insul. Mag. 1988, 4, 10–23. [Google Scholar] [CrossRef]
Apparent Charge (pC) | Voltage (mV) |
---|---|
20 | 23.6 |
100 | 98 |
500 | 480 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, J.d.N.; Serres, A.J.R.; de Oliveira, A.C.; Xavier, G.V.R.; de Albuquerque, C.C.R.; da Costa, E.G.; Freire, R.C.S. Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection. Sensors 2019, 19, 628. https://doi.org/10.3390/s19030628
Cruz JdN, Serres AJR, de Oliveira AC, Xavier GVR, de Albuquerque CCR, da Costa EG, Freire RCS. Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection. Sensors. 2019; 19(3):628. https://doi.org/10.3390/s19030628
Chicago/Turabian StyleCruz, Josiel do Nascimento, Alexandre Jean René Serres, Adriano Costa de Oliveira, George Victor Rocha Xavier, Camila Caroline Rodrigues de Albuquerque, Edson Guedes da Costa, and Raimundo Carlos Silverio Freire. 2019. "Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection" Sensors 19, no. 3: 628. https://doi.org/10.3390/s19030628
APA StyleCruz, J. d. N., Serres, A. J. R., de Oliveira, A. C., Xavier, G. V. R., de Albuquerque, C. C. R., da Costa, E. G., & Freire, R. C. S. (2019). Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection. Sensors, 19(3), 628. https://doi.org/10.3390/s19030628