Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State
Abstract
:1. Introduction
2. Material Fabrication and Properties
2.1. Concrete
2.2. Ultra-High Ductile Cementitious Composites
2.3. Basalt Fiber–Reinforecd Polymer (BFRP) Bars
3. Design and Preparation of Beam Specimens
4. Beam Testing
4.1. Test Program
4.2. Loading Process
5. Test Observation
5.1. SSC Beams
5.2. UHDCC-SSC Composite Beams
6. Discussion
6.1. Cracking Load Capacity
6.2. Service Load Capacity
6.3. Ultimate Load Capacity and Corresponding Deflection in Under-Reinforcement Failure Mode
6.4. Crack Pattern
6.5. Strain in the PBM Zone
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lau, D.; Büyüköztürk, O. Fracture characterization of concrete/epoxy interface affected by moisture. Mech. Mater. 2010, 42, 1031–1042. [Google Scholar] [CrossRef]
- Won, J.P.; Yoon, Y.N.; Hong, B.T.; Choi, T.J.; Lee, S.J. Durability characteristics of nano-GFRP composite reinforcing bars for concrete structures in moist and alkaline environments. Compos. Struct. 2012, 94, 1236–1242. [Google Scholar] [CrossRef]
- Rao, H.V.S.G.; Faza, S.S.; Kumar, S.V.; Allison, R.W. Experimental Behavior of Concrete Bridge Decks Reinforced with Reinforced Plastic (RP) Rebars. J. Reinf. Plast. Compos. 1995, 14, 910–922. [Google Scholar]
- Yang, C.Q.; Wu, Z.S.; Ye, L.P. Self-Diagnosis of Hybrid CFRP Rods and As-Strengthened Concrete Structures. J. Intell. Mater. Syst. Struct. 2006, 17, 609–618. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, Z.; Yang, C.; Shen, S.; Wu, G.; Hong, W. Development of self-sensing BFRP bars with distributed optic fiber sensors. In Smart Sensor Phenomena, Technology, Networks, and Systems; SPIE: Bellingham, WA, USA, 2009. [Google Scholar]
- Damien, K.; Patrice, M.; Keith, W.G.; Qiu, L.; Dirk, H.; Christophe, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and Solutions. Sensors 2014, 14, 7394–7419. [Google Scholar]
- Tang, Y.; Wu, Z. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure. Sensors 2016, 16, 286. [Google Scholar] [CrossRef] [PubMed]
- Matthys, S.; Taerwe, L. Concrete slabs reinforced with FRP grids. Part I: Structural behaviour in one-way bending. J. Compos. Constr. 2000, 4, 145–153. [Google Scholar] [CrossRef]
- Nanni, A. North american design guidelines for concrete reinforcement and strengthening using FRP: Principles, applications and unresolved issues. Constr. Build. Mater. 2003, 17, 439–446. [Google Scholar] [CrossRef]
- Saikia, B.; Kumar, P.; Thomas, J.; Rao, K.S.N.; Ramaswamy, A. Strength and serviceability performance of beams reinforced with GFRP bars in flexure. Constr. Build. Mater. 2007, 21, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- ISIS Canada. Reinforcing Concrete Structures with Fibre Reinforced Polymers (Design Mannual No. 3); ISIS Canada, Intelligent Sensing for Innovative Structures: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Rafi, M.M.; Nadjai, A.; Ali, F.; Talamona, D. Aspects of behaviour of CFRP reinforced concrete beams in bending. Constr. Build. Mater. 2008, 22, 277–285. [Google Scholar] [CrossRef]
- Bischoff, P.H. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars. J. Struct. Eng. 2005, 131, 752–767. [Google Scholar] [CrossRef]
- Alsayed, S.H.; Al-Salloum, Y.A.; Almusallam, T.H. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Compos. B Eng. 2000, 31, 555–567. [Google Scholar] [CrossRef] [Green Version]
- ACI Committe 440. Guide for the Design and Construction of Structural Concrete Reinforced with Frp Bars; ACI Committe 440: Farmington Hills, MI, USA, 2006. [Google Scholar]
- CSA. Design and Construction of Building Structures with Fibre-Reinforced Polymers (CAN/CSA8061 S–S2); Canadian Standards Association: Mississauga, ON, Canada, 2012. [Google Scholar]
- Newhook, J.; Ghali, A.; Tadros, G. Concrete flexural members reinforced with fiber reinforced polymer: De. Can. J. Civ. Eng. 2002, 29, 125–134. [Google Scholar] [CrossRef]
- Shen, D.; Ojha, B.; Shi, X.; Zhang, H.; Shen, J. Bond stress-slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test. J. Reinf. Plast. Compos. 2016, 35, 747–763. [Google Scholar] [CrossRef]
- Zhou, A.; Chow, C.L.; Lau, D. Structural behavior of GFRP reinforced concrete columns under the influence of chloride at casting and service stages. Compos. B Eng. 2018, 136, 1–9. [Google Scholar] [CrossRef]
- Xue, W.; Zheng, Q.; Yang, Y.; Fang, Z. Bond behavior of sand-coated deformed glass fiber reinforced polymer rebars. J. Reinf. Plast. Comp. 2014, 33, 895–910. [Google Scholar] [CrossRef]
- Maalej, M.; Li, V.C. Introduction of strain hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. Struct. J. 1995, 92, 167–176. [Google Scholar]
- Dai, J.G.; Wang, B.; Xu, S.L. Textile reinforced engineered cementitious composites (TR-ECC) overlays for the strengthening of RC beams. In Proceedings of the Second Official International Conference of International Institute for FRP in Construction for Asia-Pacific Region, Seoul, Korea, 9–11 December 2009. [Google Scholar]
- Keskin, S.B.; Kasap Keskin, O.; Anil, O.; Şahmaran, M.; Alyousif, A.; Lachemi, M.; Amleh, L.; Ashour, A.F. Self-healing capability of large-scale engineered cementitious composites beams. Compos. B Eng. 2016, 101, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-C.; Su, Y.-F.; Su, Y.-M. Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Compos. B Eng. 2018, 133, 15–25. [Google Scholar] [CrossRef]
- Li, B.; Xiong, H.; Jiang, J.; Dou, X. Tensile behavior of basalt textile grid reinforced Engineering Cementitious Composite. Compos. B Eng. 2019, 156, 185–200. [Google Scholar] [CrossRef]
- Ge, W.; Ashour, A.F.; Cao, D.; Lu, W.; Gao, P.; Yu, J.; Ji, X.; Cai, C. Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars. Compos. Struct. 2019, 208, 454–465. [Google Scholar] [CrossRef]
- Wu, C.; Li, V.C. CFRP-ECC hybrid for strengthening of the concrete structures. Compos. Struct. 2017, 178, 372–382. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.X. Evolution and calibration of a numerical model for modelling of hybrid-fibre ECC panels under high-velocity impact. Compos. Struct. 2011, 93, 2714–2722. [Google Scholar] [CrossRef]
- Moreno, D.M.; Trono, W.; Jen, G.; Ostertag, C.; Billington, S.L. Tension stiffening in reinforced high performance fiber reinforced cement-based composites. Cem. Concr. Compos. 2014, 50, 36–46. [Google Scholar] [CrossRef]
- Yuan, F.; Pan, J.L.; Leung, C.K.Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer. J. Compos. Constr. 2013, 17, 591–602. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Yu, J.; Xu, S. A strain-hardening cementitious composites with the tensile capacity up to 8%. Constr. Build. Mater. 2017, 137, 410–419. [Google Scholar] [CrossRef]
- Yu, K.Q.; Yu, J.T.; Dai, J.G.; Lu, Z.D.; Shah, S.P. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Constr. Build. Mater. 2018, 158, 217–227. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, J.T.; Yu, K.Q.; Xu, S.L. Basic mechanical properties of ultra-high ductility cementitious composites: From 40 Mpa to 120 Mpa. Compos. Struct. 2018, 185, 634–645. [Google Scholar] [CrossRef]
- Yu, K.Q.; Dai, J.G.; Lu, Z.D.; Poon, C.S. Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC). Cem. Concr. Compos. 2018, 93, 218–234. [Google Scholar] [CrossRef]
- Hou, M.; Hu, K.; Yu, J.; Dong, S.; Xu, S. Experimental study on ultra-high ductility cementitious composites applied to link slabs for jointless bridge decks. Compos. Struct. 2018, 204, 167–177. [Google Scholar] [CrossRef]
- Yu, K.; Li, L.; Yu, J.; Xiao, J.; Ye, J.; Wang, Y. Feasibility of using ultra-high ductility cementitious composites for concrete structures without steel rebar. Eng. Struct. 2018, 170, 11–20. [Google Scholar] [CrossRef]
- MOHURD. Specification for Mix Proportion Design of Ordinary Concrete (JGJ 55-2011); China Architecture & Building Press: Beijing, China, 2011; pp. 11–16. (In Chinese) [Google Scholar]
- JSCE. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composite with Multiple Fine Cracks (HPFRCC); Japan Society of Civil Engineers: Tokyo, Japan, 2008; p. 89. [Google Scholar]
- MOHURD. Glass Fiber Reinforced Plastics Rebar for Civil Engineering (JG/T 406-2013); Stanards Press of China: Beijing, China, 2013; p. 7. (In Chinese) [Google Scholar]
- MOHURD; AQSIQ. Technical Code for Infrastructure Application of FRP Composites (GB50608-2010); China Planning Press: Beijing, China, 2010; pp. 61–63. (In Chinese) [Google Scholar]
- Wu, Y.; Jiang, C. Quantification of bond-slip relationship for externally bonded FRP-to-concrete joints. ASCE J. Compos. Constr. 2013, 17, 673–686. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.F.; Wu, G. Plastic hinge length of FRP-confined square RC columns. J. Compos. Constr. 2014, 18, 04014003. [Google Scholar] [CrossRef]
- Wan, B.; Jiang, C.; Wu, Y.F. Effect of defects in externally bonded FRP reinforced concrete. Constr. Build. Mater. 2018, 172, 63–76. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.F.; Jiang, J.F. Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites. Compos. Struct. 2017, 168, 851–862. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Jiang, C.; Liu, W.; Yu, Q.-Q.; Zhou, Y.-L. Degradation of the In-plane Shear Modulus of Structural BFRP Laminates Due to High Temperature. Sensors 2018, 18, 3361. [Google Scholar] [CrossRef] [PubMed]
- MOHURD; AQSIQ. Standard for Test Method of Concrete Structures (GB/T 50152-2012); China Architecture & Building Press: Beijing, China, 2012; pp. 23–25. (In Chinese) [Google Scholar]
- Xue, W.C.; Zheng, Q.W.; Yang, Y. Design recommendations on flexural capacity of FRP-reinforced concrete beams. Eng. Mech. 2009, 26, 79–85. (In Chinese) [Google Scholar]
- JSCE. Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials; JSCE Research Committee on Continuous Fiber Reinforcing Materials: Tokyo, Japan, 1997; p. 235. [Google Scholar]
- Tomlinson, D.; Fam, A. Performance of concrete beams reinforced with basalt FRP for flexure and shear. J. Compos. Constr. 2015, 19, 04014036. [Google Scholar] [CrossRef]
- Barris, C.; Torres, L.; Miàs, C.; Vilanova, I. Design of FRP reinforced concrete beams for serviceability requirements. Statyba 2012, 18, 843–857. [Google Scholar] [CrossRef]
- El-Nemr, A.; Ahmed, E.A.; Benmokrane, B. Flexural Behavior and Serviceability of Normal- and High-Strength Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars. ACI Struct. J. 2013, 110, 1077–1087. [Google Scholar]
- CSA. Design of Concrete Structures (CAN/CSA A23.3-14); CSA Group: Toronto, ON, Canada, 2014. [Google Scholar]
- Hu, B.; Wu, Y.F. Quantification of shear cracking in reinforced concrete beams. Eng. Struct. 2017, 147, 666–678. [Google Scholar] [CrossRef]
Cement (PO 42.5) (kg/m3) | Coarse Aggregate (kg/m3) | Sea Sand (kg/m3) | Water (kg/m3) | Sea Salt (kg/m3) | High-range Water-Reduction (HRWR) (g) |
---|---|---|---|---|---|
410.00 | 982.00 | 803.00 | 205.00 | 6.34 | 0.41 |
Cement (kg/m3) | Fly Ash (kg/m3) | Sea Sand (kg/m3) | Water (kg/m3) | Sea Salt (kg/m3) | Polyethylene (PE) Fiber (kg/m3) | HRWR (kg/m3) |
---|---|---|---|---|---|---|
593.00 | 711.60 | 474.40 | 300.00 | 9.30 | 19.10 | 5.00 |
Fiber Type | Diameter (μm) | Fiber Aspect Ratio | Tensile Strength (GPa) | Elastic Modulus (GPa) | Rupture Elongation (%) | Density (g/cm3) |
---|---|---|---|---|---|---|
Polyethylene | 24 | 720 | 2.9 | 116 | 2.42 | 0.97 |
Diameter of BFRP Bar (mm) | Modulus of Elasticity (GPa) | Peak Tensile Strength (MPa) | Tensile Strain Capacity (%) |
---|---|---|---|
6 | 54.35 | 1369.62 | 2.52 |
8 | 47.84 | 1239.06 | 2.59 |
12 | 46.39 | 937.08 | 2.02 |
Specimen ID | Diameter of FRP Tensile Bar (mm) | UHDCC Layer (mm) | Longitudinal Reinforcement Ratio (%) |
---|---|---|---|
SSC-6 | 6 | 0 | 0.17 |
SSC-8 | 8 | 0 | 0.30 |
SSC-12 | 12 | 0 | 0.69 |
SSC-UHDCC-6 | 6 | 60 | 0.17 |
SSC-UHDCC-8 | 8 | 60 | 0.30 |
SSC-UHDCC-12 | 12 | 60 | 0.69 |
SSC-UHDCC-plain | / | 60 | / |
Specimen ID | Service Load Under Different Criteria | Ps (Floor Level) | Ps/Pm | Ps (Roof Level) | Ps/Pm | ||||
---|---|---|---|---|---|---|---|---|---|
Δ = L/360 (Floor Level) | Δ = L/180 (Roof Level) | εs | wm | Pm/1.5 | |||||
SSC-UHDCC-plain | 7.64 | 10.51 | / | 2.53 | 8.33 | 2.53 | 20.26% | 2.53 | 20.26% |
SSC-6 | 7.94 | 9.16 | 4.22 | 2.50 | 7.46 | 2.50 | 22.32% | 2.50 | 22.32% |
SSC-UHDCC-6 | 14.58 | 17.01 | 9.23 | 9.52 | 20.95 | 9.52 | 29.36% | 9.52 | 29.36% |
SSC-8 | 8.27 | 11.92 | 1.90 | 3.63 | 18.39 | 3.63 | 13.16% | 3.63 | 13.16% |
SSC-UHDCC-8 | 14.23 | 18.49 | 9.48 | 15.68 | 26.36 | 14.23 | 35.98% | 15.68 | 39.65% |
SSC-12 | 15.18 | 22.78 | 9.07 | 17.28 | 31.37 | 15.18 | 32.26% | 17.28 | 36.73% |
SSC-UHDCC-12 | 15.51 | 23.62 | 12.74 | 36.52 | 33.11 | 15.51 | 31.23% | 23.62 | 47.56% |
Specimen ID | Cracking Load (kN) | Service Load (kN) | Ultimate Load (kN) | Deflection at Ultimate Load (mm) |
---|---|---|---|---|
SSC-UHDCC-plain | 9.00 | 2.53 | 10.59 | 10.15 |
SSC-6 | 2.50 | 2.50 | 9.45 | 10.81 |
SSC-UHDCC-6 | 9.00 (260%) | 9.52 (281%) | 27.57 (192%) | 58.07 (437%) |
SSC-8 | 3.60 | 3.63 | 25.16 | 32.69 |
SSC-UHDCC-8 | 9.00 (150%) | 15.68 (332%) | 33.62 (34%) | 47.32 (45%) |
SSC-12 | 4.80 | 17.28 | 46.43 | 35.01 |
SSC-UHDCC-12 | 12.60 (162.5%) | 36.52 (111%) | 42.63 (-8%) | 47.50 (36%) |
Spec. ID | w5 (mm) | w8 (mm) | w10 (mm) | Crack Number in SSC (mm) |
---|---|---|---|---|
SSC-6 | / | / | 1.89 | 3 |
SSC-UHDCC-6 | 0 | 0.37 | 0.85 | 10 |
SSC-8 | 1.46 | 1.48 | 1.78 | 4 |
SSC-UHDCC-8 | 0 | 0.16 | 0.26 | 8 |
SSC-12 | 0.37 | 0.39 | 0.44 | 5 |
SSC-UHDCC-12 | 0 | 0 | 0 | 9 |
SSC-UHDCC-plain | 0 | 0.05 | 5.36 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Luo, J.; Yu, J.; Wang, Z. Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State. Sensors 2019, 19, 654. https://doi.org/10.3390/s19030654
Jiang J, Luo J, Yu J, Wang Z. Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State. Sensors. 2019; 19(3):654. https://doi.org/10.3390/s19030654
Chicago/Turabian StyleJiang, Jiafei, Jie Luo, Jiangtao Yu, and Zhichen Wang. 2019. "Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State" Sensors 19, no. 3: 654. https://doi.org/10.3390/s19030654
APA StyleJiang, J., Luo, J., Yu, J., & Wang, Z. (2019). Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State. Sensors, 19(3), 654. https://doi.org/10.3390/s19030654