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Abstract: Internet of Things (IoT) management systems require scalability, standardized communication,
and context-awareness to achieve the management of connected devices with security and accuracy
in real environments. Interoperability and heterogeneity between hardware and application layers
are also critical issues. To attend to the network requirements and different functionalities, a dynamic
and context-sensitive configuration management system is required. Thus, reference architectures
(RAs) represent a basic architecture and the definition of key characteristics for the construction
of IoT environments. Therefore, choosing the best technologies of the IoT management platforms
and protocols through comparison and evaluation is a hard task, since they are difficult to compare
due to their lack of standardization. However, in the literature, there are no management platforms
focused on addressing all IoT issues. For this purpose, this paper surveys the available policies
and solutions for IoT Network Management and devices. Among the available technologies,
an evaluation was performed using features such as heterogeneity, scalability, supported technologies,
and security. Based on this evaluation, the most promising technologies were chosen for a detailed
performance evaluation study (through simulation and deployment in real environments). In terms
of contributions, these protocols and platforms were studied in detail, the main features of each
approach are highlighted and discussed, open research issues are identified as well as the lessons
learned on the topic.

Keywords: Internet of Things; IoT management; network management; device management;
management platform; protocols

1. Introduction

Initially, computer networks were created for communicating as a mean of sharing endpoint
devices with the same standards of networks, protocols, and operating systems. However, the fast
evolution of networks combined with a reduction of computational resources costs motivated the
increase of computer networks in all markets [1]. Considering this scenario, it becomes increasingly
necessary to manage the network environment to keep it working properly. Network management
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is required to maintain the entire network structure working, thus meeting the user needs and the
administrators’ expectations.

Due to the emergence of the Internet of Things (IoT), it is expected an exponential growth
of network endpoint devices (NEDs) becoming a challenge in the areas of infrastructure, security,
energy saving, among others [2]. The continued growth in the number and diversity of network
components has also contributed to the fact that network management activity has become increasingly
indispensable [3]. The benefits of integrating a company’s computing systems of different nature
and sizes as a way of distributing tasks and sharing available resources are now a reality. For this
reason, an efficient data management system is required by IoT networks, so the information is always
available wherever and whenever requested [4].

IoT management presents two main scopes: devices and networks. In each of them, there is a
huge variety of protocols and management platforms to minimize the challenges (presented later) [5].
Given the number of existing protocols and platforms, an evaluation should determine which IoT
management protocols are capable of efficiently satisfying the application requirements and which
platforms support these protocols for real environments (real deployment).

Communication between devices performing machine-to-machine communication (M2M),
Wireless Sensor Networks (WSNs) for monitoring and control processes, and the interconnection
of WSNs with the Internet are examples of some challenges of managing an IoT network [6].
Network devices using software-based communication (known as software-defined networks—SDN)
gathers, detects, and configures data from sensors, thus creating the context of managing a network.
New technological approaches focusing on IoT are emerging, as Fog/Cloud technologies [7], and they
are compatible with constrained portable devices and with old management protocols, therefore
being an IoT trending topic. Figure 1 presents a typical scenario involving different communication
technologies and a gateway where connected devices collect information from the environment
(e.g., temperature, luminosity, movement, etc.) and report data to an IoT management network entity.

One of the most important challenges in this IoT scenario is the network device heterogeneity [8,9].
Devices can support different communication protocols with different formats and data types, memory
and processing capacity [10]. Another important factor is the data set produced in real time and
the implicit semantics imposing challenges regarding the configuration and infrastructure of IoT
environments [11]. An illustration of the heterogeneity of protocols for IoT is shown in Figure 1.

Figure 1. Illustration of an IoT Network Architecture and a plethora of available protocols.

The complexity of IoT Network Management compared with traditional Transport Control
Protocol (TCP)/IP networks management is also greater than WSNs [12]. IoT needs to support
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networking devices and services that involve (i) the use of a plethora of devices with diverse
characteristics, and (ii) the IoT networks devices interaction through local or remote management
context awareness. WSNs should manage frequent communications failures and low security of
wireless links (i.e., the MANNA architecture [13]), and this management must also be context aware.
The available IoT management architectures partially attend to these features [14]. Therefore, this
survey elaborates on a deep study of the related literature focusing on available solutions, tools,
and policies, including approaches for IoT networks and end devices management. Among the
available technologies for IoT, an evaluation was performed using features its heterogeneity, scalability,
supported technologies and security. Based on this evaluation, the most promising technologies were
chosen for a detailed performance evaluation study (through simulation and deployment in real
environments). Then, the main contributions of this paper can be summarized as follows:

• An extensive review of the related literature considering network management protocols and
platforms for IoT;

• Requirements analyses for IoT network and devices management;
• A comparative analysis of the available IoT protocols and network management platforms for IoT;
• Identification of challenges and open research issues on IoT management and its importance for

further studies on the topic.

The paper is organized as follows. Section 2 addresses important background information on
network and device management. In Section 3, IoT Network Management and its requirements are
introduced. The IoT Network Management protocols and the most relevant platforms available in
literature are detailed in Sections 4 and 5 respectively. IoT Device Management and its requirements
are introduced in Section 6. Then, the IoT Device Management protocols and platform technologies
are studied in Sections 7 and 8. Section 9 presents a performance evaluation study of IoT management
technologies and proposes open research issues based on obtained results. Finally, the lessons learned
and the main conclusions are addressed in Section 10.

2. Background

Computer networks are composed by heterogeneous communication devices and sharing
resources [15]. Computer networks management emerged after a rapid evolution of network
technologies, in addition to a major effort to reduce the costs of computing resources [16]. The offered
services range from simple resources sharing to current technology and assume that every object can
be connected to the Internet. This is known to as the IoT. Network management goals controlling
and monitoring network elements, physical or logical, ensuring a certain quality of service (QoS)
level. To accomplish this task, define network management as a collection of tools for monitoring or
managing devices [17]. The traditional network management model can be summarized as follows:
(i) data collection from monitoring managed resources automatically, (ii) diagnosis to analyze and
solve identified problems throughout the monitored data, and (iii) action or control to solve a problem
or modify the state of a device [18].

For Kurose et al. [18], a network without management mechanisms can present problems such as
interference in data traffic, lack of data integrity, high congestion rates, resources that can be misused
or overloaded, as well as security problems. According to Gabdurahmanov [19], network management
can be difficult for three reasons: (i) the managed network is heterogeneous because it contains
hardware and software components manufactured by various companies; (ii) technology can change
continuously with new services available; and (iii) the managed networks are large and the network
nodes may be distant from other nodes.

Kurose et al. [18] states that ISO has created an IoT reference architecture (RA) in which
network management includes five functional areas, as follows: performance management, failure,
configuration, accounting, and security (as shown in Figure 2). Performance management intends to
analyze, measure, inform, and control the performance of different network components, i.e., routers
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and hosts. In failure, the purpose is to log, detect, and react to network failure conditions. The division
between fault management and performance management is undefined [20]. Failure management
can occur through transient network failures, such as the interruption of service on a link or routing
software. Performance management, however, takes a long-term approach.

The administrator can know the managed network devices and their hardware configurations
through management actions [21]. Accounting is intended to allow the network administrator to
specify, register, and control access to users and devices of the network. Quotas and usage charges
for privileged access to the network resources make up the accounting management. According to
organization policies defined, the network resources access is performed with security management.

Figure 2. Internet of Things Reference Architecture (IoT-RA).

In Figure 3, the general architecture of network management systems presents the following four
basic components: elements, stations, protocols, and information on network management [18]. They
are briefly described below.

Agent: The managed elements have a software that allows monitoring and controlling the
equipment through one or more management stations;

Manager: Management station communicates with the agents, either for monitoring or controlling
them. Usually, the management station offers an interface through which authorized users can manage
the network;

Protocol: The standard protocol, used for operations of monitoring (reading) and control (writing);
it is necessary for information exchange between manager and agent devices;

Management information: The management information has the data that can be referenced for
operations by the management protocol, i.e., the managers and agents can exchange data to obtain
information such as the Simple Network Management Protocol (SNMP) protocol [22].

Since the proposal of IoT years ago, many ideas have had three main constraints that
restrict its development [23]: (i) proprietary communication protocols, (ii) security and privacy,
and (iii) inconvenience to manage. Thus, the paper focuses on network and Device Management and
if it is feasible to address management constraints.

Due to the specific characteristics and challenges of IoT, devices cannot be managed using only the
traditional management tools. Thus, IoT management has two categories: IoT Network Management
and IoT Device Management. IoT Network Management is required to collection and analysis large
volumes of data from IoT platforms and, consequently, provides efficient decisions and/or actions.
IoT Device Management is required to provide the device location and status information, e.g., update
embedded software, disconnect some stolen or unrecognized device, modify security and hardware
configurations, locate a lost device, and even enable interaction between devices.
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Figure 3. Components of network management systems.

3. IoT Network Management

IoT Network Management often needs to adapt the unknown topology of these networks by
providing device location and status information. Managing services should have the capacity
to disconnect and locate lost devices, modify security settings, delete device data, and more.
Delicato et al. [24] states that management should consider the possibility of integrating and using the
devices not previously planned in the environment opportunistically.

An IoT network environment can have various connected devices in the same network, such as a
health sensor, a control/medical server, a Web report of statistics and a smartphone, as illustrated in
Figure 4. Thus, it is important that a management platform enables the devices to dynamically detect
other devices present in the environment to meet the requirements of the applications.

Figure 4. Illustration of an IoT network environment.

The main difference between WSNs, AdHoc networks (MANETs), and IoT networks is the
characteristic of heterogeneous devices and topologies performed by these networks [25]. All the time,
new devices compose these networks, therefore, the IoT management platforms require a customized
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module (driver) to translate device functionality into the platform. Some platforms for WSN and
AdHoc networks can be used to IoT networks.

3.1. Requirements

IoT management solutions must meet some requirements [14]. For example, there must be
interoperability between platforms and network devices. The platform must obtain the connected
devices dynamically through discovery and management. A solution should be context aware and
support scalability (considering indications of intensive usage). Security and dynamic adaptation
should keep data integrity and privacy guaranteeing devices availability and QoS.

Existing IoT management platforms, however, only partially meet these requirements [14]. Due to
lack of standardization, IoT management needs to specify data and information models, in which these
models are used to define a format for storing and deploying other management services. In addition
to the above requirements and other aspects such as security, authentication and authorization, there
are characteristics in the scope of local and global management which are discussed in [26].

3.2. Features

In the IoT reference architecture [27], network management includes functional components.
Configuration (self-configuration) is responsible for initializing system configuration, i.e., collect and
store the device configurations, tracking configuration changes, and planning future extensions.

The self-aware component, Failure, identifies, isolates, recovers, and records failures in an IoT
system. For each occurrence of a failure, a notification is sent to the Failure component with the
objective of collecting more data to identify the type and degree of the problem.

Member is responsible for monitoring and recovering members. This component allows
recovering members of the system while obeying a certain filter and allows the subscription to
receive updates of register/unregister member metadata in the database.

Report refines and maintains the history of the information provided by management devices,
e.g., to determine the efficiency of the current system through the collection and analysis of
performance data.

State goals self-monitoring of the IoT system with the past, present, and future devices states. It is
required by the Failure component, having the functions of changing or applying a particular state in
the system. It also checks the consistency of commands provided for this function and monitors the
state, which makes it possible to predict and update the state for a certain time or to recover the state
of the system through a history.

4. IoT Network Management Protocols

The section elaborates on the most relevant IoT Network Management protocols.

4.1. Simple Network Management Protocol (SNMP)

The objective of the SNMP is to find and fix the bugs or problems of a network [28]. Through
SNMP agents, the network administrator can view network traffic statistics and is able to change
its configurations after analyzing this data. Defined at the application level and standardized by
the Internet Engineering Task-Force (IETF) [29], the SNMP uses the User Datagram Protocol (UDP)
transport protocol to send messages over the network without delivery guarantee.

Over the last years, other protocols have used the same concept, e.g., NETCONF was created
to replace SNMP. The SNMP continues to dominate the network management market, mainly
because of its simplicity of implementation, since it consumes fewer network resources and
processing, which allows the inclusion of very simple equipment. According to SNMP Research
International et al. [30], there was an incremental development of three versions of the SNMP,
as described below:
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- SNMPv1: it offers a management solution with low cost and simple implementation, but with a
lack of authentication and security mechanisms and limitation in the performance of messages in
very large networks.

- SNMPv2c: it created the management of decentralized networks, allowing the existence of more
than one management station and, consequently, the exchange of information between them.
In SNMPv2, it was not possible to reach a consensus regarding the security standard to be used
in SNMP, and there was an addition of other request types such as get-request, get-next-request,
set-request, response, and snmpV2-trap.

- SNMPv3: it published a set of documents defining a framework to incorporate security features
into full capacity (with the SNMPv1 or SNMPv2 features). The SNMP architectural model
includes a Management Server and network devices. Servers monitoring and control the network
devices with events. The network devices include equipment as hosts, gateways, terminal servers,
that have managing agents used to be handled by a server. The SNMP protocol is used to
exchange data between a server and network devices.

Figure 5, shows some of the possible interactions between manager and agent through the SNMP
protocol [31].

Figure 5. Illustration of the SNMP Protocol Architecture.

An SNMP device can be connected to other devices, performing machine-to-machine
communication [32].

The SNMP Agent is a software installed in a device to support network management. It answers
the queries from SNMP managers and sends a trap message to some events (according to their priority).
The Management Information Base (MIB) is a virtual database with object identifiers (OIDs) organized
in a tree structure to keep information about Device Management in a communication network.

The ASN.1 (Abstract Syntax Notation One) notation [33] is a language developed by ITU-T and
chosen by ISO for the definition of the MIB manageable objects. It uses object-oriented concepts to
define a resource, so that its attributes can be performed by this resource, when applicable.

The SNMP is a non-connection-oriented protocol does not require a prior or subsequent action
to send messages. Thus, the protocol messages will no guarantee the destination is reached. It is
a simple and robust protocol, yet powerful enough to solve the difficult problems presented by
managing heterogeneous networks such as an IoT network, as shown in Figure 6. Therefore, the key
problems to manage the sensors in IoT involves the MIB design and the development of manager and
agent software.

Pros: Simple and easy protocol to be developed.
Cons: No network configuration resources.
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Figure 6. Illustration of the SNMP protocol for IoT devices.

Use Case

The SNMP protocol is a base unit that provides a centralized platform for operations and
facility management teams to monitor sensor conditions and configure threshold-based alerts. It aims
to monitor and collect data from environmental sensors and to integrate data from equipment
such as generators and other devices enabled to integrate with intelligent sensors through SNMP,
as demonstrated by OpenNMS, which is an open-source platform [34].

4.2. Network Configuration Protocol (NETCONF)

The NETCONF is a protocol for network configuration and monitoring, as defined by the IETF [35]
and, therefore, has better features than the SNMP, which had as its weakest point the absence of
network configuration resources, i.e., the interface BER (Basic Encoding Rules) and proprietary MIBs.
The NETCONF protocol was developed to be the natural successor to SNMP, because SNMP is focused
on monitoring and not on network configuration while NETCONF uses mechanisms that allow
the installation, manipulation, and removal of network device configuration through a client-server
implementation, as shown in Figure 7.

Figure 7. Illustration of the NETCONF Protocol for IoT Architecture.

After establishing the secure transport session between client and server, the NETCONF protocol
sends a HELLO message to announce the protocol capabilities and supported data models. NETCONF
also supports the subscription and receipt of event notifications asynchronously as well as the
partial closing of a current configuration of a network device. This feature allows multiple editing
sessions, streamlining the configuration process. NETCONF allows monitoring and management of
an autonomous entity (the NETCONF manager) that uses the repository of data, sessions, closings,
and statistics available on the NETCONF server.

The NETCONF protocol transports this information to an application manager, who can infer the
required settings for the network devices. YANG is a formal language with clear text of the data model
with syntax and semantics that allow the construction of network applications [36]. The YANG model
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can be translated into an XML (Extensible Markup Language) or JSON (JavaScript Object Notation)
file, structured in a tree for each module, with properties that correspond to the functionalities of the
device and declarations of types, data, constraints, and additions of reusable structures.

Heterogeneous networks are characteristic of the IoT, and the NETCONF protocol is used to
efficiently manage and resolve issues of this network. Most operating systems developed for IoT [37]
such as TinyOS and Contiki OS already have the NETCONF protocol built into their operating system.

Pros: Robust and security features.
Cons: a data model and an architecture of standardized implementation.

Use Case

Currently, most vendors, e.g., Cisco, already use the NETCONF protocol on their equipment as a
standard model. Another example, the OpenFlow devices controller communicates with connected
devices in an SDN architecture, also defining a protocol for such communication. The OpenFlow
provides means to control network devices using NETCONF, without the need for manufacturers to
expose the code of their legacy products [38].

4.3. Open vSwitch Database (OVSDB)

Open vSwitch Database (OVSDB) is a management protocol in a SDN environment [39].
Most network devices allow remote configuration using legacy protocols, such as SNMP. The
goal of Open vSwitch (OVS) consists in creating a modern programmatic management protocol
interface—OVSDB.

According to Figure 8, the OVSDB management protocol handles OVS that consists of a database
server (OVSDB Server), a virtualized switch (OVS Switch) and, optionally, a module for fast-path
forwarding. Each OVS is managed by, at least, one manager. An OVS module supports several data
paths referred to as “bridges”, where this controller uses OpenFlow.

Figure 8. Illustration OVSDB Protocol for IoT Architecture.

The OVSDB protocol interface to execute the configuration and management operations on the
OVS instance. OVSDB is used to create/delete/modify bridges, ports, and interfaces. The OVS
represents an evolution of network management protocols, allowing programming and configuring
bridges, ports, and interfaces for SDN equipment platforms and Network Functions Virtualization
(NFV) [40].

Pros: Interoperability of the networks and SDN management network.
Cons: No standard model to other networks and security features.
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Use Case

The open-source OpenDayLight platform for SDN uses open network management protocols, i.e.,
SNMP, OVSDB, and NETCONF to provide modular functions, extensible control, and network device
monitoring [41].

4.4. Internet of Things Platform’s Infrastructure for Configurations (IoT-PIC)

The IoT-PIC allows network management to perform the platform commissioning installed in the
network. The IoT-PIC architecture is similar to the SNMP protocol previously described, as shown
in Figure 9. It has the possibility of performing any configuration or composition of hardware and
software resources.

The IoT-PIC architecture have two levels, the global and local, and it is composed by two
components, in which the communication among these components is made through the Extensible
Messaging and Presence Protocol (XMPP) protocol [42]: an IoT-PIC Manager (PIC-M) at a global level
and an IoT-PIC Agent (PIC-A) at a local level.

Figure 9. Illustration of the IoT-PIC architecture.

The XMPP protocol is an open-source IETF standard protocol based on XML for network
management in IoT contexts, which allows real-time messaging, the information exchange and
request/response services. The XMPP performance of latency, scalability, and robustness has been
widely demonstrated during the years [43].

The PIC-M module is used to manage the configuration and access of the other modules to the
platform. It interacts as an interface to applications and other platform components.

The PIC-M functionalities consist in notifying the applications on the status of the device
available in the middle-ware, requesting configuration information from the PIC-A via “get” and “set”,
through an XMPP command, and updating the configuration of devices through PIC-A via XMPP.

The IoT-PIC uses the publish-subscribe, in which subscribers only receive messages of interest,
without information on the publishers, which allows the complete decoupling of the devices.
Each platform is associated with a PIC-A and responds to the management of the PIC-M device.
The configuration and interconnection of devices are assigned to the PIC-A, e.g., adding and removing
the connection.

The IoT-PIC deploys the discovery functionality of devices through the XMPP protocol.
New devices connected are automatically registered to the network, describing their functionalities
with a common format [44]. Particularly, in the proposed solution, when a new device connects to the
network, the manager of this network publish-subscribe joins in PIC-M for all discovered resources.

A resource example is a sensor that measures humidity and temperature. Context Manager can
create location-related nodes where devices can enter their location allowing navigation of the tree
from the root. First, the PIC-M creates a collection node with a given device id, containing two nodes,
in which the first node has the temperature function and the second node has the humidity function.
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The resources of the nodes used in the service discovered by PIC-M are associated with the resource
types list, i.e., Humidity Sensor and Temperature Sensor. The functions of the nodes are associated with
the operation list, i.e., getTemperature and getHumididity. This list creates the entire hierarchy of nodes
and, if the user does not indicate the parameter, the entire list is returned.

Pros: Interoperability and global/local management.
Cons: No mature protocol and security feature.

Use Case

The IoT-PIC is used in an energy efficiency scenario. The IMPReSS platform [45] includes energy
saving and alarm system applications to allow sensor, lights, and smart plugs into the platform.
To save energy, the Energy Saver manages the light through the PIC-M and tells the PIC-A of the lights
management component to publish/subscribe node of the device in order to receive its events; e.g., in a
classroom, detects motion sensor if a row of seats is empty, in which case the lights are automatically
switched off.

The GUI interface converts the XML returned by response of the PIC-M into a user-friendly form.
This platform allows integrating new devices without need modifications to the deployment environment.

4.5. IEEE 1905

IoT environments depend on several media access control (MAC) protocols. The challenge of
interoperability between technologies needs to be discussed. IEEE 1905 is a standard focused on
the convergence of digital home network and offers an abstraction layer to all these heterogeneous
MAC protocols.

The goal of IEEE 1905 is to define a common standard that establishes home network technologies
for a data and control service access point. Each interface can transmit and receive packets, regardless
of underlying technologies or layers, as shown in Figure 10 [46].

Figure 10. Illustration of the protocol structure for IEEE 1905.

An intermediate layer used to exchange messages (Table 1), is called Control Message Data Units
(CMDUs), with all standards-compatible devices. In Figure 11, all the IEEE 1905 deployed devices with
Abstraction Layer Management Entity (ALME) protocol have neighbor discovery, topology exchange
and rules, measured traffic, and security associations following the layers presented.

Table 1. Exchanged messages at the Abstraction layer.

Exchange Messages Description

ALME-GET This message is used by the HLEs to get a description of the HLEs device.
ALME-SET This message is used by the HLEs to send a configuration of the HLEs device.
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The protocol introduces an intermediate abstraction layer to the logical link control (LLC) and one
or multiple MAC. The service access points (SAPs) holds many networking technologies, to support
advanced network management features such as auto-configuration, QoS, path selection and discovery.
This layer simplifies setup, e.g., by eliminating the need for a user to enter different passwords to
access each link [47].

Figure 11. IEEE 1905 standard network management architecture.

This ALME SAP entity can provide management services to MAC, physical layer (PHY) and
higher layer entities (HLEs) [48]. It also provides advanced network management features including
discovery and interface selection.

Pros: Interoperability and common standard model to devices.
Cons: No mature protocol and security feature.

Use Case

nVoy is an IEEE 1905 standard program [49] that provides the services to maximize and simplify
the overall performance of a home network. The reliability is provided through the abstraction layer
to established power line, wireless, coaxial cable, and Ethernet home networking technologies—IEEE
1901/HomePlug R© AV, Wi-Fi, MoCA R©, and Ethernet, allowing to provide common setup procedures
for establishing connected devices, secure links, and network management.

4.6. LoWPAN Network Management Protocol (LNMP)

The LNMP is a management architecture suitable for 6LoWPAN networks [50]. With LNMP
architecture is possible to reduce the cost communication and, therefore, increasing the lifespan
of the network. The LNMP main characteristic is to allow interoperability with SNMP. In terms
of communication and complexity, the SNMP is considered impracticable due to the limited
device’s resources.

This architecture (Figure 12) allows the discovery of devices in a network with help of the
coordinators in the monitoring and management. The SNMP is an application layer adapted protocol
to run over IPv6, so uses this protocol to the adaptation layer 6LoWPAN [51]. The popular solution
NET-SNMP [52] includes the adapted IPv4 and IPv6 for IoT network.
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Exists two successive management operations that entities within the 6LoWPAN performed.
First, Network Discovery is executed to monitor the device state in the architecture. The second step,
after discovered devices, is the management of available devices.

To discover “live” devices manually, intense use of the resources is needed, and thus, the Network
Discovery is a procedure created for an automated network state discovery, which is necessary given the
WSN characteristics for their continued deployment. In this proposal [53], the Network Discovery uses
the automated monitoring of the network state distributed by a 6LoWPAN network. The coordinators
responsible to maintain the information about device state and reporting of subordinate devices has the
device discovery feature. Bandwidth is a scarce resource in a sensor network and this feature reduces
communication costs. The sensing and processing are usually lower than the communication cost.

It is desirable to monitor the device’s status within the 6LoWPAN in a standard management
protocol, e.g., SNMP protocols. However, the bandwidth available is a factor limited for application
layer payload [54]. Therefore, SNMP is inviable due complexity of transport and communication
into 6LoWPAN networks. Nonetheless, the reuse of network protocols is a goal of the 6LoWPAN,
especially because of the interoperability of devices with SNMP. The SNMP message is translated to a
UDP-based query when arrives from an NMS. It contains identifiers objects that are retrieved by the
Device Agent. Likewise, these objects are translated to SNMP format when arriving at the gateway.

Figure 12. Illustration device level monitoring procedure for LNMP Protocol.

The data validity is the most important consideration to management architecture.
The performance of the network management can be calculated with query-response delay and
the increasing number of nodes. Likewise, another way is analysis the computation overhead with
query load. The reliability introduces a delay of 25 ms to a query and reaches up 50%. Queries with
five hops proposed a delay of 100 ms or more gave 100% reliability.

Pros: Reliability and supports 6LoWPAN networks.
Cons: No mature protocol and has delay due to protocol conversion.

Use Case

In this proposal [53], the Internet Lab Ajou University deployed an agent application over the
6LoWPAN and a PAN coordinator connected to the gateway with PPP interface. The 6LoWPAN
environment composed of a gateway and IEEE802.15.4 devices, containing a PAN coordinator.
The devices support Hilow [55] routing protocol. The Device Management agent access to 802.15.4
information base, 6LoWPAN MIB, and IP MIB reduced.
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5. IoT Network Management Platforms

This section describes the most relevant IoT Network Management platforms. There are
open-access and open-source testbeds of IoT platforms that accelerate the deployment of IoT
technologies (e.g., IoT-Lab [56] and FIT IoT-LAB [57]). These approaches are used to simulated large
number of devices in an IoT environment, but the data obtained does not mirror the real scenario due
to network latency. Thus, these category of IoT Network Management platforms was not considered
in the scope of this survey because it is impossible to evaluated in the considered real environment.

5.1. IMPReSS

The IMPReSS project is a partnership between the European Union and Brazil (EU-Brazil).
The goal of the project was to provide a development platform that allows low-cost development

of IoT complex systems and facilitates interaction with users and external systems [45].
The IMPReSS project ended on 31 March 2016.
The IMPReSS development platform can be used by any system that adopts the Smart Society

context. The demonstration and validation of the IMPReSS platform will be carried out on energy
efficiency systems to reduce the use of energy and CO2 emission in public buildings. One contribution
will be the inclusion of intelligence in monitor and control systems, as well as the stimulation of user
awareness in reducing energy expenditures. For the configuration management, the PIC-A exposes
two ad-hoc commands, in Table 2. The first command provides a list of management data, in XML
format, associated with every variable, i.e., the type, the current value, and a list of values to assign.
The second command updates values associated with a variable when this is writable [58].

Table 2. Configuration Management Ad-Hoc commands.

Ad-Hoc Commands Description

getAvailableDrivers Returns the list of drivers available on the repository.

getConfiguration This operation is used to get the list of the current

values in the parameters that can be configured in the component.
setConfiguration Updates the component configuration and setting the

values passed as a parameter.

The application interacts with PIC-M that provides setConfiguration and getConfiguration
commands to write and read the configuration in any PIC-A. When setting information in parameters,
the setConfiguration should be called, passing the XML used to insert new configuration values.

Pros: Supports the IoT-PIC protocol.
Cons: No basic security and no support of the commercial protocols.

5.2. OpenNMS

OpenNMS (Network Management System) open-source platform [34] is used to the management
and monitoring of business networks. Developed under the FCAPS (Fault, Configuration, Accounting,
Performance, Security) network management model, it is distributed under the GPL license.

OpenNMS is written in Java, in addition to using database PostgreSQL or RRDTool, specifically
JRobin (Java port for RRDTool), and supports Red Hat, Debian, Fedora, Mandriva, SuSE, Solaris,
Mac OS X and Microsoft Windows.

The architecture presented in Figure 13 has the features to determine the availability and
latency of services, storage and collecting of data, event management (such as SNMP traps), alarms
and notifications.
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Figure 13. Illustration of the OpenNMS architecture.

It uses two flows for data collection in Round Robin Database (RRD). The first is through so-called
monitors that connect to a network resource and perform a test to verify if it responds correctly. If this
does not happen an event is generated. The second flow is through the use of so-called collectors,
which can be collected by SNMP (native protocol), NETCONF, Java Management Extensions (JMX),
and HTTP.

The generated events are of two types; those generated internally by OpenNMS and those
generated externally by SNMP traps, which are characterized according to their description and
gravity [59].

Pros: It supports many Operation Systems and open source.
Cons: No basic security and support SNMP native.

5.3. OpenDayLight

The OpenDayLight (ODL) is an open-source Web-platform for network management as SDN.
It uses open protocols to allows centralized control and network device monitoring [41]. The ODL
supports OpenFlow and offers ready-to-install modular network solutions. There is support for a
wide range of network protocols, including SNMP, NETCONF, RESTCONF, OVSDB, Border Gateway
Protocol (BGP), Path Computation Element Protocol (PCEP), Locator ID Separation Protocol (LISP),
and more. OpenDaylight is slightly different from other controllers because it offers other protocols
such as southbound interfaces, e.g., OpenFlow, BGP, and PCEP. In addition, OpenDayLight offers
interfaces with OpenStack and Open vSwitch (OVSDB).

OpenDaylight is a micro-service that uses the sharing of YANG-based (NETCONF) data structures
for messages exchange and data storage, as shown in Figure 14. According to Haleplidis et al. [60],
through a model addressed to the Model Driven Service Abstraction Layer (MD-SAL), can aggregate
any application or function to a service and loaded by the controller.

Pros: It supports the interoperability of the networks and many native protocols.
Cons: No basic security.

Figure 14. Illustration of the OpenDayLight architecture.
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5.4. Zabbix

Zabbix is an open-source tool distributed under the GNU GPLv2 license for network management.
It monitors the network services status as well as servers or other hardware. As described in [61],
it is characterized as being a centralized management system with semi-distributed monitoring.
In Figure 15, the organization can be divided into three main modules.

Figure 15. Illustration of the Zabbix architecture.

The platform architecture is distributed and consists of a central server in charge of administering
the system and dealing with the interaction between the other two main components: (i) the
“Zabbix Agent” to monitor local resources and applications and send them to the server, and (ii) the
“Zabbix Proxy” is an optional part of the Zabbix configuration essential for distributed monitoring [62].
Zabbix proxy collects the data from the hosts and stores them in a database of their own to avoid loss
of information if there is a problem with the communication with the server. The alert system includes
three channels for sending notifications via email, SMS, and jabber (currently called XMPP—Extensible
Messaging and Presence Protocol).

Pros: Mature platform and has a greater number of management metrics.
Cons: No basic security and only monitoring the networks.

6. IoT Device Management

Device management has two main components: (i) Device Manager and (ii) Device Agent.
The Device Manager is a system that communicates with devices through multiple management
protocols and provides individual and bulk device controls. It also manages the device to block
remotely when necessary [63].

According to Zehao Liu et al. [64], the Device Agent is a generic component suite that provides
management of devices and utilities such as: (i) communication adapters for HTTP and MQTT;
(ii) registration of devices; (iii) token management, and (iv) type of management platform.

The managed devices need to maintain and map the device’s identity to their owners. Thus,
it allows management through installed software, enabling/disabling functions, monitoring the device
availability, and control the security features. Other functions should show be the location and,
if available, locking the device remotely, among others. Unmanaged devices have not any management
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agent and can communicate with the network. Semi-managed devices implement some parts of the
managed devices, e.g., only feature control, but not software management [65].

7. IoT Device Management Protocols

7.1. COnstrained Networks and Devices MANagement (COMAN)

The COMAN Group from the IETF [66] proposes Mobile Object (MO) solutions that simplified
MIB, SNMP-based on messages, and CoAP-based management, which could be the protocol used for
management of constrained networks and devices.

In Table 3, some Device Management candidate technologies were identified and described:
This survey limits the study to CoAP, OMA-LwM2M, and OMA-DM, but there are several

candidates for COMAN technologies.

Table 3. COMAN—Candidate Technologies.

Technology Description

CoAP

The IETF has defined a binary protocol, the Constrained
Application Protocol (CoAP), easy to analyze and especially designed for

constrained devices, which is used with lower-level protocols, but it is
particularly adapted over UDP/IPv6.

OMA-LwM2M OMA Lightweight M2M is a Device Management protocol used
to M2M networks environment.

OMA-DM

OMA Device Management provides functions for device
management. The Device Management happens through communication

between a server (Device Manager) and the client (Device Agent)
using HTTP transport.

7.1.1. CoAP—COnstrained Networks and Devices MAnagement

CoAP is an easy to use protocol intended for devices with constrained resources and in
conformation with the REST Style. It is a specialized Web transfer protocol designed for M2M
applications. It was developed to be used along with lower-level protocols and has been used in
many IoT candidates along with IPv6 and UDP.

Also, this protocol meets most requirements for COMAN, such as group-based provisioning,
capability discovery, support for energy optimized protocols, unreachable devices and lossy
links [66,67].

As shown in Figure 16, the CoAP architecture abstracts all network elements as resources, called
Universal Resource Identifier (URI) [68]. Inside CoAP management features, it can detect, with low
complexity, if a device is online with a simple CoAP ping and verify if the server is stateless.

Also, in the fog computing architecture [7], it is possible to see the performance of this protocol
compared to NETCONF and SNMP. This protocol can be used along DTLS (Data- gram Transport
Layer Security) [69].

Pros: Standard communication model and secure.
Cons: No supports the heterogeneity networks.
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Figure 16. Illustration of the CoAP architecture.

7.1.2. OMA-DM—Open Mobile Alliance Device Management

OMA-DM provides the management information for connecting devices with the DM tree
model [70–72] and remotely managing connected devices through the OMA-DM management
protocol [73]. It provides efficient methods to manage connected “things” in network environments
using: (i) configuration maintenance and management, (ii) configuration of user preferences,
(iii) fault detection, query and reporting, (iv) non-application software download, (v) provisioning,
and (vi) software management.

The OMA Device Management is divided into DM Server and DM Client devices [74]. Th standard
format for communication messages and data transports uses the XML format for the following
technologies: physical layers lines or wireless networks (GSM, IrDA, Ethernet or Bluetooth) and
transport layers over Wireless Session Protocol (WSP)/WAP [75], HTTP [76], OBEX [77] or similar
transports, as shown in Figure 17.

Figure 17. OMA-DM standard management architecture.

OMA-DM performs data exchange and Device Management with XML data through a DM
server/client communication [78]. The OMA-DM consists of two phases: (i) a configuration phase,
after authentication enables the exchange of device information through the user commands (Add,
Alert, Copy, Get, and others) sent to the DM Client; (ii) the management performs the request/response
messages (Status, Generic Alert, and Results) between DM server/client.

Pros: Standard communication model.
Cons: No supports the heterogeneity networks and security.
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7.1.3. OMA-LwM2M—Open Mobile Alliance for Lightweight M2M

The OMA LWM2M enables M2M Device Management, acting as an OMA-DM successor using
the same protocol, and provides a compact and secure communication for this management [79].
It provides a sub-layer to allow management of LWM2M Server/Client, using a CoAP client-server
architecture over UDP as a transport layer, as shown in Figure 18.

Figure 18. OMA LWM2M standard management architecture.

The M2M Service Provider, Network Service Provider, or Application Service Provider can be
hosted by the LWM2M Server that provides a private or public data center [80]. The LWM2M Client
is integrated into a software or device [81]. The LWM2M communication model [82] uses the CoAP
methods (GET, PUT, POST, and DELETE) with bindings over UDP transport layer.

Pros: Communication model and secure.
Cons: No supports the heterogeneity networks.

Use Case

Nowadays, there are several solutions (CoAP, OMA-LwM2M, or OMA-DM) with COMAN
requirements, e.g., energy states, logging, system authentication, peripheral management, and access
controls to the system [66]. Sprint is globally one of the best examples of a mobile Operator that has
made FOTA part of its services strategy.

It is fully committed to providing FOTA updates according to the OMA-DM standards [83].

7.2. Things Management Protocol (TMP)

The TMP uses the operations get/set, similar to the SNMP operations, to enable default interface
for communication between the “things with things” and “things with the applications” [84].

Guiping et al. [85] describes that the motivation for creating TMP was the need to manage the
heterogeneity devices independently. TMP is SOAP-based, as shown in Figure 19, and uses key
technologies such as HTTP, XML, and SOA for information integration and connection application
based on independent protocols.
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Figure 19. Illustration of the Things Management Protocol architecture.

In Table 4, the TMP creates the connection between protocol and transport layer protocols and
includes several operation request/response messages in the protocol, e.g., GetInformationObject and
SetInformationObject.

Table 4. TMP Operational Requests/Response Messages.

Operational Messages Description

GetInformationObject In IoT application, this message is used to
read things information object.

GetNextInformationObject Used to read one or more things information
object next to the current object.

SetInformationObject
Used to write one or more things information

object. The value of one thing information object
is written per one operation.

TMP supports three operations: GetInformationObject, GetNextInformationObject, and
SetInformationObject. The basic requirements for operating “things information” are satisfied in
these operations.

Pros: Simple connection and request information.
Cons: No robust and secure.

Use Case

The Smart Street Lighting System [86] can be managed remotely using Thing Management
Protocol and some tasks can be automated with the objective of reduction of the power consumption,
which has an ecological implication.

7.3. CPE WAN Management Protocol (CWMP)

Technical Report 069 (TR-069) is a specification that defines an application layer protocol for
Device Management. It was initially published by Broadband Home Working Group and received the
name of CPE WAN Management Protocol (CWMP). CWMP is an IP-based protocol and uses XML for
all messages, as presented in Figure 20. It provides transaction confidentiality over Transport Control
Protocol (TCP) with Secure Sockets Layer (SSL) or Transport Layer Security (TLS) and allows levels
of authentication. The protocol uses Hypertext Transfer Protocol (HTTP) and Simple Object Access
Protocol (SOAP) based on Web services. The data models standardized and security methods are
advantages of CWMP over SNMP.

This protocol works between CPE (Customer-premises equipment) and the Auto-Configuration
Server (ACS), achieving better scalability and cost reduction results. Many CPEs can be managed
simultaneously by ACS because the session starts and short times are reserved for CPE [87].
The security of this protocol depends on ACS [88,89]. A problem with this protocol is the scalability of
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the high volume of CPE for a single ACS. Thus, there is a proposal of addiction the components of the
ACS management architecture using dynamic grouping, and sub-ACS structure [90].

Figure 20. Illustration of the CWMP Protocol messages.

The ACS can control the CPE through the get and set methods as parameter values. In the
first message, the CPE sends CPE information, e.g., identification, manufacturer, and serial number
to the ACS. Then, ACS sends a request with parameters for CPE to execute. After receiving all
the answers or does not have requests, CPE closes the session. An Inform message initialize the
management session. The client identifies this message, which is confirmed by an InformResponse
message by the server. Subsequently, the client can request or assign one or more parameters
with a GetParameterValue and SetParameterValue message. Both messages are committed with
a SetParameterResponse or GetParameterResponse and the parameter values are updated. Finally,
a management session is finalized.

Pros: Secure auto-configuration and standardize management of devices.
Cons: lack of standard for different devices.

Use Case

Incognito ACS is an integrated system to the SAC [91]. It allows to manage copyright of the
subscribers, e.g., group of channels or videos on demand over IP. The SAC authorizes TR-069 gateway
activation and diagnostics. In the gateway it is possible to execute commands to learn about devices,
services, or customer quality. As another use case example, the COSMOS (CPE Operation Support
Management and Optimization System) is a CWMP-based Operations Support System (OSS) used
to provide integrated multi-function which has an easy to use operating environment. Multi-vendor
CPEs (common gateways) are managed by COSMOS, and this system is described in [92].

8. IoT Device Management Platforms

8.1. Management for the IoT (ManIoT)

ManIoT platform allows managing devices that make up the IoT environments [93]. Figure 21
shows the applications and sensors installed physically on IoT management environment.

The ManIoT platform takes into account the devices heterogeneity or “things”. Therefore, ManIoT
does not require modifications or installations of additional software on devices or applications in user
devices. ManIoT accesses the applications through a Web user interface.
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Figure 21. Illustration of the Management for the IoT.

The ManIoT standardizes the data model and format used to applications, services, and devices
communications. The device’s status (on/off) and the Id (identification device) are characteristics used
to model information. To integration with external systems, the platform uses popular protocols and
data models of the industry, e.g., XML and RESTful API.

The ManIoT project has two management scopes, Local and Global/Remote. The Local Manager
acts to control events performed by a user or application devices that make up a particular scenario,
for example, turning a water valve on or off. The remote manager standardizes the actions by users in
different scenarios, consumption rates in various areas defined by the water utility.

8.1.1. Local Management

The Local Manager acts based on information on the context within a scenario, i.e., the Local
Manager can control and monitor the events, such as turning a lamp on or off.

The functions performed for each layer, as shown in Figure 22, are described below:

• Application Layer: The first layer consists of applications that use data provided by one or
more devices, as well as platform services. Network users access applications through a Web
interface, and these applications, in turn, interact with ManIoT using function calls. Each
application requests the platform to perform actions on the sensors based on the implemented
scenario, e.g., an energy management application requests turning an air conditioner on or off to
reduce consumption.

• Service Layer: The second layer is formed by the services that support the applications and use
the abstractions implemented by the drivers to communicate with the devices. Among the items
in this layer are Storage, Scheduling, Authentication, Settings, Communication, Events, Conflict
Management, and Context Management.

• Adaptation Layer: This layer is divided into two parts, the first one being responsible for
standardizing the data and the second for dealing with the specificities of each device. Each device
type has a specific driver that abstracts the specificities of access to its sensors and actuators,
which allows the management of the services in an integrated way.

• Communication Layer: The layer consists of the different device access protocols. As mentioned
earlier, the network may consist of devices that can use different application protocols (i.e., UPnP
or proprietary protocol) and different networks (ZigBee, Wi-Fi).

• A Layer of Things/Devices: The last layer has the “Things”. There are two devices type: the real
devices and the virtual devices. The actual devices are sensors and physical actuators, e.g.,
an intelligent lamp (actuator), a pressure sensor (sensor). Virtual devices have already captured
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information from a server connected to a TCP/IP network, e.g., a calendar or email service, or a
social networking server.

Figure 22. ManIoT: Local Management Architecture.

8.1.2. Global Management

The global manager seeks to standardize the actions performed in different scenarios. It has two
layers: Application and Services layers, as shown in Figure 23.

Figure 23. ManIoT: Global/Remote Management Architecture.

The global services have the functions as those development in the local scope, as shown in
the second layer of Figures 22 and 23. Global scope services handle larger data sets and provide
support for more comprehensive applications. For example, in the context of electrical management,
the global manager must have the ability to manage possible power outages in several residences in a
neighborhood. The actions defined by the global services are sent and executed in the devices of the
respective local managers, using a TCP/IP connection.

Pros: Context aware and scalability
Cons: Privacy, security, supports few native protocols.
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Use Case

In the Intelligent Lighting Scenario, the lighting of an environment is adjusted with the presence
of people and the existence of natural light. Bulbs are switched conform a person move in the room.
Light intensity is inversely proportional to the amount of natural light.

The ManIoT prototype consumes approximately 0.05% of the bandwidth of these networks
in the worst case [93]. These values are justified because of the small amount of data exchanged
between the prototype of the Local Manager and the devices, thus reinforcing the minimal use of
hardware resources.

There were results obtained with scenarios of intelligent lighting and automation of tasks using
appropriate metrics to show the capacity of ManIoT to provide a dynamic adaptation and context
science to the environment.

8.2. Fiware

Fiware is an open cloud platform, illustrated in Figure 24, under development and created in a
European FP-7 Project to support future Internet. Considered important to several areas, the Fiware
has a set of generic enablers (GEs) [94]. According to standard IoT-RA (Figure 1), only the member
function is implemented in Fiware Technologies. The platform offers support to various management
protocols and standards. It supports OMA NGSI9/10, OMA LWM2M, MQTT, CoAP, and IPv6 [95].
The heterogeneous wireless networks have specific communication protocols to connected devices.
Different data encodings make it difficult to find a global deployment.

Figure 24. Illustration of the Fiware architecture.

The platform, illustrated in Figure 24, has a modular architecture that supports several IoT
protocols, in which modules are called IoT Agents. However, the integrators must determine the
protocol that will be used to connect and select the IoT Agent correct. The IoT Manager collects or
sends data to devices that use heterogeneous protocols and translates them to a standard platform,
simplifying the Device Management and integration [96].

Pros: Simplicity and interoperability.
Cons: Vulnerability, privacy, and security.

Use Case

The Fiware project is used for orthopedics, podiatry, physiotherapists, and related health services
producing prosthesis. This work is time-consuming, cost-inefficient and causes many inconveniences
to patients. The Ortholab aim is to produce advanced scan and manufacturing solutions to the insole
sectors. With the Ortholab solution, orthopedists or physiotherapists will be able to take digital
information of the patient’s body part in an easy way and specify the parameters to 3D printers [97].
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8.3. ONEM2M

ONEM2M was first released in 2015 and is a partnership project created to establish
access-independent M2M service layers specifications. For the management protocol, it has its own
technology called Device Management (DM) and it is also evaluating the possibility to implement
OMA-DM, OMA-LWM2M or even CWMP [98,99]. This platform has its own system and protocols,
as described in [100].

Two basic types of entities make up the functional architecture of ONEM2M: AE (Application
Entity) and CSE (Common Services Entity), as shown in Figure 25. Northbound and southbound
connected devices are considered an AE. The AE needs to be aware of management data protocols or
models. Device Management (DMG) enables Device Management capabilities in MNs (for example,
M2M Gateways), ASNs, and ADNs (for example, M2M devices). Connected devices residing in an
M2M network are managed by services provided by DMG. The information obtained from the AE is
used for network administrative actions (e.g., diagnostics, troubleshooting) [101].

Figure 25. Illustration of the ONEM2M architecture.

The Management Server/Client interface is the Mcc, which uses a Device Management technology
(e.g., CWMP, OMA-DM, and LWM2M). Device management technology is used to manage the entities
(MN, ASN or ADN, and DMG) and translates requests from other CSEs or from AEs to the Device
Management technology. The Mcc interface is technology dependent, as above-described.

Pros: Interoperability and compliance of services.
Cons: Maturity and artificial intelligence.

Use Case

The home lighting use case [102] performs remote control of the lights in a home through a user’s
smartphone in the following manner: (i) the lights are deployed and communicate with home gateway;
(ii) the home gateway communicates with the cloud platform, making it possible to control the lights
remotely with the smartphone; (iii) the cloud platform supports services to enable the smartphone
to control the lights, e.g., discovery, data management, group management, publisher/subscriber,
and others; (iv) the user’s smartphone hosts an application used to remotely control the lights, i.e.,
change light state (ON/OFF), discover available lights in the house, among other functions.

8.4. SmartThings

SmartThings is an open-source solution used to build applications and connect with other devices.
It allows new connected applications and supports applications (SmartApps) that communicate with
other WebServices through RESTAPI. The SmartThings architecture illustrates the infrastructure
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blocks that interaction with the devices shown in Figure 26. Communication of devices (sensors
and actuators) with application is performed by the HUB entity. The messages are received,
identified, and analyzed by a user device on the Device Handler. The response message is
discriminated by JSON in SmartThings events. SmartApp handles devices through events managed
by Subscription Management.

Pros: Interoperability and secure services.
Cons: It is not an open-source platform and uses a specific API.

Figure 26. Illustration of the SmartThings architecture.

Use Case

The SmartThing project is used to optimize simple tasks in daily life. Between the functions used,
the following were identified: presence sensors for security and light control, scheduling of house
cleaning, and a sensor to get notifications when mail is received [103].

8.5. RestThing

The RestThing platform [104] is a Web service infrastructure based on REST with the purpose
of hiding the devices heterogeneity and integrate devices into a network. This platform enables
developers to build applications accessing physical and Web services, which are both manipulated by
a REST-style interface.

As shown in Figure 27, the RestThing elements are: (i) applications; (ii) RESTful API; (iii) service
provider; (iv) adaptation layer; (v) embedded devices, and; (vi) Web resources.
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Figure 27. Illustration of the RestThings architecture.

The RESTful API transmitted the data between sensors, gateways and Web applications using
three types of data formats: JSON, XML, and CSV. For access to RESTful objects, the HTTP protocol
operations used are: the GET method, used to retrieve the current device state; the PUT method, used
to modify this device state; the POST method, used to create a new device; DELETE to remove a device,
and, in addition, the LIST method, which allows all devices connected to the platform to be listed.

Pros: It hides device heterogeneity and provides a way to integrate devices into Web applications.
Cons: Security and Device Discovery are challenges.

Use Case

The Monitor Temperature and Heartbeat application is the user interface in a smartphone that
combines physical and Web resources in the RESTful API. The real-time data view is used to obtain
current data from WSNs. The smartphone updates this information by sending a GET to the gateway.
The device number of the temperature sensor is what gets current internal lab room temperature as
used in Smart Health environments [105].

8.6. Xively

Xively provides an API for managing data from the sensors/devices through cloud services.
It allows historical data and provides events based on the data generated by sensors/devices. It was
created based on the EcoDiF platform [24], Based on REST principles and Web standards such as
HTTP and URIs. To minimize the incompatibility among different devices, the platform provides
standardized interfaces. The data is organized into data points, streams, and feeds. A feed represents
an environment data (i.e., a room) with its data streams, representing data sent by a particular sensor
in that environment (i.e., temperatures of the monitored environment).

Xively is a commercial and closed source solution [106]. There are little details about the
architecture of this platform, which is shown in Figure 28. The sensors send data to the platform in
JSON, XML or CSV formats using the REST API, via sockets and through the MQTT protocol [107].
However, it is known that there are three ways to manage the devices connected to Xively. In the first
case, through the methods implemented by HTTP, the GET method is used by a client program to
retrieve data from a feed or data streams. The PUT method is used in the connected devices to send
data. In the second case, a socket can be created to avoid the overhead of opening and closing HTTP
communications under conditions in which too much data is exchanged. In addition, the first two
cases allow the use of the SSL/TLS protocol to provide authentication and data encryption. Finally,
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the third case uses the publish and subscribe features of the MQTT protocol to send and retrieve data
from devices.

Pros: Integrate with devices easily.
Cons: Displays the minimum device notification service.

Figure 28. Illustration of the Xively architecture.

Use Case

A scalable platform that addresses need residential customers and contractors were developed by
SunStat Connect Thermostat, called Watts Water’s SunTouch [108].

The Xively IoT Platform is used to power the remote connectivity of SunStat thermostats, which
work with all SunTouch heating products. Furthermore, the Xively provides nearly instantaneous
response times from the devices, while not sacrificing stability and reliability that consumers would
expect from the heating control device. The Xively platform developed remote connectivity in the
SunStat application, enabling consumers to control SunStat devices from a Web browser or mobile
device from anywhere in the world connected to the Internet.

Another application is Blueprint [109], that consists of a scalable object directory model with a
fast MQTT-based messaging broker. It has a secure provisioning process, which supports millions of
secure connections between people, devices, and data around the world.

8.7. Carriots

Carriots is an IoT platform that manage data devices provided with cloud services, and that also
connects devices to other devices and systems [110]. Therefore, if a system is connected to the platform,
it can also be modeled as a device. From its RESTful API, Carriots aim to collect and store any data
originated from the most diverse devices. The application engine can guarantee availability to its users
no matter the volume of connected devices. These connected devices are associated with services
(i.e., physical devices or other resources) and all services belong to a project. As shown in Figure 29,
the logical architecture of Carriots consists of the following modules: (i) the REST API; (ii) Big Data;
(iii) Project and Device Management; (iv) Business Rules and Event Processing; (v) Security; (vi) Logs
and Debug; (vii) Control Panel, and; (viii) External Communication Module.

Data exchanged between devices, connected systems, and the platform can be represented in two
different ways: (i) the sensors send data in JSON or XML formats (in a particular platform format)
using the REST API, or (ii) through the MQTT message protocol [111].

The Project and Device Management module contains the projects created by users and provides
device and its software management, i.e., device provisioning, enabling and disabling devices,
and updating firmware. Storing and executing events in the form of scripts created using the Groovy
programming language and using if-then-else rules is the responsibility of the Business Rules and
Event Processing module.

Pros: Application used to trigger the other functionality are supported
Cons: less friendly user interface.
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Figure 29. Illustration of the Carriots architecture.

Use Case

Nowadays, cities have the challenge of improving, protecting the environment, decreasing
energy use, and reducing CO2 emissions, as well as having to detect and correct any excesses in light
consumption or in water spillage and control expenses.

Carriots City Life is an IoT platform that works like the city brain. It collects data from
different sensors or information reported by the citizens and mixes it all to better manage municipal
services [112]. it is a cloud platform that allows people to collect, integrate, store and analyze all the
city data with a global vision.

9. Performance Evaluation, Discussion, and Open Issues

Main characteristics are based on studied management solutions, a qualitative study is performed
to characterize management types and technologies used in the most relevant management protocols
and platforms. Tables 5 and 6 summarize the main protocols characteristics considering their
standardization resources, data, transport stacks, among others.

Table 5. Main characteristics comparison of the IoT Network Management protocols.

SNMP/LNMP NETCONF IoT-PIC/XMPP OVSDB IEEE 1905

Standard IETF IETF IETF IETF IEEE
Resource OIDs Paths URLs URLs URLs

Data SMI YANG WSDL JSON WSDL
Modeling
Encoding BER XML XML JSON XML
Transport UDP SSH/TCP HTTP, HTTP, HTTP,

Stack Web API SSL/TLS Web API

The IoT Network Management protocols (Table 5) were originated by the IETF for management
of connected devices. The SNMP protocol was the basis for the creation of other protocols such as
IoT-PIC and LNMP. Its simplicity in data modeling makes it a fast and a simple configuration protocol.
NETCONF was created to be the successor of SNMP using the XML standard for request and response
messages. The secure connection transport on SNMP is relevant because its ease of configuration
in some scenarios. With the emergence of SDNs, new network management protocols have been
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proposed, such as OVSDB. It uses JSON technology to expose its devices and network data for the
systematic integration of applications.

Table 6. Main characteristics comparison of the IoT Device Management protocols.

CoAP OMA-DM L2M2M OMA TMP CWMP

Standard IETF IETF IETF IETF Broadband Forum
Resource URLs URLs URLs URLs URLs

Data Modeling JSON XML, JSON XML, JSON WSDL XML
WSDL

Encoding JSON XML, JSON XML, JSON XML XML
Transport UDP UDP UDP HTTP HTTP

Stack HTTPS HTTPS HTTPS Web API SSH/TCPSSH/TCP SSH/TCP SSH/TCP

The IoT Device Management protocols (Table 6) were developed with Internet standards by
the IETF. The TLS protocol and SSL protocol are used to secure transport of the information in the
network as HTTPS and SSH protocols. In reference to the data modeling and encoding, the OVSDB
and COMAN protocols use current Web technologies, such as XML and JSON, that expose network
and device information to access other applications through a user name and password.

Table 7 summarizes a comparison among the most relevant IoT Network Management platforms,
considering IMPReSS, OpenNMS, OpenDayLight, and Zabbix.

Table 7. Main characteristics comparison of the IoT Network Management platforms.

IMPReSS OpenNMS OpenDayLight Zabbix

SNMP X X X
NETCONF X X

IoT-PIC/XMPP X X X
LNMP X X
OVSDB X

IEEE 1905

All the platforms have Web user-interfaces and open-source technologies, except IMPReSS (which
was finalized in 2016). OpenDaylight supports more IoT Network Management protocols compared to
other previously researched solutions. Zabbix is a popular platform for monitoring and management
networks and differ in XMPP and NETCONF protocol with OpenNMS.

Table 8 summarizes a comparison among the most relevant IoT Device Management platforms,
considering Xively, OneM2M, ManIoT, and other important solutions, regarding several important
protocols and types of management approaches.

Despite attending to most requirements, SmartThings believe that supporting widely used
protocols and Web technologies is enough to mitigate the problem of heterogeneity devices. However,
support for other protocols is an important requirement for Carriots and Xively platforms. Other
requirements (like context-awareness and dynamic adaptation) are barely discussed. Context-awareness
is an approach to the inclusion of semantic data in a platform, e.g., location and collection time.
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Table 8. Main characteristics comparison of the IoT Device Management platforms.

YOAPY [113] EcoDIF [24] RestThing SmartThings IFTTT [114] ManIoT Xively Carriots Fiware ONEM2M

OpenSource X X X X X X X
Heterogeneity X X X X X X X X X
Security and

Privacy X X X X X X X X
Scalability and

Reliability X X X X X X X X X
RFID X X X X X X X
CoAP X X X X X X X X X

OMA-DM X X X X X
OMA-L2M2M X X X X X

TMP
CWMP X X

6LoWPAN X X X X X X
SOA X X X X X X
Data

Management X X X X X
Device

Management X X X X X X X X X
Local

Management X X X X X X X
Global

Management X X X X X X X X X X
Remote

Management X X X X X X X X X X
Context

Management X X X X X X
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Platforms and new solutions are based on the SNMP architecture protocol, as shown in [115,116],
such as the use of the OVSDB protocol for the SDN architecture and the XMPP protocol shown in
IoT-PIC. SNMP uses more efficient resources thus responding to a processing request up to ten times
faster than NETCONF according to the study presented in [7,117,118]. The OpenDayLight modular
platform supports more network protocols for IoT, such as SNMP, NETCONF, IoT-PIC/XMPP, OVSDB,
and additional features. Then, it can be considered the best platform among the studied IoT Network
Management platforms.

Figure 30 presents the percentage of the main resources obtained from the surveyed protocols
and platforms for IoT management. The studies presented in [6,11,93,119] show the percentage of use
of the main raised resources are accounted and demonstrated.

Figure 30. Percentage of resources used in IoT management protocols and platforms.

As may be seen, almost all the IoT Device Management platforms solved the heterogeneity and
interoperability issue but, for network management, it stills a challenge given they only propose
6LoWPAN network management but SDN and Mesh networks are not supported. Given the protocols
and platforms, only about 50% used a standard communication model of networks and devices.
Security and context awareness of networks and devices are challenges that stills open. Both types
of management have an adoption of open-source protocols and platforms with about 60% of all the
surveyed technologies. Some protocols or platforms have a range of features but requirements such as
security and interoperability are developed in different ways for each one. Thus, no IoT management
platform and protocol meets all the requirements.

Based on this study, it is concluded that IoT Device Management stills in an early stage.
The requirements have not been completely explored. Nevertheless, ManIoT and ONEM2M can
be considered the best open-source solutions. ONEM2M supports a wide range of management
protocols. Xively is the best proprietary platform according to the mapped characteristics. No solution
can cover all the requirements of a RAs. Thus, there are open research issues due to divergences
between the available technologies and research approaches.

Open Issues on IoT Management

Considering the previous discussion regarding the available management protocols and platforms
for IoT, this section identifies open research issues on IoT resources management. They are presented
as follows:

1. Performance evaluation metrics: other performance metrics may be considered or proposed
for performance comparison of the available solutions. Thus, a comparative study using error
probability, mean response time, and latency may be considered to evaluate the performance of a
given solution.

2. Energy saving: extending the lifespan of IoT applications is a matter that may be considered.
Connected devices have limited capabilities and should not be overloaded with high throughput.
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Thus, there is a need to transmit simpler and smaller packets while not overlooking
device security.

3. Security: it is a key issue to favor the advancement of IoT. However, due to devices heterogeneity,
each company uses different security protocols. Therefore, standardization is an important
challenge. Moreover, as the importance and popularity of IoT devices increases and people
provide more information on the topic, scammers and the most experienced cyber-criminals
continue to search new ways to attack and compromise devices. Consequently, research related
to this topic is on the rise in the research community.

4. Real-time management: various types of IoT application domains require high network
availability. Health applications, for example, have a critical degree of availability and, therefore,
require real-time management. However, limited device resources and power savings are related
features for a management solution that should not be overhead in its communication within
the network.

5. Interoperability: There are currently several types of devices, protocols, and communication
technologies that determine the heterogeneity of IoT networks. These devices must communicate
and inter-operate to provide a network service to users. Some research studies assume that new
gateways must support several protocols. Furthermore, there is still research on low power
device networks as shown in [120].

6. Scalability: The number of devices connected to the network increases exponentially and, thus,
the scalability of IoT networks is a critical requirement. The solutions found in literature do
not address features regarding scalability. With this, IoT Network Management must support
scalability due to the great evolution of IoT devices and related technologies.

10. Concluding Remarks

10.1. Lessons Learned

This paper analyzed the network and devices management for IoT from different perspectives.
The lessons learned from this study are summarized hereafter. First, from the architectural point of
view, the IoT Network Management systems is well adopted by IoT RAs and research attempts [6,11].
However, due to the distinct network topologies, heterogeneity between connected devices and
protocols without a common standard are possible studies to perform in this context. Scalability
and interoperability are priorities in IoT applications and some of the studied technologies present
solutions for them [93,121–123]. Then, large studies of recent studies were analyzed to discover
the main challenges and open issues in IoT. Security and interoperability are top priorities for IoT
Network Management systems, followed by performance, reliability, and scalability. Therefore, there
are some fundamental features that a network management should provide and they are identified as
follows: (i) interoperability between the various devices and platforms available in real environments;
(ii) dynamic and adaptation security maintain data integrity to guarantee the availability and QoS
during execution; (iii) context-awareness so that information of the locate and state of network objects,
is used to perform actions; and (iv) scalability to accept expansion and to operate correctly even in
situations of intense use.

Finally, relevant open issues are identified for the purpose of reducing network resources
(hardware and bandwidth) as well as infrastructure, security, and energy saving [124,125].

10.2. Conclusions

A large number of IoT devices demands management and control solutions for various services.
Moreover, the exponential number of connected devices and their inherent constraints motivate the
need for efficient management of IoT networks. Therefore, platforms that integrate these services
are necessary. However, IoT management current platforms only partially attend to the literature
requirements. Overall, this paper presented the concept in detail, its enabling technologies, protocols,
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platforms, and the recent research addressing IoT management for networks and devices. Among
the IoT features, solutions (protocols and platforms) that performs better in terms of scalability,
interoperability, security, energy saving, etc. were studied.

Concerning network management, IoT network solutions continue based on the SNMP protocol.
The support for each platform search for improving the latency, scalability, and robustness. NETCONF
protocol was developed to be the natural successor of SNMP, as SNMP is focused on monitoring
and not on network configuration. The OpenDayLight platform can be considered the best solution
based on the supported protocols. For IoT devices management, ONEM2M open-source approach
and Xively proprietary technology were evaluation with other technologies. It was observed that
ONEM2M and Xively predict scalability and promote the integration of devices with local/remote
management features always remembering the guarantee the heterogeneity and security.

Finally, the main goal to achieve regarding the best choice for IoT Network Management protocols
and platforms for a real IoT management solution was attained since important insights, a detailed
description and discussion on the topic was performed. Further research works on the topic were
also identified.
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