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Abstract: A novel method of near-field computer vision (NFCV) was developed to monitor the jet
trajectory during the jetting process, which was used to precisely predict the falling point position of
the jet trajectory. By means of a high-resolution webcam, the NFCV sensor device collected near-field
images of the jet trajectory. Preprocessing of collected images was carried out, which included squint
image correction, noise elimination, and jet trajectory extraction. The features of the jet trajectory in the
processed image were extracted, including: start-point slope (SPS), end-point slope (EPS), and overall
trajectory slope (OTS) based on the proposed mean position method. A multiple regression jet trajectory
range prediction model was established based on these trajectory characteristics and the reliability of
the model was verified. The results show that the accuracy of the prediction model is not less than
94% and the processing time is less than 0.88 s, which satisfy the requirements of real-time online jet
trajectory monitoring.

Keywords: automatic fire suppression systems; jet trajectory; real-time monitoring; near-field
computer vision

1. Introduction

With public safety requirements becoming increasingly important in various countries, fire safety
equipment is being developed in terms of automation and intelligence [1,2]. More and more urban
complexes are required to have automatic fire suppression systems installed, and various types of
fire-fighting vehicles are also required to continuously improve their automation level [3–5]. Therefore,
firewater reaching the point of fire quickly and accurately has grown to be an area of interest for researchers.
During the fire-fighting process, identification and location of the fire source and automatic control of
the jet trajectory falling position are the most crucial parts of the automatic fire suppression system [6–8].
Currently, there are a lot of investigations into the identification and location of fire sources, while few
studies on jet trajectory have been carried out. In most cases, the efficiency of fire water reaching the
fire position largely depends on the empirical model. However, the process of fire-fighting is very
complicated, these areas being full of smoke, toxic gas, high temperatures, and the possibility of explosion.
The challenge not only involves extinguishing the flames accurately but also ensuring the safety of the
firefighters. Therefore, real-time monitoring of the jet trajectory not only improves the automation of
the fire-fighting process, but also greatly reduces the time required for fire protection. Furthermore,
real-time monitoring of the jet trajectory is extraordinary necessary to make the fire water arrive as soon
as possible after the fire source is located. For the past few years, computer vision has commonly been
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used in many fields, such as fire detection [9–13], the mineral separation industry [14,15], intelligent
measurements [16–18], and the processing of agricultural products [19–21]. With the aid of high-speed
networks and advanced processing algorithms, computer vision has shown automation, accuracy, and
intelligence advantages in the field of industrial process control. In this study, jet trajectory measurement
technology based on near-field computer vision is investigated to predict the falling position of a water jet.

In recent years, computer vision technology has become an important direction in the development
of automatic fire suppression systems because it can improve extinguishment efficiency and precision. For
example, McNeil [22] proposed an autonomous fire suppression system including a multispectral sensor
suite to suppress wood crib fires in indoor environments with high or low visibility. Kim [23] developed
a real-time probabilistic classification method for identifying fire, smoke, their thermal reflections, and
other objects in infrared images. Foggia [9] proposed a method that is able to detect fires by analyzing
videos acquired by surveillance cameras. Turgay [10] proposed a rule-based generic color model for flame
pixel classification and the method achieves up to a 99% fire detection rate. Additionally, an IR vision
system which is capable of identifying water based on a real-time probabilistic classification method was
presented [24]. In this method, a single IR camera is utilized for collecting the images and acquiring
textural features of high-motion regions calculated with a three-frame difference approach. Furthermore,
McNeil applied a computer vision-based autonomous fire suppression system with real-time feedback
of fire size and water jet direction [25]. In order to predict the path water discharge trajectory with a
large capacity monitor, Miyashita [26] established a jet trajectory prediction model by fitting a third order
function to experimental data based on flow rate and pressure. However, computer vision technology in
automatic fire suppression systems is still in its preliminary stage and is limited in practical application due
to the harsh environment in the fire-fighting process. Because of this harsh, it is very difficult for the image
acquisition device to capture a complete water jet trajectory [27–29]. Furthermore, taking into account
the working conditions of automatic fire suppression systems and the processing of the jet trajectory
detection, there are still some key technical issues waiting to be resolved, such as the development of
complete water jet image acquisition technology, high-speed image processing, prediction of the water jet
trajectory falling position, and so on. These issues restrict the application of computer vision in automatic
fire suppression systems. Therefore, a new jet trajectory detection method is required for automatic fire
suppression systems that is real time, high accuracy, reliable, and can work within a harsh environment in
the fire-fighting process.

As mentioned in the previous paragraph, automatic fire suppression systems need the water jet to
reach the fire location precisely. In the process of fire-fighting, the range of water jet trajectories is so far that
it is difficult for the image acquisition device to capture the full jet trajectory. Therefore, near-field computer
vision can be applied. Near-field computer vision means that part of the jet trajectory image is used instead
of the whole trajectory image to predict the falling position. The falling position of a jet trajectory is mainly
determined by two factors: the initial jet angle and its velocity. Previous studies have established various
types of jet trajectory models based on the angle and velocity, such as the experiment-based jet trajectory
model [30,31] and simulation-based jet trajectory model [32]. So far, the established trajectory models
provide values of the initial angle and velocity calculated from the location of fire source relative to fire
cannon. As a result, the falling position of the jet trajectory can be given while adjusting the initial angle
and velocity. However, manual intervention is still required if the trajectory placement position has to be
adjusted. Therefore, real-time monitoring of jet trajectories based on computer vision is necessary while it
is still difficult to capture a complete water jet trajectory.

The objective of our work is to develop a method for real-time monitoring of the jet trajectory during
jetting. In order to overcome the difficulty of capturing the complete trajectory of the jet, a near field
trajectory image is used instead. Integrating the characteristics of the near-field trajectory image, we
propose a novel jet trajectory detection method based on visible light; the proposed detection method
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is named near-field computer vision (NFCV). It is a new method to detect the jet trajectory in this area.
In the NFCV method, near the fire monitor, part of the jet trajectory image is obtained by the proposed
NFCV sensor device, which is based on the visible camera and the image conversion algorithm interactive
interface. In the NFCV method, three features of near-field water jet trajectory images are extracted for the
trajectory placement prediction. The use of the proposed NFCV method makes jet trajectory detection
and falling position control possible in the complex fire-fighting environment. The remainder of the paper
is organized as follows: Section 2 presents the NFCV method. Section 3 provides the experiment and
analysis to verify the reliability and accuracy of the NFCV method. Section 4 gives the overall conclusion.

The major contributions of the manuscript can be summarized as follows:
(1) Implementing a fully real-time NFCV-based system that is capable of generating a multiple

regression jet trajectory range prediction model with corresponding feature extraction.
(2) A real-time image processing method for segmentation and extraction of jet trajectory features is

introduced, and the processing time is less than 0.88s.
(3) Accurate prediction of falling point, the results showing that the prediction error of falling point

position is less than 6%.

2. The NFCV Method

The NFCV method consists of four major parts, near-field image capture, image preprocessing, jet
trajectory feature extraction, and jet trajectory model. Firstly, the NFCV sensor device is used to capture
the jet trajectory image. Second, the perspective transformation and image preprocessing algorithms
are used to process the image, so as to better extract the jet trajectory feature. Finally, the trajectory
feature is extracted by the detection algorithm. All parts will be described in a more detailed way in the
following sections.

2.1. Near-Field Image Capture

It is necessary to capture high-quality images in vision detection for jet trajectory. The NFCV vision
sensor device is designed to capture the first-stage trajectory image while it is difficult to capture the
trajectory image completely during jetting. The NFCV vision sensor device includes two parts: the vision
sensor device and the computer processing interface. The vision sensor device is composed of a visible
camera and a bracket device, the visible camera being fixed on the bracket device. In the process of
fire-fighting, the falling position of the water jet is far away from the fire monitor, this makes it difficult
to capture a complete jet trajectory image at the location of the fire monitor. Simultaneously, it is also
unrealistic to capture the trajectory image with the vision sensor device away from the fire monitor.
Therefore, the visible camera is installed 40 cm away from the fire cannon, which makes it possible to
shoot the jet trajectory from an oblique angle. The structure of the NFCV vision sensor device is shown in
Figure 1.
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NFCV sensor

Camera view

Figure 1. The structure of the near-field computer vision (NFCV) sensor device.

As shown in Figure 1, the jet trajectory images are captured by the visible camera continuously during
jetting. The visible camera acts as an image acquisition tool which inputs the live preview image of the jet
trajectory to the graphical user interface (GUI) developed in MATLAB. Each video frame captured by the
visible camera has a resolution of 1280 × 960 pixels in the RGB format.

2.2. Image Preprocessing

2.2.1. Perspective Transformation

After a near-field image is acquired, the original image must be restored to the front view through
perspective transformation. The range of jet trajectories is fairly large, thus it is difficult to obtain its full
image. Therefore, the jet trajectory image acquired by the near-field sensor device must be processed by
the perspective transformation algorithm. Perspective transformation [33,34] is the projection of an image
onto a new viewing plane (front view plane), the transition function can be written as

[
x′, y′, z′

]
= [u, v, w] ∗

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (1)

where [u, v] are the coordinates of the original image pixel and
[

x = x′
w′ , y = y′

w′

]
is the pixel coordinates of

the image after transformation. A further explanation is as follows:

• The linear transformation matrix:

T1 =

[
a11 a12

a21 a22

]
. (2)

• The perspective transformation matrix: [
a13 a23

]T
. (3)

• The translation matrix: [
a31 a32

]
. (4)
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(a) (b) (c)

Figure 2. The method of perspective transformation for: (a) Corner detection; (b) jet trajectory before
perspective transformation; (c) jet trajectory after perspective transformation.

Original image Sobel gradient

Laplacian transformation

Mean filter

Mask processing

Crisp 

Enhancement
Grayscale Transform Enhanced image

Figure 3. The image enhancement flow diagram of the jet trajectory original image.

In our work, the perspective transformation matrix is obtained by detecting the corner of the
calibration plate. The angular point detection of the calibration plate is shown in Figure 2, and the
perspective matrix can be expressed as 2.0731 −0.1143 −87.4407

−0.7044 1.0061 54.0602
−0.0001 0.0001 1

 . (5)

2.2.2. Image Enhancement

In the process of image acquisition, noise will be generated because of the poor working environment
of fire-fighting. That is disadvantageous for extracting image features. Jet trajectories are generally white
or bright in the image, as water tends to reflect light more easily. Therefore, enhancement of the gray value
of the jet trajectory in the image is the key to image enhancement. In this paper, the improved cooperative
algorithm [35,36] is used to enhance and eliminate noise. The process of the image enhancement algorithm
is shown in Figure 3.

The steps to perform a cooperative image enhancement can be summarized as follows:
(1) The Laplacian transformation enhances the contrast of the gray mutation in the image and the

details of the image which are becoming smaller and smaller, whilst preserving the background tone of
the image, making the details of the image clearer than the original image.

(2) Add the original image to Figure 4b, a sharpened image can be obtained.
(3) The Sobel gradient is used to detect pixels with step changes in the gray level around the jet

trajectory, and the set of these pixels is the edge of the trajectory.
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(4) A 5 × 5 mean filter is used to smooth the image of the Sobel gradient.
(5) Figure 4c multiplies Figure 4e to realize the mask processing of the image, and some parts of the

image are screened out.
(6) Add the Figure 4f to Figure 4b to obtain a further sharpened image.
(7) Perform grayscale conversion on Figure 4g obtained in step six to extend the gray scale range of

the image.
With the improved cooperative enhancement algorithm, Figure 4 shows the result of each step, it can

be observed that the enhanced image is sharper than the original image. Furthermore, the jet trajectory is
brighter than other regions in the image. In other words, the enhanced image is more convenient for the
segmentation of the jet trajectory.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Example of calculation results for each step in the image enhancement process. (a) Original
image; (b) Laplacian transformation; (c) a + b; (d) Sobel gradient; (e) mean filter; (f) masking image; (g)
crisp enhancement; (h) grayscale transform.

2.2.3. Image Segmentation

In the enhanced image, there are obvious differences between the jet trajectory and background.
Universally, the gray value of the background is lower than that of the jet trajectory. Before introducing
the segmentation approach, we describe a series of events that can be observed as changes in the gray
histogram before and after the image enhancement.
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Figure 5. Results image with the proposed image enhancement method. (a) Original image; (b) gray
histogram of (a); (c) enhanced image; and (d) Gray histogram of (b).

As shown in Figure 5a, the black shadow, ground, and sky are the areas where the image gray value
changes greatly. As a result, the black shadow, ground, and sky in the original image produce a new mode
in the histogram with a peak, with a low gray value and high gray value agglomeration area, respectively.
Although the gray value of the jet trajectory is relatively high in the original image, it is still submerged in
the high gray value region of the gray histogram, and after the improved cooperative image enhancement
processing, it is as shown in Figure 5c. In the enhanced image, the jet trajectory changes more obviously.
This resulted in a new small peak at the extreme right side of the gray histogram, as shown in the red circle
in Figure 5d, it was considered as an enhanced jet trajectory.

Since the jet trajectory is separated from the high gray value region in the original gray histogram, a
new peak is formed on the right side of the enhanced gray histogram. Therefore, the new peak gray value
can be used to easily identify the jet trajectory effectively through the segmentation approach. In order to
determine the segmentation gray threshold value accurately, the new peak value in 100 enhanced images
is selected and the results show the new peak always fluctuates between 230 and 255. In order to assure
the accuracy of segmentation, the threshold should be chosen carefully. In our work, the length threshold
is set to 230. The results of Figure 5a after segmentation are as shown in Figure 6a.
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Figure 6. Results image with morphological treatment. (a) Original image; (b) morphologically
processed image.

2.2.4. Morphological Operation

After image enhancement and segmentation, the jet trajectory is extracted accurately. However, there
is still some noise, which is mainly from the bright small areas in the original image. Morphological
operations are used to eliminate the noise in Figure 6, such as the falling water drop, distribution
cabinets, and the slender curves produced by perspective transformation. In our work, the mathematical
morphology [37–39] is utilized to eliminate the interference. On the basis of mathematical morphology,
the structure element selected a disk of 5 × 5. The opening operation is expressed as below:

• Dilation:
X⊕ B =

{
p ∈ ε2 : p = a + b, x ∈ X, b ∈ B

}
. (6)

• Erosion:
XΘB =

{
p ∈ ε2 : p + b ∈ X, ∀b ∈ B

}
. (7)

• Opening operation:
X ◦ B = (XΘB)⊕ B. (8)

Where X denotes the image, B is the structure element. In the segmentation result shown in Figure 6,
the morphologically processed jet trajectory image becomes cleaner, and falling water droplets and other
environmental disturbances are eliminated.

2.3. Jet Trajectory Feature Extraction

This part includes trajectory curve fitting and feature extraction. In this paper, we propose a
detection algorithm, called the mean position method, to extract the jet trajectory coordinates and fit the
trajectory curve.

2.3.1. Mean Position Method

As we know, the jet trajectory position parameters in the binary image are the data foundation for
establishing the trajectory equation. However, in the binary image, the thickness of the jet trajectory is
different and there is more than one pixel in the longitudinal direction of the image [40,41]. Furthermore,
there is still noise in the pre-processed jet trajectory image, which could affect the establishment of the
jet trajectory equation. In order to obtain the position of the jet trajectory in the image, a novel approach
is proposed based on the mean position method. Suppose the size of the binary image g (i, j) is m× n,
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the ordinate of the jet trajectory in the binary image based on the developed mean position method are
expressed as

Y(i) =
1
a

n

∑
j=1

(n− j) g (i, j) = 1 (9)

where a is the number of pixels that satisfies g (i, j) = 1. Y(i) is the ordinate of the jet trajectory in the
column of the binary image. The mean value of the vertical coordinate of each column of jet path pixels in
the binary image is selected based on the proposed method, which is considered to be the ordinate of the
jet trajectory curve in that column. Figure 7 shows the jet trajectory curve drawn based on the calculated
coordinate data under Figure 6b. By comparing the jet trajectory drawn with those in the binary graphs
under the same coordinate system, it is easy to find that the trajectory curve is basically in the middle of
the jet trajectory in the binary image and they basically overlap with each other.

Figure 7. The jet trajectory curve based on the proposed mean position method.

2.3.2. Feature Extraction

On the basis of the proposed mean position method, the coordinates of the jet trajectory in the binary
images are obtained, and the trajectory curve equation is fitted by means of the fitting toolbox. In our
work, three features are proposed to characterize the range of trajectory, including: start-point slope (SPS),
end-point slope (EPS), and overall trajectory slope (OTS). The detailed introduction is described below:

SPS =
dy
dx

(x1) (10)

EPS =
dy
dx

(xn) (11)

OTS =
y(xn)− y(x0)

xn − x0
(12)
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where y(x) is the trajectory curve equation, x0 and xn are the starting and ending point abscissa of the jet
trajectory curve equation, respectively. The physical meaning of each feature is explained as follows:

SPS is the starting point slope of the jet trajectory equation, which represents the initial angle of the
jet trajectory. EPS is the slope of jet trajectory equation at the end point of abscissa of the binary image,
which represents the motion direction of the jet trajectory while it breaks away from the camera view.
OTS is the slope value of the beginning and end of jet trajectory in the binary image, which represents
the motion state of the jet trajectory in the entire camera view. As illustrated in Figure 7, the SPS, EPS,
and OTS of the jet trajectory in the binary image coordinate system are 0.46, 0.01, and 0.25, respectively.
Furthermore, when SPS = 0.44, the initial angle of the jet trajectory is 24.75◦. It should be noted that the
result of experiment shows that the detected and calculated initial jet angles are identical and the feature
representation is feasible.

The NFCV method is used to obtain the initial part jet trajectory image, and clean initial jet trajectory
binary images are obtained through transforming, enhancing, and segmenting the image. The mean
position method is used to obtain the coordinates of the jet trajectory in the binary image and the trajectory
curve equation is fitted based on the coordinate position data in the same coordinate system as the
binary image.

3. Experimental Results and Discussions

In order to verify the proposed NFCV method, an experimental facility was constructed in the
Xu-gong Construction Machinery Group (XCMG) Comprehensive Test Site, and experiment results were
analyzed to prove the reliability of the proposed characterization methods. The experimental system and
experiment results analysis are introduced as follows.

3.1. Experiment Setup

The experimental system was mainly composed of two parts: the water jet equipment and the NFCV
sensor device, as shown in Figure 8. The experimental platform consisted of a water tank, pump, frequency
converter, personal computer, high-resolution webcam, fire monitor, and other fittings. Furthermore, the
water tank provided 10 tons of water in one experiment, and the water was pressurized into the pipeline
through a pump controlled by the frequency converter. In our experimental system, the direct current fire
monitor PS20-50 was selected, this being one of the most commonly used fire monitors. The exit diameter
of the experimental fire monitor was 33 mm and the water entering the monitor was controlled by the
pump. In other words, the fire monitor output speed of the water was determined by the frequency of the
frequency converter. In our work, the outlet velocity of water jet was approximately linear with the pump
frequency. Pump frequencies of 10, 20, 30, and 40 Hz corresponded to the outlet velocities of 5.4, 14.0, 22.1,
and 31.1 m/s, respectively. The proposed NFCV device consisted of a lens, a CCD camera, a tripod, and a
computer, their detailed configuration is described in Section 2.1.
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Figure 8. The experiment platform of the NFCV method.

The proposed NFCV device acquires the original jet trajectory image with the image resolution of 1280
× 960 with a rate of 6 frames per second. Moreover, the MATLAB software is used to process images and
extract features. At the same time, the GUI is designed to display the trajectory image and the predicted
jet trajectory falling position. The experiment mainly includes the following steps:

(1) The initial discharge angle of the fire monitor is set to 10◦, and the frequency range of the converter
is set to be from 5 Hz to 40 Hz.

(2) Open the pump of the water jet experimental system. By means of the NFCV device, the image of
the jet trajectory is obtained at 6 frames per second and the range of the trajectory is recorded, respectively.

(3) Set the initial discharge angle of the fire monitor to 15◦, 20◦, 25◦, 30◦, and 35◦, respectively, repeat
the two steps mentioned above.

The experiment is done six times and 180 sets of original image are obtained in each experiment. The
flowchart of the NFCV method is shown in Figure 9. The experimental results and analysis are shown in
the following section.
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Figure 9. The experiment platform of the NFCV method.

3.2. Experiment Results and Analysis

Three characteristics of jet trajectories were extracted by means of the NFCV method, the actual jet
trajectories range was also measured and recorded. In our work, 150 sets of data including SPS, EPS, OTS,
and the actual range of the jet trajectory were obtained for prediction model creation, and the other 30 sets
of data were used for model validation. With the aid of the least square method, a multivariate regression
model for the prediction of the jet trajectory range was established based on collected data. The basic
principle of the prediction model can be expressed as

y = β0 + β1x1 + β2x2 + β3x3 (13)

where β0 is the regression constant, β1, β2, β3 are the regression coefficients, x1, x2, and x3 correspond to
the three trajectory features of SPS, EPS, and OTS, respectively. The judgment coefficient of the prediction
model can be expressed as

R2 =
SSR
SST

= 1− SSE
SST

= 1−
∑
(

y−
∧
y
)2

∑ (y− y)2 (14)

where SSR, SSE, and SST are the sum of the regression squares, the sum of residuals squares, and the sum
of total deviation squares, respectively. In this paper, the regression constant is 27.3691 and the regression
coefficients are 0.2895, 0.2126, 0.2833, and the judgment coefficient of the prediction model is 0.94, which
indicates that the prediction model is highly fitted. As shown in Figure 10, the residual values of the
regression model are all within the confidence interval, which indicates that the regression model is in line
with the requirements.
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Table 1. Analysis of the prediction results of the jet trajectory range.

Error Range
(m) Amount Average Magnitude

of Error(m)

Mean Absolute
Percentage
Error (%)

Average
Processing

Time (s)
<1.0 20 0.59 4.35 0.86

1.0–2.0 8 1.54 4.23 0.85
>2.0 2 2.55 6.52 0.88

Mean value 30 0.97 4.46 0.86

Table 2. Comparison of two falling position prediction methods of the jet trajectory.

Category Percentage
Error (%) Amount

Mean Absolute
Percentage
Error (%)

Average
Processing

Time (s)

Spreadsheet

<5.0
5.0–10.0

>2.0
Mean value

6
5
1
12

3.6
8.6

14.7
6.3

None

NFCV

<5.0
5.0–10.0

>2.0
Mean value

19
11
0
30

3.1
6.9
0

4.5

0.88
0.87

0
0.88
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Figure 10. Residual graph of the multiple regression models.

To verify the reliability of the trajectory prediction model, 30 sets of unused data were used to test the
regression model, and the results are shown in Tables 1,2, and Figure 11.

The predicted results of the jet trajectory range are shown in Table 1. There are 20 groups with an
error range of less than 1 m, 67% of the total. Their average error is 0.59 m and the average percentage error
is 4.35%. It can be seen from the results that the average error is 0.59 m and the average error percentage is
4.35%. There are eight errors ranging from 1.0 m to 2.0 m, and the average error value and the average
error percentage are 1.54 m and 4.23%, respectively. Furthermore, only errors of two predicted jet trajectory
ranges are greater than 2 m, and the average error value and the average error percentage are 2.55 m and
6.52%, respectively. Moreover, the average processing time of each prediction of the jet trajectory range is
no more than 0.88 s.
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Meanwhile, the superiority of the proposed method is further demonstrated in Table 2 by comparison
with the jet trajectory prediction spreadsheet model proposed by Miyashita . As can be seen from Table 2,
the NFCV method shows the advantages in the accuracy of falling position prediction of the jet trajectory.
Furthermore, all the prediction errors of the NFCV method are less than 10%, and most of them are
less than 5%. Small and stable error results are important to guide the operation of the automatic fire
extinguishing system. More importantly, the processing time of the NFCV method is less than 0.88 s,
which makes it feasible for real-time trajectory location analysis and prediction. This advantage is not
available in other methods while the timeliness of this method allows the jet trajectory to be adjusted in
real time during the fire-fighting process.

Test sample number
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B--Actual trajectory range

R--Predicted trajectory range

Figure 11. Residual graph of the multiple regression models (red and blue dots represent the predicted and
actual values of the trajectory range, respectively).

It can be seen from Figure 11 that the prediction error increases with the increase in the actual jet
trajectory range. The maximum prediction error of 2.6 m occurs when the actual range of jet trajectory
is 49 m, which is the maximum range of the jet trajectory measured in our experiment. Moreover,
the prediction error from 1.0 m to 2.0 m also mostly occurs in the actual jet trajectory range when
greater than 30 m. Correspondingly, the prediction error of less than 1 m mostly occurs when the actual
jet trajectory range is less than 30 m. The phenomenon of the prediction error results from the open
experiment environment, in which the disturbance of the jet trajectory range by the breeze increases as the
range increases.

4. Conclusion

In this paper, a novel NFCV method is proposed for real-time monitoring of the jet trajectory during
jetting by computer vision. The initial image of the jet trajectory is acquired with the NFCV sensor device,
and the preprocessing of the original image, including perspective transformation, image enhancement,
and image segmentation, is carried out to achieve the extraction of the jet trajectory in the acquired image.
A novel mean position approach is developed to characterize jet trajectories in binary images and three
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jet trajectory characteristics (SPS, EPS, and OTS) are extracted to represent the state of the jet trajectory.
Moreover, a multivariate regression model for the prediction of the jet trajectory range is established
based on the least square method. Experiment results demonstrate that the prediction accuracy of the
jet trajectory range is over 94%. For an acquired original image, the NFCV method takes less than 0.88
s on average to finish the jet trajectory range prediction on a personal computer with 3.5 GHz CPU
and 16 GB RAM. In summary, the NFCV method meets the requirement of real-time monitoring of jet
trajectory during jetting and can be used to further enhance the automation degree of automatic fire
suppression systems.
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