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Abstract: The Internet of Things (IoT) is becoming real, and recent studies highlight that the number
of IoT devices will significantly grow in the next decade. Such massive IoT deployments are typically
made available to applications as a service by means of IoT platforms, which are aware of the
characteristics of the connected IoT devices–usually constrained in terms of computation, storage and
energy capabilities–and dispatch application’s service requests to appropriate devices based on their
capabilities. In this work, we develop an energy-aware allocation policy that aims at maximizing the
lifetime of all the connected IoT devices, whilst guaranteeing that applications’ Quality of Service
(QoS) requirements are met. To this aim, we formally define an IoT service allocation problem as
a non-linear Generalized Assignment Problem (GAP). We then develop a time-efficient heuristic
algorithm to solve the problem, which is shown to find near-optimal solutions by exploiting the
availability of equivalent IoT services provided by multiple IoT devices, as expected especially in the
case of massive IoT deployments.

Keywords: Internet of Things (IoT); quality of service; resource management; energy-aware allocation;
real-time systems

1. Introduction

The Internet of Things (IoT) has rapidly evolved from a cutting-edge research topic to a real
ecosystem affecting people’s everyday life. As a matter of facts, smart cities, smart factories and smart
homes are concepts already familiar even to non-technicians. Nevertheless, we are still at the beginning
of the IoT era. According to a new analysis from IHS Markit [1], the number of connected IoT devices
will grow from nearly 27 billion in 2017 to 125 billion in 2030. Such massive increase will require
robust and complex management systems, which are still in their infancy. Smart cities, for example,
are nowadays characterized by many different isolated IoT systems, e.g., smart parking systems, smart
transportation, etc., where each system requires its separated management infrastructure. With the
growing of the IoT domain, the development of a comprehensive IoT architecture, which will be able
to integrate heterogeneous IoT systems, is of paramount importance.

Recently, some efforts have been carried out in this direction, and different international
organizations ad industries are developing standard architectures for IoT. We can envision two different
approaches. The first one extends cloud-based commercial platforms in order to integrate IoT systems,
with many available solutions such as Amazon AWS IoT (https://aws.amazon.com/iot-core/), Google
IoT (https://cloud.google.com/iot-core/) and Microsoft Azure IoT (https://azure.microsoft.com/en-
us/services/iot-hub/) platforms. The main idea of these IoT-Cloud architectures is to integrate IoT
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devices directly into the cloud infrastructure, which is exploited to interconnect different IoT systems
in order to provide a unified interface to end users on one side, and to exploit the capabilities of the
cloud, in terms of storage and computation, on the other side. Such architectures are the solid ground
for the realization of service-brokering solutions by providing a centralized point of control between
smart things and applications. The second approach, instead, is based on the definition of novel
architectures that can exploit the unique characteristics of IoT systems by design. Among the others,
the oneM2M (http://www.onem2m.org/) and the FIWARE (http://www.fiware.org) architectures
are getting momentum. The former was originally designed by the European Telecommunications
Standards Institute (ETSI), and it is specifically tailored to machine-to-machine (M2M) communications.
FIWARE, instead, is a generic framework where different components, called Generic Enablers (GEs),
can be assembled together in order to create an integrated service platform. By means of a specific
GE, called IDAS (https://catalogue-server.fiware.org/enablers/backend-device-management-idas),
the FIWARE architecture can also be used as an IoT platform. The current trend is therefore the
integration of smart things into a common IoT platform that, in turn, exposes thing capabilities as
separate services. Applications interact with things by invoking IoT services exposed by the platform.

Especially in massive IoT deployments, the huge number of connected things allows applications
to benefit from high IoT service availability: different things may provide equivalent services but with
different QoS and cost (e.g., different smart cameras may provide, if appropriately steered, the same
view of a given area from different directions). To handle this, many different IoT-Cloud solutions,
such as [2–4], expose to users virtual sensors which are resolved to physical sensors at runtime,
achieving the so-called sensing-as-a-service solution. However, things are constrained devices in
terms of computation, storage and energy. Things are also more volatile and dynamic: a continuously
changing context and intermittent availability are the two main factors that differentiate IoT services
supported by smart things from traditional services running on fixed powerful servers. Therefore,
novel service brokering approaches and service allocation algorithms are needed, which are capable
to address the unique characteristics of smart things while guaranteeing to meet the applications’
QoS requirements.

In this work, we focus on the definition of a thing allocation policy that aims at maximizing
the lifetime of all the connected things. Our contribution is twofold: (i) an energy aware service
selection problem is formally defined as a non-linear generalized assignment problem (GAP), and
(ii) a time-efficient heuristic algorithm, which finds a solution in a time suitable for implementation
in real systems, is developed and evaluated. The proposed solution is, therefore, agnostic to the
underlying communication layer and can be easily deployed in almost any available IoT platform, e.g.,
FIWARE. The rest of the work is organized as follows. In Section 2 we report the works relevant to
our problem. A detailed presentation of the considered scenario is reported in Section 3, whereas the
derived assignment problem is formally presented in Section 4. The heuristic algorithm is presented in
Section 5 and evaluated in Section 6, respectively. Finally, Section 7 draws the conclusions.

2. Related Work

The QoS-aware allocation problem has been investigated in different fields, each one characterized
by different requirements and guarantees. In Service Oriented Architecture (SOA), the main challenge
is to consider the requirements of both service providers and clients in order to select the correct
service among a known set [5]. In [6] authors propose a QoS broker that exploits a utility function
to combine services in order to maximize the requirements of the users. However, the proposed
solution does not consider provider constraints. In [7], instead, the authors try to put in the loop also
the provider constraints. The solution is based on a dynamic load balancer strategy that, however,
allows to express requirements only in terms of fixed priorities. A different approach is presented
in [8], where the authors propose a heuristic algorithm to find the optimal allocation minimizing
the overall average response time. The problem is that, in the IoT domain, probabilistic guarantees
are not always a feasible choice. Moreover, the authors do not consider energy requirements, which
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are of paramount importance when we deal with large IoT systems. Multiple QoS parameters are
addressed instead in [9]. The work focuses on the selection of services among a huge set of candidate
services, each one characterized by different QoS parameters. The selection is performed combining
probabilistic QoS estimations to reduce the possible candidate services, with integer programming,
to find the ‘optimal’ solution within the reduced set. This solution, however, does not consider specific
IoT requirements, such as the computational time needed to execute a service, and it is more tailored
to service composition rather than IoT service selection.

From the previous analysis we can conclude that QoS-aware solutions designed for Web Services
cannot be directly mapped to the IoT domain due to different constraints. More specifically, in this
context services are provided by IoT devices that are constrained in terms of computation and
communication, the availability of a service is affected by the energy of the IoT device, and the
context information are derived from the physical environment. Constrained scenarios and energy
concerns are however analyzed by solutions designed for Wireless Sensor Networks (WSNs), in which
task assignment has been a heavily studied problem. In [10] the authors present two algorithms,
one centralized and one distributed, to distribute tasks among sensor nodes in order to maximize the
network lifetime. The solution, however, is tailored to WSNs characterized by a sink, which collects
data from nodes, and cannot be directly mapped to a generic IoT scenario. The same problem is also
addressed in [11], where the authors develop a greedy algorithm to minimize the energy consumption
in networks composed by heterogeneous sensor nodes. As in our solution, the authors exploit the
heterogeneity of energy costs to assign tasks. However, the algorithm relies on a deep knowledge of
the underlying communication infrastructure, i.e. direct connections between sensor nodes, which is
not always feasible in IoT systems that are usually agnostic to the network layer.

QoS-aware task allocation has been studied also in the field of task scheduling on multiprocessors.
Specifically, the problem can be seen as a problem of multi-processor partitioning in which all service
requests are independent tasks. In [12] the authors developed a polynomial time algorithm to partition
a set of sporadic tasks among multiple processors. However, the proposed solution assumes that all
processors have the same capabilities. Heterogeneity of processors is addressed in [13], however only
the CPU utilization is considered, without evaluating the energy consumption of each assignment.
Finally, in [14] the authors proposed a solution to solve the partitioning problem, taking into account
also energy constraints, in scenarios characterized by heterogeneous processors. The work, however,
leverages voltage-varying processors, that have not a reasonable correspondence in the IoT domain.

In [15] the authors propose a QoS-aware scheduling algorithm designed for service-oriented
IoT platforms. A multi-layered scheduling model is proposed to evaluate the optimal allocation
that meets the QoS requirements of applications. Different solutions are deployed at different
layers to manage different system resources, such as network resources and IoT services. However,
the proposed approach cannot be used for online IoT-service selection, since it is mainly suitable
for offline provisioning and planning. The authors of [16] addressed the service selection problem
in the IoT environment by developing an energy-centered QoS-aware service selection algorithm,
called EQSA. As stated by the authors, the basic idea was to preserve energy by slightly reducing
the QoS level without affecting the user’s satisfaction. To this aim, a multi-objective optimization
problem is solved by means of lexicographic optimization strategy, which takes into account multiple
QoS parameters ranked by order of importance. As in our proposed solution, the selection algorithm
exploits equivalence among services by means of a differentiation between abstract and concrete services.
However, the work in [16] focuses more on service composition and each abstract service is finally
mapped to one and only one concrete service.

The service selection problem has been considered also within IoT-Cloud architectures, in order
to reduce the energy consumed by connected physical sensors. In [2,3], users’ requests are aggregated
based on the resolved physical sensors in order to save energy. Moreover, in [2] the typical periodic
sensing model is replaced in favor of an on-demand interactive pattern, driven by location information,
which reduces the energy consumed by each physical sensor. Indeed, sensors are clustered by means
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of regions of interest, and each request is resolved by the sensor within the cluster having the highest
residual energy, whereas the other nodes of the cluster are left in sleep mode. Similarly, in [3] the
IoT-Cloud paradigm is exploited to provide latency guarantees to applications interacting with the
same physical sensors. A dedicated QoS controller is deployed within the cloud infrastructure to
aggregate requests for virtual sensors and to set the periodic sampling rate, on physical sensors,
accordingly to the most demanding application. In this way, the overall workload is minimized and
the duty-cycle of connected sensors can be dynamically changed in order to save energy, whilst the
latency requirements are guaranteed. Differently from our solution, however, all the previous work
focused mainly on WSNs characterized by a tree topology rooted at a sink, where the cost associated
to duty-cycles are of paramount importance. In addition, the computational cost on each thing is
addressed only marginally.

A further step has been recently achieved by means of the integration of the fog layer between
the cloud and the smart devices. As a matter of fact, in [17] the authors propose a sensing-as-a-service
architecture that exploits geographically distributed “cloud agents” to interconnect cloud users to
remote IoT devices by means of virtual sensors. Each user issues sensing tasks for specific virtual
sensors enriched also by means of some QoS parameters that are enforced by the cloud agents. The fog
layer is also exploited in [18] to partition resources among interconnected fog nodes in order to reduce
services’ latency. Services are partitioned among fog nodes based on popularity metrics. However,
the work does not consider costs on the connected smart devices. Similarly, in [19] the authors
presented an exhaustive survey on the state of the art techniques for service placement between the fog
layer and the cloud, highlighting pros and cons of each presented solution. Also in this case, the focus
is primarily on the placement of computational resources between the cloud and the fog, whereas
smart devices, with their unique characteristics, are not directly considered. Finally, in [20] the fog
layer is exploited to provide additional delivery mechanisms to users. Indeed, the authors presented a
multi-method data delivery system that exploits the most convenient delivery mechanism based on
the actual location of the user. Specifically, WSNs are connected to a cloud environment, which is then
exploited by users and fog servers. A user may retrieve the same information from four different data
sources: Cloud, WSN, other users, or fog servers. The selection is based on an objective function that
minimizes the cost or the delivery time.

It is worth to note that, even in IoT-Cloud solutions, the mapping between virtual and physical
sensors is always one-to-one. The first solution that allows to map a virtual sensor to multiple physical
sensor has been presented in [21]. Specifically, a Sensor-Cloud infrastructure is presented that allows
mapping virtual sensors to physical sensors following one-to-many, many-to-one and many-to-many
patterns. Moreover, the cloud is exploited to allow data aggregation and to set the sampling rate
according to the most demanding application. Energy consumption on sensor nodes is however
addressed only marginally: QoS parameters, expressed by the users, focus on data accuracy and
reliability. The mapping of requests to different services is also addressed in [22], where the authors
focus on the allocation of resources on IoT devices characterized by multiple network interfaces.
The requests are assumed to be flexible in the sense that they can be realized by splitting their
demands on multiple interfaces, thus achieving a one-to-many mapping. The authors propose a MILP
formulation, which also considers different costs per interface and two algorithms to approximate the
optimal solution. The problem considered is however tailored to the specific use case characterized by
few interfaces (less than 10), and the split of requests is performed only when not enough resources
are available on a single interface.

Finally, in our previous work [23], we addressed the scheduling of real-time requests in the IoT
domain by developing a greedy polynomial-time algorithm that can be used to allocate requests to
things taking into account real-time requirements of applications with strict deadlines. Our proposed
approach, however, was tailored to periodic requests with implicit deadlines and was designed to
assign a request to a single thing, i.e., we did not allow the execution of the same request among
different things on each period. In this work, we go a step further by allowing requests with a deadline



Sensors 2019, 19, 693 5 of 19

larger than the period, and by fully exploiting service equivalence in order to further distribute the
energy cost more uniformly among all the connected things.

3. Reference Architecture

In Figure 1 we report the reference architecture considered in this work. We focus on a massive
deployment of constrained IoT devices managed by an IoT service platform. Each IoT device has sensor
and/or actuator capabilities that can be accessed as a service (e.g., through a RESTful interface). We
generically refer to such IoT devices as smart things. Moreover, we assume that IoT services provided
by things are context-aware, i.e., they are further characterized by context information. Context,
defined as “any information that characterize the situation of an entity” [24], enhances the description
of a service, e.g., measure the temperature, with any additional relevant information related to it, like,
e.g., its location or its freshness.
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Given the very large number of connected things, it is expected that multiple things may possibly
provide the same or equivalent services, and the platform is able to exploit such redundancy. However,
though two things expose the same service, context information characterizing the two service instances
might differ. For example, if an application looks for the temperature in a specific geographic area,
only things equipped with a temperature sensor and deployed in the interested area (as resulting from
the attached context information) may be consistently selected to reply. In fact, an application interacts
with the platform by requesting a specific IoT service matching a given context information (e.g.,
only if provided by things located in a specific area) and meeting certain QoS requirements. The IoT
platform must then map each application request to specific services exposed by connected things.
In order to develop a generic framework that can be exploited by generic IoT platforms regardless
of the communication network employed by the connected things, we assume that the IoT platform
implements three main functional components: (i) a Device Manager, (ii) a Context Manager, and (iii)
a QoS Broker. The Device Manager handles information about the status of all the connected things,
e.g., computational, communications, storage capabilities, as well as the amount of residual energy if
battery-powered. The Context Manager, instead, handles all context information related to services
provided by things, and provides a context-based service look-up functionality. Specifically, the Context
Manager processes each application request and, based on the context information associated to each
thing service, it produces a list of equivalent services that meet the context requirements specified by the
request. Please note however, that algorithms for context management and analysis are outside the
scope of this work.



Sensors 2019, 19, 693 6 of 19

Finally, the QoS Broker is the component in charge of allocating requests to things. Based on
the status information provided by the Device Manager and the list of equivalent services provided
by the Context Manager, the QoS Broker verifies if all requests can be satisfied. It then allocates each
request to at least one thing according to a dedicated resource allocation policy. It is worth to note that
the considered broker-based architecture is agnostic to the underlying things’ communication network
and can be easily mapped to multiple real IoT platforms available today. As an example, the core
of the FIWARE platform is the Orion Context-Broker, which manages all context information and,
among the other offered services, it allows applications to perform context queries to interact with
available services.

We focus, in this work, on the definition of a resource allocation policy for the QoS broker. The aim
of the policy is to maximize the lifetime of the IoT platform while meeting the QoS requirements
specified by applications. To achieve that, the proposed policy is allowed to exploit the availability
of multiple equivalent services by possibly mapping (i.e., splitting) an application request to multiple
things. As for the QoS requirements, we assume that an application request is conveyed as a sequence
of real-time periodic service invocations with time-bounded requirements – see Figure 2. Therefore,
a request is characterized by a period and a relative deadline. We assume that each deadline can be
equal or larger than the corresponding request period. A period smaller than the relative deadline
means that the application is willing to issue service invocations at a rate larger than the expected
one at which a single thing is able to issue a response, thus implicitly assuming that its request needs
to be split to multiple things in parallel. To better clarify this, let us consider the following example.
Assume that a request has an associated period of 5 s and a relative deadline of 10 s. At time t = 0,
the QoS broker will map the first service invocation to a thing able to provide the requested service in
7 s. At time t = 5, the second service invocation is issued, but the QoS broker has to select a different
thing to serve it, since the previous one is still in the processing phase. Therefore, two service instances
will be running in parallel on different things to serve the same application request. The application
will receive two responses, each one before its corresponding deadline.
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Finally, as mentioned, the aim of the proposed policy is to maximize the lifetime of the platform.
In fact, the execution of each service on a thing requires a certain amount of energy. If the thing is
battery powered, its capability to provide an IoT service has a maximum lifetime that depends on the
number of periodic service invocations. The lifetime of the overall IoT platform is therefore determined
by the thing with the shortest lifetime. The proposed policy aims at maximizing the latter by carefully
mapping application requests to things, eventually splitting one request to multiple things so as to
evenly balance the energy cost of execution among all things.
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4. Problem formulation

We now formally define the allocation problem addressed in this work. We assume the IoT
deployment managed by the platform comprises a set N of n things, where each thing i ∈ N is
characterized by its available energy bi, (possibly equal to +∞, if not energy-constrained).

Based on the capabilities of the managed things, the platform provides a set of IoT services
requested by client applications. We assume that there is a set K of k application requests that must be
accommodated by the platform. Specifically, each request j ∈ K is characterized by a period pj and a
deadline dj, with dj ≥ pj.

Not all things can serve the same request, but the same request can be served by multiple things.
We denote things’ service capabilities by means of a context matrix M where each element mij ∈ M can
be zero or one depending if the thing i can serve the request j or not:

mij =

{
1 if request j can be served by thing i

0 otherwise
(1)

Without loss of generality, we assume that each service request can be executed by at least one
thing, i.e., for any j, there is at least one i such that mij = 1.

We model the costs of execution of a request j on a thing i by means of two parameters: the
execution time tij and the energy cost cij. The execution time tij denotes the amount of time needed to
execute one service invocation of request j on thing i, including both communication and computation
times, whereas cij represents the amount of energy needed to accomplish the execution of one service
invocation of the request j on thing i.

We further define the utilization matrix (U) and the energy consumption rate matrix (F), respectively.
Specifically, the utilization is defined as uij ∈ U:

uij ,

{ tij
pj

i f mij = 1

+∞ otherwise
(2)

where we set an infinite utilization in case mij = 0, in order to filter out things that cannot provide the
requested service.

Moreover, in order to make a fair comparison among things, we normalize the energy cost of
execution cij with respect to the available energy bi, and we then define the relative energy consumption
rate fij ∈ F of executing the request j on thing i as:

fij ,
1
pj

cij

bi
(3)

As already pointed out, we assume the platform is able to exploit the equivalence among services
in order to extend the lifetime of the connected things. Specifically, we allow service invocations of
a request to be mapped (i.e., split) to multiple things across consecutive periods. As a consequence,
each thing selected to serve a certain request j will serve a service invocation with a period sj times
larger than the request’s period pj, thus the energy and utilization costs to execute the request per
thing is reduced. We call the number of things involved in the execution of a certain request j the split
factor sj of request j. The split factor sj is enforced to be upper-bounded by smax

j defined as:

smax
j ,

dj

pj
(4)

In this manner, the deadline dj is, in any case, larger than the expanded period, i.e., dj ≥ sj pj.
In Table 1 we report a summary of all the symbols used in this work. The considered problem

is then to allocate the k requests to the n available things so as to minimize the maximum energy
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consumption rate per thing, whilst guaranteeing that all service invocations of applications’ requests
are served within their deadline dj.

Table 1. Used symbols.

Symbol Description

N Set of connected things with cardinality n
i Thing i
K Set of incoming requests with cardinality k
j Request j
bi Available energy of thing i
pj Period of request j
dj Deadline of request j
M Context matrix
mij Elements of the context matrix
tij Execution time of request j on thing i
cij Energy cost of request j on thing i
U Utilization matrix
uij Utilization of request j on thing i
F Normalized cost matrix
fij Normalized cost of request j on thing i
sj Split factor for request j

smax
j Maximum split factor for request j
vi Rate monotonic schedulability limit
ai Number of requests allocated to thing i

Formally:

min

(
max
i∈N

∑
j∈K

1
∑i∈N xij

fijxij

)
(5)

s.t.

∑
i∈N

xij ≥ 1, j ∈ K (6)

∑
i∈N

xij ≤
dj

pj
, j ∈ K (7)

∑
j∈K

uij

∑i∈N xij
xij ≤ vi, i ∈ N (8)

xij ∈ {0, 1}, i ∈ N, j ∈ K (9)

where:

xij =

{
1
0

i f request j is allocated to thing i
otherwise

(10)

Constraint (6) ensures that each service request is mapped to at least one thing. Constraint (7)
limits the split factor of each request to its maximum smax

j . Note that, based on the above definition,
the split factor sj is given by:

sj = ∑
i∈N

xij (11)

Constraint (8) ensures the schedulability of all the requests (partially) mapped to each thing.
Since the deadline dj of (the fraction of) service invocations of request j mapped to thing i is larger
than the (extended) period sj pj with which they arrive at the thing, a sufficient condition for the
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schedulability of the requests is provided by the well-known rate monotonic bound on the thing
utilization, defined as:

vi = ai

(
2

1
ai − 1

)
(12)

where ai is the number of requests allocated to the thing i, i.e.,:

ai , ∑
j∈K

xij (13)

Note that the utilization of the request j to thing i in (8) is calculated by taking the split factor into
account. In addition, the definition of uij in case of mij = 0 ensures that no service can be allocated to a
thing that does not expose it.

The problem defined by (5)–(10) is a Mixed Integer Non-Linear problem because of constraint
(8), which is non-linear on xij. A relaxed version of this problem can be obtained by assuming that: (i)
the deadline of each request is equal to the request’s period, i.e., requests cannot be split across things
and thus constraint (6) is equal to 1, and (ii) the schedulability limit is fixed to a constant v. The latter,
in particular, is a worst-case limit and it is defined by observing that vi is monotonically decreasing
with ai, which cannot be greater than k. Therefore, for any i, it is vi ≤ v, v = k

(
2

1
k − 1

)
. The relaxed

formulation is a Mixed Integer Linear Problem and, specifically, an instance of an Agent Bottleneck
Generalized Assignment Problem (ABGAP) that is, in turn, derived by the well-known Generalized
Assignment Problem (GAP) defined in the literature and known to be NP-hard. Stemming from
heuristics proposed to solve GAP and BGAP in [25,26], we designed, in a previous work, a dedicated
heuristic [23]. The more general problem defined by (5)–(10), which allows to split requests to multiple
things, cannot however be reduced to a linear problem due to the fact that sj is at the denominator of
the factors in constraint (8). Moreover, differently from standard ABGAP problems, this problem is
based on the assumption that a single task (request) can be assigned to multiple agents (things) and
the maximum number of agents for each request is fixed to smax

j . To the best of our knowledge, there is
no well-known general algorithm specifically designed to solve this kind of problem. Starting from
the heuristic we proposed in [16], we therefore developed a novel greedy polynomial-time heuristic
algorithm that solve the considered problem.

5. The MTA Algorithm

In this section we describe the proposed heuristic, named Multiple Thing Allocation algorithm
(MTA), to solve the problem defined in the previous section. The pseudo-code of MTA is reported
in Algorithm 1. The input to MTA are: the number of things n, the number of requests k, the energy
consumption rate matrix F =

{
fij
}

, the utilization matrix U =
{

uij
}

, a precision threshold ε, the max
split vector Smax = {smax

j } and, finally, two different parameters: a desirability matrix D ∈ NxM and
a split policy Sp. The latter parameters are used to steer the thing allocation procedure SplitSearch
described in detail below. The output is: a boolean isFeasable, which takes the True value if at least one
allocation exists, and the allocation matrix Y that maps service requests to things, i.e., each column of
Y (yj) is the allocation vector for the service request j.
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Algorithm 1: MTA

Input: n, k, F, U, ε, Smax, D, Sp

Output: y, isFeasible

1: [y, isFeasible]← SplitSearch()
2: if is Feasible = True then:
3: last← 0; upper← 1; lower← 0;
4: while upper – lower > ε do:
5: θ← (upper – lower)/2
6: [y, isFeasible]← SplitSearch()
7: if isFeasible = True then:
8: last← θ; lower← θ; θ← θ + (upper – lower)/2;
9: else:
10: upper← θ; θ← θ – (upper – lower)/2;
11: if isFeasible = False then:
12: θ← last;
13: [y, isFeasible]← SplitSearch()

Pseudo-code of MTA

The rationale behind MTA is to iteratively search for the first feasible allocation that guarantees
the highest minimum level of residual battery for all things. To this aim, MTA leverages a procedure
SplitSearch that, given a threshold θ, finds an allocation so that the residual battery on each thing after
service invocation is no lower than θ, i.e., θ is defined as the minimum residual battery. On every
iteration, the threshold θ is decreased until a feasible solution is found with an acceptable precision
level measured by ε. More specifically, a binary search strategy is used to reduce the time needed to
execute the overall procedure. At any iteration, upper and lower give the current upper and lower
bounds on threshold θ, respectively. When the difference between upper and lower is less than the
input precision threshold ε, the algorithm stops.

The core of the MTA algorithm is the procedure SplitSearch that is reported in Procedure 1.
The allocation is based on two input parameters: the desirability matrix D and the split policy Sp.
In particular, each element dij of D is a measure of the desirability of allocating request j to thing i.
The Sp parameter is exploited instead by the SplitPolicy procedure explained in detail below.

The rationale behind the SplitSearch procedure is to iteratively consider all requests and, at each
step, select the request that maximize the difference between the largest and the second largest value
of the desirability matrix (among all the things that can satisfy the request). This means that, on each
iteration, the SplitSearch algorithm allocates the request that is penalized most if not allocated to the
preferred thing. Specifically, in line 7 of Procedure 1 the set Fj includes all the things that can satisfy the
request (if a thing does not expose a valid service for the request j its uij is equal to +∞). A thing can
satisfy a request if it has enough battery and computational time to serve the request with at least the
maximum allowed split factor smax

j . The actual split sij for a certain request j on a thing i is computed
as the maximum between two ratios: the residual computational capacity and the residual battery
(scaled by the minimum residual battery requested θ), both evaluated by assuming that the request j
is allocated to the thing i. The value of sij is a lower bound and means that the thing i is capable of
serving the request j if, and only if, the request is split among sij − 1 other things. This ensures that all
the things in Fj do not violate constraint (8) nor the requested minimum residual battery θ. Obviously,
if Fj is empty the allocation with the requested θ is unfeasible – line 9.

Fj is then exploited to create Sj which is a set of sets (line 11). Specifically, Sj is composed
by t sets with t equal to the cardinality of Fj (t =

∣∣Fj
∣∣). Each set, named Sij, is composed by

the elements of Fj that are capable of serving the request j with a split factor lower or equal to
sij. Iteratively, for each i ∈ Fj we compute the corresponding minimum split factor sij and we
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construct an inner set (Sij) composed by all the other things that allow the allocation of the request
j with, at least, a split sij. As an example, consider the case in which, for a certain j, we obtain
Fj = {1, 3, 6, 7} with the corresponding sij vector equal to {2, 1, 5, 1}. The resulting set of sets is:
Sj =

{
S0j = {1, 3, 7}, S1j = {3, 7}, S2j = {1, 3, 6, 7}, S3j = {3, 7}

}
.

Procedure 1: SplitSearch

Input: n, k, F, U, θ, Smax, D, Sp

Output: Y, isFeasible

1: for i← 1 to n do ci ← 0, ei ← 0, νi ← 1, ai ← 1
2: N← {1, . . . , n}, K ← {1, . . . , k}
3: isFeasible← True
4: while K 6= ∅ do:
5: δ∗ ← −∞
6: for each j ∈ K do:

7: Fj =
{

i ∈ N : sij =
∣∣∣max

(
uij

νi−ci
, fij

θ−ei

)
|, 1 ≤ sij ≤ smax

j

}
8: if Fj = ∅ then:

9: isFeasible← False
10: return

11: Sj ←
{

S0j =
{

z ∈ Fj : szj ≤ s0j

}
, S1j =

{
z ∈ Fj : szj ≤ s1j

}
, . . . Sij =

{
z ∈ Fj : szj ≤ sij

}
: ∀i ∈ Fj

}
12: Smax

j ← argmax
i∈Fj

{∣∣∣Sij

∣∣∣ :
∣∣∣Sij

∣∣∣ ≥ szj, ∀z ∈ Sij

}
13: imax ← arg max

i∈Smax
j

{
dij

}
14: Smax2

j ← arg max
i∈Fj\{imax}

{∣∣∣Sij

∣∣∣ :
∣∣∣Sij

∣∣∣ ≥ szj, ∀z ∈ Sij

}
15: if Smax

j = ∅ then: δ← +∞

16: else: δ← dimax j − max
i∈Smax2

j

{
dij

}
17: if δ > δ∗ then: δ∗ ← δ ; j∗ ← j;
18: end

19:
[
z, sj∗

]
← SplitPolicy

(
Sp, Smax

j∗ , imax, Sj∗
)

20: for each i∗ ∈ z do:

21: ci∗ ← ci∗ + ui∗ j∗/sj∗ ; ei∗ ← ei∗ + fi∗ j∗/sj∗ ; ai∗ ← ai∗ + 1 ; νi∗ ← ai∗

(
2

1
ai∗ − 1

)
; Colj∗ (Y)← z ;

22: end
23: K ← K/{j∗}
24: return Y

Pseudo-code of SplitSearch.

Based on Sj the algorithm computes Smax
j (line 12) which is defined as the index of Sij with the

maximum cardinality among Sij valid sets. A set is valid if the maximum sij, within the set, is lower or
equal to the its cardinality

∣∣Sij
∣∣ ≤ szj, ∀z ∈ Sij. Considering the previous example, the resulting Smax

j
is 0 (the index of S0j) because the set S2j is not valid due to the fact that the thing with index 6 requires
an sij = 5 (the request must be split among, at least, 5 things) but the cardinality of its set is

∣∣S2j
∣∣ = 4

(only 4 things are available to serve the request).
Smax

j is then exploited to derive imax that is the index of the thing, within Smax
j , with the largest

value in the desirability matrix – see line 13. As already pointed out, however, the rationale behind the
SplitSearch algorithm is to allocate the request that maximizes the difference between the largest and
the second largest dij. For this reason, in line 14 the algorithm computes Smax2

j obtained exactly in
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the same way as Smax
j , except for the fact that the maximum is evaluated by removing imax from Fj.

The difference between the two values of dij is evaluated in line 16. Specifically, the algorithm has
an internal variable δ used to find, at each iteration, the j∗ that maximize the difference between the
largest and second largest dij among all the requests not yet allocated.

Algorithm 2: SplitPolicy

1: if Sp = MaxSplit then:

2: i← Smax
j∗ ; sj∗ ←

∣∣∣Sij∗
∣∣∣ ; z← Sij∗ ;

3: else if Sp = MinSplit then:

4: i← imax ; sj∗ ←
∣∣∣Sij∗

∣∣∣ ; z← Sij∗ ;

5: else if Sp = NoSplit then:
6: sj∗ ← 1 ; z← imax ;

7: return sj∗ , z

Pseudo-code of SplitPolicy.

At the end of the inner loop, in line 19, the algorithm calls the SplitPolicy procedure that, based
on the chosen j∗ request, selects the actual split sj∗ by adopting one of the three available policies:
(i) Maximum Split, (ii) Minimum Split and (iii) No Split. Specifically, the Maximum Split policy always
tries to split the request among the maximum number of available things, whereas the Minimum Split
policy always selects the smaller split factor sj∗ that allows the request to be served. Finally, the No
Split policy does not allow any split for any request (sj∗ = 1, ∀j ∈ K).

The SplitPolicy procedure is reported in Algorithm 2. The Maximum Spilt is achieved by dividing
the request j∗ between the Sij∗ things with i = Smax

j∗ (line 2). On the other hand, the Minimum Split
is achieved by selecting the minimum split that includes the thing imax, identified by Simax j∗ (line 4).
Finally, for the No Split policy only, the imax thing is selected (line 6). It is worth to note that, regardless
of the adopted policy, the imax thing is always selected. To better describe this behavior we rely on
Figure 3 where we report the set Sj∗ ordered by the cardinality of its inner sets Sij∗ . Specifically, on
the x axis we report the index of all the things, whereas on the y axis we report the Sij∗ sets ordered
by their cardinality. The Minimum Split is identified by the first set that includes imax. Because of the
ordering, all the sets above will also include imax, i.e., if a thing i can serve a request with sj = x, it can
also serve the same request with any other split factor larger than x. The Maximum Split is, therefore,
the one with cardinality equal to Smax

j∗ . If two sets Sij∗ have the same cardinality, then the desirability
of the things within the two sets is considered.Sensors 2019, 19, x FOR PEER REVIEW  12 of 17 
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Once the allocation is performed the SplitSearch procedure continues and updates the costs of all
the selected things, lines 21 of Procedure 1. Finally, the request j∗ is removed from the set K and the
procedure restarts. At the end, the resulting allocation matrix Y is returned.

Several approaches to set the desirability matrix are possible. However, based on some preliminary
tests, we determined that good results are obtained by considering the three cases D = F, D = −F and
D = U, that correspond to giving a higher preference to requests with the largest energy cost, the lowest
energy cost, and the largest computational cost, respectively. The best configuration, however, depends on
the specific scenario with its energy and computational costs. For this reason, we run the algorithm
three times, one for each desirability matrix configuration, and we choose the configuration that yields
the best result.

The computational complexity of the MTA algorithm is O
(
αβ
(
nk3)).

Proof. Let us first evaluate the complexity of the SplitSearch procedure. The most expensive phase, on
each iteration, is the computation of Fj and Sj which both requires O(nk) time, i.e., in the worst case all
things (n) can serve all requests (k). To compute Smax

j and Smax2
j the algorithm needs O(nk). The same

is valid for finding the first and the second imax. The while loop (line 4) performs O(k) assignments,
hence by considering also the inner loop (line 6) we obtain a total of O

(
k2) time. We can conclude that

the overall time complexity is O
(
nk3). The complexity of MTA is governed by the choice performed

on ε. We can derive β according to:

β = log2
upper− lower

ε
(14)

whereas, in our case, α is fixed to three (α = 3) because of the three considered desirability matrix:
highest energy cost, lowest energy cost and highest computational cost, respectively. Hence, the overall
complexity is O

(
αβ
(
nk3)).

Several optimizations have been carried out to reduce the time complexity in the average case.
Among the others, in the actual implementation we sort the things in Fj according to the maximum
allowed split. To build Sj we iteratively scan Fj producing an inner set Sij on each iteration. Thanks to
the ordering of Fj, each inner set Sij is, therefore, composed by the things of Fj ordered according to
the maximum allowed split. Moreover, by following the iterative approach, the resulting Sj is also
ordered according to the cardinality of each inner set, thus the complexity of finding the largest and
second largest element of Sj is reduced. In Figure 3 we already reported a graphical representation
of an ordered Sj, that reflects the optimization we designed. Indeed, we can find Smax

j by iteratively
searching from the last thing within the last inner set of Sj. Recalling that a split associated to a thing,
say sij, is valid only if there are at least other sij things that allow a split lower or equal to sij, we can
start from the last thing in the last inner set of Sj and stop whenever we find a thing i in position x
(within its inner set) with x ≥ sij. That is, if the position, say x, of a thing within the ordered inner set
Sij is larger than the associated split factor, then there are at least x other things that can accommodate
the request j with a split factor less or equal to sij (in Figure 3, by design, all the things on the left side of
a thing i must have a split factor <= sij). With respect to the previous example with Fj = {1, 3, 6, 7} and
the corresponding sij vector equal to {2, 1, 5, 1}, the resulting ordered Fj is redefined as Fj = {3, 7, 1, 6}.
Therefore Sj =

{
S0j = {3, 7}, S1j = {3, 7}, S2j = {3, 7, 1}, S3j = {3, 7, 1, 6}

}
. We can find the largest

and second largest element of Sj (Smax
j and Smax2

j ) by iteratively searching from the end of the order
set Sj. The first thing analyzed is 6 that is in position x = 4 within S3j but it requires sij = 5 (x < sij),
thus the next inner set is analyzed. The next thing is 1 which requires sij = 2 and it is in position x = 3
(x ≥ sij) thus Smax

j = S2j.

6. Performance Evaluation

In this section we evaluate the proposed algorithm MTA by means of a set of experiments in
different scenarios. Specifically, we implemented our algorithm in Java and we run the experiments
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on a machine with a Linux 64bit operating system. The machine is equipped with an Intel®Core™
i7-4770 CPU @ 3.40 GHz, and 16 GB of RAM. The parameters used in our experiments are reported in
Table 2, where the values are uniformly distributed across the presented ranges. We vary the number
of things n, the number of requests k and also the average number of things available to serve each
request, called ratio, expressed as a fraction of the overall number of things. To this aim, mij and dj are
randomly generated in each experiment uniformly so as to meet the target ratio of the experiment.

Table 2. Simulation parameters.

Parameter Value Range

fij 0.001− 0.5
uij 10−4 − 10−3

n 30–150
k 30–100

ratio 5%, 25%, 50%, 75%
Split policy SMAX, SMIN, NS

Each experiment has been generated to test all the available split policies. To this aim, deadlines
have been set to always allow the maximum split, which is thus controlled by the experiment’s ratio.
Moreover, each problem instance has been generated to have at least one feasible solution. For each
experiment, one hundred different problem instances are generated. The value of the objective
function calculated by (5), i.e., the maximum energy consumption rate per thing achieved by the
solution computed by the MTA algorithm, is then reported along with 95% confidence interval.

We evaluate the MTA algorithm by defining four different scenarios, characterized by four
different ratios: 5%, 25%, 50% and 75%, respectively. Indeed, the proposed MTA algorithm can
be exploited in almost all scenarios, from small-scale IoT systems, characterized by smaller ratios,
to massive IoT deployments with a huge number of equivalent things. However, it is worth to note that
we consider also IoT deployments with a very large ratio equal to 75%. Even if such scenarios are less
common, we aim at challenging the proposed solution also in scenarios that are more difficult to solve.
In fact, the larger the ratio is, the largest the solution space. Within each scenario, we vary the number
of requests from 40 to 100, whereas the number of things is fixed across each experiment. Numerical
experiments have been conducted with several combinations of requests and things. Results are similar
in all considered experiments, therefore, without lack of generality, we only report the results obtained
with 50 things.

In Figure 4 we report the average maximum consumption obtained with 50 things when the ratio
is 5% (Figure 4a), 25% (Figure 4b), 50% (Figure 4c) and 75% (Figure 4d), for the three different split
policies Maximum Split (SMAX), Minimum Split (SMIN) and No Split (NS), respectively. Obviously,
if the number of things is fixed, the maximum consumption rate increases with the number of requests
to be allocated. As can be seen, the minimum maximum consumption is obtained with a different split
policy depending on the number of things, the number of requests and the ratio.
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To better clarify this aspect, in Figure 5a we report the number of times a specific split policy has
been selected as the best one. We can notice that when there are few requests (k ≤ 120) compared to
the number of things, the SMAX policy achieves the best performance in most of the cases. Indeed,
by splitting across multiple things, intuitively each thing is less loaded and thus the maximum energy
consumption is reduced. On the other hand, when the number of requests further increases (k ≥ 140),
the SMIN policy achieves the best result because of the rate monotonic constraint. Specifically, each
request has computational and energy costs that are split among all the things to which the request
is allocated. However, both the computational and energy costs are not the same across all things,
e.g., some things may consume more energy than others to handle the same request. When there are
many requests to be allocated, and all the requests are split between the maximum number of things,
the probability that certain requests cannot be allocated to their preferred things (derived from the
desirability matrix) increases significantly. Specifically, such things may be already in charge of handling
other requests (or at least parts of them) and their utilization may be already at the maximum allowed
value. In such cases, the minimum split policy performs better because, at each iteration, it selects
a smaller set of things, i.e., the smallest set that includes the preferred thing for the specific request,
thus leaving more space to map next requests to other things. It therefore follows that the probability
for a request to find the preferred thing with its utilization already at the maximum value is lower
because it is less likely, with respect to the SMAX policy, that other requests have been allocated to the
preferred thing as part of the SplitPolicy procedure.
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It is worth to note that, in less dense deployments, characterized by a ratio around 5%, the SMAX
policy achieves the best result also when the number of requests increases (k = 160) – see Figure 4a.
Such behavior can be explained considering that, on each allocation, the maximum set of preferred
things is limited by the small ratio, and therefore the probability of finding the preferred thing with
its utilization already at the maximum value is reduced in comparison to scenarios characterized by
larger ratios.

Furthermore, we can notice that the NS policy achieve results that are very close to the solution
found by the SMIN policy. This can be explained considering that the NS policy is a particular case
of the SMIN policy. Specifically, when the set including the preferred thing is composed only by the
preferred thing, the two policies behave exactly in the same manner. Based on our results, reported in
Figure 4, we can conclude that the NS policy performs worst or equal to the SMIN policy in most of the
cases, with only two exceptions: with 40 requests and a ratio equal to 50% and 75%. Therefore, when
time complexity is a concern, the NS policy can be omitted without affecting the obtained best results
in almost all cases. It therefore derives that the split of requests between multiple things, compared to
the one-to-one mapping, can effectively reduce the energy consumption in almost all the considered
scenarios, and in particular in less dense IoT deployments. In fact, in Figure 5a we can notice that,
for the scenario with a ratio equal to 5%, the SMAX policy has been always selected even with k = 120,
whereas with ratios equal to 25%, 50% and 75%, respectively, some of the best results are achieved by
the SMIN policy.

Finally, we compare our MTA algorithm against a greedy algorithm designed to always allocate
requests to the thing that maximizes the desirability matrix in the three cases D = F, D = −F and
D = U, and then selecting the best result as the solution. This experiment has been designed to
estimate the advantages of our solution compared to a “standard” QoS-aware algorithm. In Figure 5b,
we report the comparison between MTA and the greedy algorithm for 50 things with a ratio of 75%. As
can be seen, MTA always outperforms the greedy algorithm in all the considered scenarios. In particular,
the resulting maximum energy spent by the most energy-consuming thing with the MTA allocation is
between a quarter to half of the maximum energy consumed with the greedy allocation, i.e. the lifetime
of the system is twice to for times longer. Moreover, the MTA algorithm shows a very regular behavior
around the average since the variability of the result, measured by the confidence interval, is very
small, whereas the greedy algorithm is affected by large fluctuations between different instances of the
problem. This can be explained considering two different aspects: (i) the MTA algorithm uses the most
efficient split policy, and (ii) the MTA algorithm allocates requests based on the difference between the
largest and second largest value of the desirability matrix. The former aspect allows MTA to distribute
the energy cost among multiple things, the second one, instead, allows MTA to consider the impact of
an allocation on the other requests. The greedy algorithm, instead, does not exploit such techniques:
requests that have highly heterogeneous costs between things may be drastically penalized.
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Based on these results, we can notice that the split of requests among different things in
consecutive periods can effectively reduce the maximum energy consumption. Specifically, the MTA
algorithm always selects the best solution, among all the split policies and all the value of the
desirability matrix, in order to adapt to different scenarios, each one characterized by a different
number of both requests and things.

7. Conclusions

In this work we proposed a solution to allocate QoS-aware requests in a massive IoT deployment.
We formally defined the problem along with a detailed QoS characterization of the IoT systems and
all its building blocks. Then, we proposed an efficient heuristic, which fully exploits the context
information in order to maximize the lifetime of the connected IoT systems. Finally, we evaluated our
proposed solution through simulation and compared the obtained results against a greedy algorithm,
showing how the proposed solution fully exploits the context information to effectively reduce the
power consumption among things. Based on our results, we foresee that the MTA algorithm can
be exploited to enhance available IoT-Cloud solutions by effectively splitting requests to multiple
available smart devices. As a matter of facts, the FIWARE architecture relies on a particular GE, called
Orion Context Broker, that is a publish/subscribe context broker. Smart devices publish their values
enriched with context information, whereas applications can retrieve stored values from the broker
by means of context-enriched queries. The MTA algorithm can be easily integrated within the Orion
Context Broker, or by means of a dedicated IoT Broker (https://forge.fiware.org/plugins/mediawiki/
wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.IoTBroker), to resolve application
queries to different things in order to extend the lifetime of connected things.

Moreover, especially when the fog layer is employed, our solution, in conjunction with a
monitoring framework, can be exploited to handle the dynamic nature of IoT deployments by
reallocating requests at runtime whenever a change in the environment occur. Such behavior
is of paramount importance in scenarios characterized by real-time requirements in which the
edge layer is exploited to aggregate and process data in timely manner. The FIWARE IDEC GE
(https://fimac.m-iti.org/5d.php), for example, has been designed to aggregate data on a gateway
and to implement a Complex Event Processing engine that allows applications to only subscribe to
value-added data. The MTA algorithm can be exploited to drive the gathering of important data
allowing to meet application requirements whilst reducing the overall energy consumption.
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