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Abstract: An accurate and cost-effective micro sun sensor based on the extraction of the sun vector
using a phenomenon called the “black sun” is presented. Unlike conventional image-based sun
sensors where there is difficulty in accurately detecting the sun center, the black sun effect allows
the sun center to be accurately extracted even with the sun image appearing irregular and noisy due
to glare. This allows the proposed micro sun sensor to achieve high accuracy even when a 1 mm ×
1 mm CMOS image sensor with a resolution of 250 × 250 pixels is used. The proposed micro sun
sensor is implemented in two application modes: (1) a stationary mode targeted at tracking the sun
for heliostats or solar panels with a fixed pose of single image sensor of 1 mm × 1 mm × 1.74 mm
in size and (2) a non-stationary mode targeted at determining the orientation of moving platforms
with six sensors on the platform, which is configured in an icosahedron geometry of 23 mm × 23 mm
× 12 mm in size. For the stationary mode, we obtained an accuracy of 0.013◦ by applying Kalman
filter to the sun sensor measurement for a particular sensor orientation. For the non-stationary mode,
we obtained an improved accuracy of 0.05◦ by fusing the measurements from three sun sensors
available at any instant of time. Furthermore, experiments indicate that the black sun effect makes
the precision of sun vector extraction independent of the sun location captured on the image plane.

Keywords: sun sensor; black sun effect; icosahedron configuration; sensor fusion

1. Introduction

One of the challenges in astrophysics, while capturing the images of a celestial star, is the optical
phenomenon called limb darkening [1]. It is an optical effect seen in celestial objects, such as the sun,
where the center appears to be brighter than the edge or limb of the star. Thus, the sun center will
be the brightest spot observable, often causing the incident image pixel to be oversaturated. When a
CMOS image pixel is oversaturated, the phenomenon of electron overspill occurs, such that the output
signal of the pixel is read as “near zero” if no proper compensation is provided, as shown in Figure 1.
This is referred to as the “black sun” effect. Although black sun is an undesirable phenomenon that is
removed in ordinary photometry [2], we use it to accurately and robustly determine the sun centroid
in an image for the sun vector extraction in image-based sun sensors. Sun sensors are widely used in
space applications [3,4] but are not limited to them. Applications, such as alternative power generation
relying on solar panels [5] and heliostats [6] on earth, also require accurate solar tracking to provide
maximum throughput.
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Figure 1. Left: Sun captured by a NanEye camera; Right: Oversaturation in a CMOS Image Sensor 
causes electron overspill that increases the reference voltage, resulting in the output signal being 
“near zero”. 

Sun sensors are based on microelectromechanical systems (MEMS) and camera image sensors. 
MEMS-based sun sensors [7,8] have a mask with small pinhole apertures placed in front of the active 
pixel sensor (APS). MEMS-based sun sensors offer high accuracy with the tradeoff of a small  
field-of-view (FOV). To increase the FOV, MEMS-based sun sensors use multiple masks or sensors, 
which increases the overall cost. For instance, a commercially available MEMS-based sun sensor [9] 
having an accuracy of 0.3° can cost over €10K. XDSS [10] fabricated an accurate MEMS-based sun 
sensor with a large FOV by using a mask with a 13 × 13 aperture array, where each aperture provides 
13° × 13° sub-FOVs, resulting in a 105° × 105° FOV with 0.05° accuracy. SENSOSAL, developed for 
CubeSat [11], employed five MEMS-based sensors—one with 0.05° precision and ± 6° FOV and four 
with 0.5° precision and ± 60° FOV. On the other hand, camera-based sun sensors focus on large FOVs, 
they have reduced cost and offer accuracies acceptable for the given task. Jet Propulsion Lab (JPL) 
[12] designed a sun sensor for the Mars Exploration Rover (MER) by using a charge-coupled device 
(CCD) monochrome wide-angle camera with a FOV of 120° × 84°. The sensor used a neutral density 
optical filter to reduce incoming light in such a way that it could capture the sun and compute the 
centroid with a precision of 1°. Deans et al. [13] used a 180° FOV fish-eye lens with off-the-shelf 
components to achieve a precision within 1° for 89.77% of the time. Barnes et al. [14] introduced a 
novel sun sensor using 17 light intensity sensors positioned uniformly over a hemispherical shape 
and were able to obtain solar azimuth and zenith precisions within 5° and 1°, respectively. While they 
achieved 360° coverage, their overall accuracy was considerably low and suggested adding more 
sensors to improve the accuracy. Liu et al. [15] extended this approach by using an array of nine 
CCDs with a 640 × 480 pixel resolution instead of light intensity sensors to obtain a precision of 0.2° 
and 0.1° in azimuth and zenith, respectively. However, they arranged their cameras in such a manner 
that the sun captured should lay in the central image area to obtain higher accuracy. They also used 
the blooming of the CCD to their advantage by using blooming lines to supplement the sun vector 
extraction. Nevertheless, they observed that the error increases when sun image is captured at image 
boundaries due to increased distortion effect or when two blooming lines are close together; their 
proposed sensor is larger than 200 mm × 200 mm. Conventional instruments such as a MICROTOPS 
II sun photometer [16] can also track the sun by keeping the bright point of light from the sun in their 
crosshair, but with the tracking accuracy of up to 1°. The focus of this research is on filling the gap 
between MEMS and camera-based sun sensors by supplementing the simplicity, cost-effectiveness, 
and wide FOV of camera-based sun sensors with the accuracy and small size of MEMS-based sun 
sensors. We achieve this by proposing an approach for extracting the sun vector that will result in a 
wide-FOV, cost-efficient, and accurate sun sensor that uses off-the-shelf components for  
easy deployment. 

In this paper, we present a cost-effective micro sun sensor by extracting the sun vector from 
image sensors accurately and robustly using the black sun effect, despite irregular and noisy sun 
image due to glare. A short version of this paper with preliminary results was presented at IEEE 

Figure 1. Left: Sun captured by a NanEye camera; Right: Oversaturation in a CMOS Image Sensor
causes electron overspill that increases the reference voltage, resulting in the output signal being
“near zero”.

Sun sensors are based on microelectromechanical systems (MEMS) and camera image sensors.
MEMS-based sun sensors [7,8] have a mask with small pinhole apertures placed in front of the
active pixel sensor (APS). MEMS-based sun sensors offer high accuracy with the tradeoff of a small
field-of-view (FOV). To increase the FOV, MEMS-based sun sensors use multiple masks or sensors,
which increases the overall cost. For instance, a commercially available MEMS-based sun sensor [9]
having an accuracy of 0.3◦ can cost over €10K. XDSS [10] fabricated an accurate MEMS-based sun
sensor with a large FOV by using a mask with a 13 × 13 aperture array, where each aperture provides
13◦ × 13◦ sub-FOVs, resulting in a 105◦ × 105◦ FOV with 0.05◦ accuracy. SENSOSAL, developed for
CubeSat [11], employed five MEMS-based sensors—one with 0.05◦ precision and ± 6◦ FOV and four
with 0.5◦ precision and ± 60◦ FOV. On the other hand, camera-based sun sensors focus on large FOVs,
they have reduced cost and offer accuracies acceptable for the given task. Jet Propulsion Lab (JPL) [12]
designed a sun sensor for the Mars Exploration Rover (MER) by using a charge-coupled device (CCD)
monochrome wide-angle camera with a FOV of 120◦ × 84◦. The sensor used a neutral density optical
filter to reduce incoming light in such a way that it could capture the sun and compute the centroid
with a precision of 1◦. Deans et al. [13] used a 180◦ FOV fish-eye lens with off-the-shelf components to
achieve a precision within 1◦ for 89.77% of the time. Barnes et al. [14] introduced a novel sun sensor
using 17 light intensity sensors positioned uniformly over a hemispherical shape and were able to
obtain solar azimuth and zenith precisions within 5◦ and 1◦, respectively. While they achieved 360◦

coverage, their overall accuracy was considerably low and suggested adding more sensors to improve
the accuracy. Liu et al. [15] extended this approach by using an array of nine CCDs with a 640 × 480
pixel resolution instead of light intensity sensors to obtain a precision of 0.2◦ and 0.1◦ in azimuth and
zenith, respectively. However, they arranged their cameras in such a manner that the sun captured
should lay in the central image area to obtain higher accuracy. They also used the blooming of the CCD
to their advantage by using blooming lines to supplement the sun vector extraction. Nevertheless,
they observed that the error increases when sun image is captured at image boundaries due to increased
distortion effect or when two blooming lines are close together; their proposed sensor is larger than
200 mm × 200 mm. Conventional instruments such as a MICROTOPS II sun photometer [16] can also
track the sun by keeping the bright point of light from the sun in their crosshair, but with the tracking
accuracy of up to 1◦. The focus of this research is on filling the gap between MEMS and camera-based
sun sensors by supplementing the simplicity, cost-effectiveness, and wide FOV of camera-based sun
sensors with the accuracy and small size of MEMS-based sun sensors. We achieve this by proposing
an approach for extracting the sun vector that will result in a wide-FOV, cost-efficient, and accurate
sun sensor that uses off-the-shelf components for easy deployment.
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In this paper, we present a cost-effective micro sun sensor by extracting the sun vector from image
sensors accurately and robustly using the black sun effect, despite irregular and noisy sun image
due to glare. A short version of this paper with preliminary results was presented at IEEE Sensors
2017 [17]. Extensive testing is presented in this paper along with new observations. We found false
positives being reported by the centroid algorithm which was addressed by adding additional checks
to it. Additional performance comparison of the centroid algorithm with the conventional centroid
method was also conducted. Unlike other conventional image-based sun sensors, we observed that
our black sun effect based sun vector measurement error or variance is independent of the location of
the sun captured on the image plane. To evaluate the sensor’s performance purely, we ignored the
transformation between topocentric and sensor frame and evaluated the sun vector measurement in
the sensor frame. We demonstrate its performance based on two types of applications: a stationary
application for heliostats or solar panels with a single image sensor configuration at the fixed pose and
a non-stationary application for determining the orientation of a moving platform, such as the space
rover with a multiple-image-sensor icosahedron configuration. The experiments indicate an improved
accuracy of 0.013◦ is achievable in azimuth and elevation for the stationary application and 0.05◦ in
azimuth and elevation for the non-stationary applications. The stationary application offers a FOV
of 90◦ whereas the non-stationary application offers 360◦ with a fraction of the cost of MEMS-based
sun sensors.

2. Sun Vector Extraction

2.1. Camera Selection

For our study, we selected the Awaiba NanEye 2D camera [18], which is presently amongst the
smallest CMOS cameras commercially available (Figure 2). The NanEye 2D was specifically designed
to be used for an endoscopic application having a size of 1 mm × 1 mm × 1.74 mm with a resolution
of 250 × 250 pixels and a 90◦ FOV. The camera module is supported by a Xilinx Spartan-6 FPGA frame
grabber that is capable of capturing four cameras simultaneously at 42 to 55 fps. Not only does the
size give us flexibility, but its ability to exhibit the black sun effect also helps us to achieve off-the-shelf
component assembly for cost-effectiveness.
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Figure 2. Awaiba NanEye 2D camera module compared with a matchstick for size (Source: CMOSIS, 2015).

The black sun effect is an unwanted effect that most manufacturers remove through a post-image
process by replacing the affected pixel value with the surrounding pixel value. Thus, it was very
crucial to study what parameters could affect the appearance of the black sun in the NanEye camera.
The chip-on-the-tip camera we used has an automatic exposure control integrated into it and allows
the control up to 250 exposure steps. Each step exposure step decreases the exposure time by 90.8 ns
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(equivalent of the exposure time of one line). The image signal gain can also be set at four levels; i.e.,
gain 0 = −1.6 dB, gain 1 = 1 dB, gain 2 = 2.4 dB, and gain 3 = 6.5 dB. Figure 3 below shows the samples
of different parameters.
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2.2. Centroid Detection

Based on the black sun effect in a CMOS imaging sensor, we were able to detect the centroid
of the sun with its shape invariance. When the sun image is captured, the sun image segment has
one area—the black sun—which has a different pixel intensity than that of the surrounding segments.
In Figure 4, each of the rows shows the binary mask of the sun image captured by the sensor at
different pixel intensity thresholds. The sun image segment is irregular and noisy, particularly in the
case of Figure 4a, although the black sun spot appears inside the pixel mass but not necessarily at
the center which causes conventional methods, such as Circle Hough transform (CHT) [19], to fail.
To have a robust detection, in any case, we gradually decrease the intensity value from maximum pixel
intensity to a certain level iteratively, thus, making it possible for the centroid positioning in tiny, noisy,
and insufficiently conditioned segments. We first detect the strong corners in the binary mask and
then mark their survival over multiple iterations. In each iteration, we create a binary mask with an
intensity lower than that in the last iteration. The sub-accuracy of strong corner points is refined by
using subpixels (i.e., hyperacuity). Corner points that appeared at the edge of the binary mask are
removed based on distance from the boundary of the largest contour shape in the binary mask of that
iteration. An additional check is made that the largest contour shape has an eccentricity of less than
0.9. Otherwise, some image artifacts were causing false positives due to the wrong selection of contour
shape. In Figure 4, each row represents an individual iteration, and each column from left to right
represents an incremental step within an iteration. After running all iterations, we have all the possible
candidate points (Figure 5a), now we determine which points survived between iterations (Figure 5b)
and then select the point that has the largest radius because the black sun will be the largest segment
inside, as seen in Figure 5c. In addition, we had to perform an additional check that the black sun
is at least a specific size. Because the algorithm was producing outliers more weight is given to the
surviving points between iteration rather than the largest radius. The pseudocode for the proposed
centroid detection algorithm is given in Algorithm 1.
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Algorithm 1. Sun centroid detection using black sun detection

Input: Captured Image
1: Apply Gaussian Blur and convert to grayscale
2: Set number of loop f and threshold = maximum pixel intensity - α (α: user-defined unsigned integer based on
empirical sensor performance)
3: while f >= 1

3-1: Generate binary mask for pixels with intensity > threshold + f
3-2: Find contour in the binary mask
3-3: Find the index of largest contour
3-4: Get strong corner points
3-5: Find subpixel
3-6: Save corner points inside the largest contour (with eccentricity < 0.9) away from edges
3-7: Accumulate surviving points between iterations
3-8: Decrement f

end while
4: Accumulate corner points
5: if no surviving points then

Get accumulated corner point
Check for point with the largest radius > minimum radius

else
Get surviving points
Check for point with the largest radius > minimum radius

end if
Output: Black Sun Centroid Coordinates

(
Cx, Cy

)
2.3. Performance Comparison

In case of a MEMS-based sun sensor, their construction has a slit in front of APS which allows
them to easily detect the sun centroid simply by finding out which pixels are illuminated. The problem
of detecting centroid is prominent for camera-based sun sensors where other imaging artifacts are
introduced. To avoid the glare when capturing the sun image, Minor et al. [20] and Rahim et al. [21]
installed a neutral density filter in front of the lens to reduce the incoming light. Thus, allowing them
to use CHT for centroid detection. Liu et al. [15] also used CHT to detect the sun centroid and was able
to compensate for the blooming effect by using an aggressive threshold. We tested CHT against the
proposed centroid detection algorithm (Figures 6b and 7b). Two datasets were used for comparison;
one with 467 images captured at 1 min intervals and a second with 551 images taken at 1 s intervals as
shown in Table 1. Both dataset images were taken with the same camera at different durations and
locations with varying illumination. CHT had a detection rate of only 9.85%, whereas our algorithm
achieved 99.78% in the first dataset. In the second dataset, however, CHT managed to detect 16.33% of
the time, but it detected other artifacts as circles too (Figure 7a). Our proposed method had a 99.82%
detection rate in the dataset. The reason for failure of the CHT (Figure 6a) method can be summarized
by looking at the binary segmented image in Figures 6c and 7c; the segmented image shows that the
sun image due to the glare appears irregular. Since we know that the black sun represents the true
center of the sun, it implies that the center-of-mass of this irregular shape will not always appear to be
the sun center. The black sun centroid-detection approach enables our sun vector extraction to cope
with a light cloud cover and glare.
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Table 1. Detection Rate.

Positive Detection (%) Circular Hough Transform Our Method

Dataset 1 9.8501 99.7858
Dataset 2 16.3339 99.8185

(Tested on Dataset 1 with 467 images and dataset 2 with 551 images).

2.4. Sun Vector from Camera Pixels

For further calculations, we need to represent the centroid pixel coordinates as a sun vector
→
V

in terms of the azimuth angle ϕ and elevation angle θ in our sensor frame (FC). We can estimate the
sun vector using the calibrated camera’s intrinsic parameters [focal length f, principal point (px, py)]
and the image coordinates (u, v) of the black sun centroid obtained in the image plane from image
processing (Figure 8).
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3. Stationary Application

3.1. Approach

For a stationary application, we will employ a single image sensor configuration to capture
the black sun. Owing to the stationary nature of the application, we can adopt a filtering scheme
to the measurement coming from the centroid detection algorithm. This scheme would utilize the
information of the slope from the ground truth of the pre-known location to remove the measurement
noise. The process flow diagram is shown in Figure 9.
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3.2. Filtering of the Sun Vector

The raw measurement generated from the proposed centroid-detection algorithm had inherent
process noise due to the slight fluctuations in centroid estimation caused by the size and shape
variations of the black sun. Therefore, to smooth out our measurement, we applied a noise filtering
method such as the Kalman Filter (KF). The steps of KF are summarized below:

Prediction:
x̂−k = Axk−1 + Buk−1 (1)

P−k = APk−1 AT + Q (2)

Filtering:

Kk = P−k HT
(

HP−k HT + S
)−1

(3)

x̂k = x̃k + Kk(zk − Hx̃k) (4)

Pk = (I − Kk H)P−k (5)

where k is the discrete time, A is the system matrix, B is the input matrix, uk is the input vector, xk is
the state vector, x̂k is the state estimate, P−k is prediction error covariance, H is the observation model,
Q is the covariance matrix, Kk is the Kalman gain, zk represents the sensor measurement and S is also
error covariance.

We further improved the filtered vector by utilizing the distance between two consecutive sun
vectors in the topocentric frame obtained from sun ephemeris data. For a pair of filtered measurement
vectors (xk and xk−1), the vector xk−1 is adjusted such that the distance between vectors is equal
to the distance obtained from two consecutive topocentric sun vectors. Figure 10 shows the effect
of the filter in smoothing the raw measurement. The performance metrics are discussed in the
experimentation section.
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4. Non-Stationary Application

4.1. Approach

For a non-stationary application, we cannot apply the filtering described previously, as the
sensor would be moving. To address this, we employed a multiple-image-sensor icosahedron-based
configuration. The icosahedron configuration allows three image sensors to capture the black sun
simultaneously at any given time. Consequently, this sun sensor design will have a FOV of 360◦.
After the sun vector extraction, we used the sensor fusion method to fuse three vectors to provide an
accurate and robust sun vector. The process flow diagram is shown in Figure 11.
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4.2. Icosahedron Design

For measuring the sun vector with multiple image sensors sharing the same scene capture,
we require hemispherical coverage. To meet this goal, we employed a dome structure based on an
icosahedron configuration layout, or a similar geometric configuration approximating the spherical
surface with planar surface patches of multiple cameras (six-camera configuration shown in Figure 12
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as an example). An icosahedron configuration provides an optimal number of vertices facilitating
equidistant camera placement.
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Figure 12. Multiple-image-sensor icosahedron configuration for the sun sensor design with a
three-image sensor capable of capturing the sun simultaneously at any given time.

Using the geometry of a polyhedron, specifically an icosahedron, we designed our sun sensor
and positioned the cameras along the vertices of the polyhedron. Compensating for the offset from
the center of the sphere by relating the parameters of the camera, we determined the solid angle
made by the camera and then computed the ideal distance that would provide the optimal FOV
intersection. The sensor CAD model was designed such that it could house six NanEye cameras
and had an easy assembly. Initially, the angle between the cameras in the first prototype was 64◦,
as shown in Figure 13a,c, then later improved to 72◦ in the second prototype shown in Figure 13b,d
after experimentation. To improve the solid angle between the cameras, one camera was perpendicular
to the horizon whereas cameras were placed in a ring. The two prototypes were built in three parts to
allow easy access and convenience in mounting. The footprint of the second prototype was 35 mm ×
35 mm × 15 mm, with a weight of approximately 22.76 g with camera modules (without controller).
Based on the second prototype, we adapted our design for aluminum metal printing and managed to
reduce the size even further down to 23 mm × 23 mm × 11 mm. The computer-aided design (CAD)
model can be seen in Figure 14, whereas the physical metal sun sensor case is shown along with the
second prototype in Figure 15.
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4.3. Individual Sensor Orientation Estimation

As we are measuring sun vector in multiple sensor frames, we need to transform them into a
unified sensor frame for sensor fusion. Attitude determination problem is widely described by the
Wahba’s problem [22] involving a multiple numbers of vectors observations. The problem (Equation (6))
is to find the orthogonal matrix A between two sets of corresponded unit vector bi and ri by minimizing
the loss function;

L(A) =
1
2

N

∑
i=1
‖bi − Ari‖2 (6)

We will be using a computationally efficient algorithm developed by Lourakis [23], which establishes
links between attitude estimate and absolute orientation. The absolute orientation problem tries to find
the Euclidean transformation R, t that aligns two sets of corresponding 3D points pi and qi measured
in two different coordinate systems by a least squares solution minimizing the mean squared residual
error (Equation (7)).

1
2

N

∑
i=1
‖qi − (Rpi + t)‖2 (7)

4.4. Sensor Fusion

As mentioned, the sun sensor with an icosahedron configuration allowed us to capture three sun
vectors simultaneously. For non-stationary applications, we are going to fuse the vectors to obtain
an accurate and robust sun vector. We used the Covariance Projection Method (CPM) [24,25] for
fusing our sensors data in a unified sensor frame. The CPM is based on projecting the joint probability
distribution of redundant data sources onto the constraint manifold. The constraint manifold represents
the constraints to be satisfied among the redundant data sources, which is defined in the extended
space with all the redundant sources of data considered as independent variables. Then, the CPM
framework of data fusion represents the projected probability distribution on the constraint manifold
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as the result of data fusion. The individual camera covariance can be assigned by the variances
obtained from experimentation when running the cameras in a stationary application.

5. Experimentation

We conducted our experiments under the open sky at the location 37◦ 17’ 34.17” latitude and
126◦ 58’ 41.754” longitude, but without heavy cloud cover to avoid any illumination issue due to
clouds. The ground truth solar angles were obtained from equations provided by NOAA/ESRL’s
Global Monitoring Division (GMD) [26] based on Jean M.’s book on astronomical algorithms [27] with
a high degree of accuracy. The equations inputs are the GPS coordinates of the sun sensor and the
time of the experiment. Even though the cameras were capable of providing 42 to 55 fps, but in the
absence of a hardware trigger, we throttled the image grab at 1-s intervals for the experimentation.
Nearly 35,000 images were taken that captured the black sun effect. The proposed centroid-detection
algorithm takes an average of 85 ms where the maximum is 120 ms, and the minimum is 60 ms.

5.1. Black Sun Effect on the Error of Sun Vector Measurement

Liu et al. [15] observed that, for conventional image-based sun sensors, the error or the variance
in the sun vector measurement is subject to the location of the sun captured on the image plane.
They limited the measurement only around the image center due to the growing effect of distortion
on the measurement accuracy when moving to the edge of the image. It is interesting to note that,
in our experiment, we observed no such phenomena: No distortion effect is observed in relation to the
location of the sun image due to the use of the black sun. In other words, the error or the variance in
the sun vector measurement is independent of the measurement location on the image plane, as shown
in Figure 16, Figure 17, and Figure 18. Figure 16, Figure 17, and Figure 18 represent the variation
of variances measured during 90 minutes of the experiment for cameras 1, 2 and 3, respectively,
of different orientations. The variances were computed at every 1-minute interval based on the sun
vector measurement from each second. Without having the ground truth of the camera coordinate
frame with reference to the topocentric frame, the variance statistics were based on the angle difference
between two consecutive sun vector measurements the ground truth of which is known.
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subdivided at 1-minute intervals; (b) image frames showing the transition of the position of sun
image captured on image plane from beginning to end of experimentation.
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Figure 18. (a) Camera 3 variances observed by elevation and azimuth during experimentation
subdivided at 1 min intervals; (b) image frames showing the transition of the position of sun image
captured on image plane from beginning to the end of experimentation.

5.2. Stationary Application

The following root-mean-square-errors (RMSEs) along with standard error given in Table 2 are in
degrees (◦) and were calculated from the constant ground truth sun vector 1−s angle difference, and the
measured angle difference 1-s between two consecutive measurements. Without filtering the azimuth
angle, the best RMSE and standard error for the given sample, in either case, was 0.1250◦ (0.0884◦),
whereas the elevation angle RMSE was 0.1255◦ (0.0888◦). Figure 19 visually highlights the importance
of filtering after measurement, as the error in raw measurement is asymmetrical. After filtering, it can
be seen that this reduces the azimuth angle RMSE and standard error to 0.0179◦ (0.0127◦) and elevation
angle RMSE and standard error to 0.0184◦ (0.0130◦). KF alone exhibits around 83.59% improvement in
error whereas combined with distance adjustment, the improvement was 85.68%.
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Table 2. Stationary Application Single Camera Sensor RMSE.

RMSE (Standard. Error) Azimuth Elevation

Raw Measurement 0.1250◦ (0.0884◦) 0.1255◦ (0.0888◦)
Kalman Filter 0.0205◦ (0.0145◦) 0.0208◦ (0.0147◦)

Distance Adjustment 0.0179◦ (0.0127◦) 0.0184◦ (0.0130◦)
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5.3. Non-Stationary Application

In the case of non-stationary measurement, at least three cameras will capture the sun
simultaneously. Firstly, each camera measurement was transformed into a unified sensor frame
(camera 1 frame in this case), and then the measurements were fused together using sensor fusion to
obtain the result. Camera covariances were assigned based on experimentation result from running
the individual camera in a stationary application. Figures 20 and 21 shows images captured by
individual cameras with sensor frame information overlay, and the RMSEs along with standard error
calculated from time synchronized samples which are given in Table 3. The graphs in Figure 22
compare individual cameras and fusion results in a unified sensor frame. By fusing, not only did
it come close to the ground truth, but it also stabilized the overall measurements. The fused sun
measurement shows an RMSE and standard error in the azimuth and elevation angles as 0.0713◦
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Table 3. Non-Stationary Application root-mean-square (RMS) Error.

RMS Error (Standard Error) Azimuth Elevation

Camera 1 0.1429◦ (0.1010◦) 0.1422◦ (0.1005◦)
Camera 2 0.1158◦ (0.0819◦) 0.1095◦ (0.0775◦)
Camera 3 0.1261◦ (0.0892◦) 0.1268◦ (0.0897◦)

Fused 0.0713◦ (0.0504◦) 0.0717◦ (0.0507◦)

6. Conclusions

In this paper, we explained in depth how we took advantage of the phenomenon in CMOS image
sensors known as the “black sun” caused by electron overspill at an oversaturated pixel. It allows
the extraction of the sun centroid accurately and robustly even when the sun image appears irregular
and noisy due to glare. Compared to other image-based sun sensors, we observed that black sun
based sun vector measurement error or variance is independent of the location of the sun captured
on the image plane. We demonstrated the performance of our approach in two applications using
micro-camera as small as 1 mm × 1 mm × 1.74 mm in size and with a pixel resolution as low as
250 × 250. First, a stationary application (e.g., solar panel or heliostat) where we observed an accuracy
of 0.0127◦ and 0.0130◦ in azimuth and elevation angles, respectively, with an FOV of 90◦ and second,
a non-stationary application for a moving platform with six-image-sensors in icosahedron geometry of
23 mm × 23 mm × 12 mm in size, which showed an accuracy of 0.0504◦ and 0.0507◦ in the azimuth
and elevation angles, respectively, with an FOV of 360◦. The fusion of multiple image-sensors allows
us to improve the results as compared to an individual sensor while at the same time use a minimal
number of image sensors to achieve hemispherical coverage. In further studies, we aim to improve the
speed and accuracy of the sensor.
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