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Abstract: Research on data-driven fault diagnosis methods has received much attention in recent
years. The deep belief network (DBN) is a commonly used deep learning method for fault diagnosis.
In the past, when people used DBN to diagnose gear pitting faults, it was found that the diagnosis
result was not good with continuous time domain vibration signals as direct inputs into DBN.
Therefore, most researchers extracted features from time domain vibration signals as inputs into
DBN. However, it is desirable to use raw vibration signals as direct inputs to achieve good fault
diagnosis results. Therefore, this paper proposes a novel method by stacking spare autoencoder (SAE)
and Gauss-Binary restricted Boltzmann machine (GBRBM) for early gear pitting faults diagnosis
with raw vibration signals as direct inputs. The SAE layer is used to compress the raw vibration
data and the GBRBM layer is used to effectively process continuous time domain vibration signals.
Vibration signals of seven early gear pitting faults collected from a gear test rig are used to validate the
proposed method. The validation results show that the proposed method maintains a good diagnosis
performance under different working conditions and gives higher diagnosis accuracy compared to
other traditional methods.
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1. Introduction

Gears play an important role in mechanical transmission systems. It is necessary to diagnose
gear faults to ensure stable and reliable operation of the systems. The methods of fault diagnosis
can be roughly divided into two categories: model-driven methods and data-driven methods [1].
Model-based diagnostic methods require a deep understanding of the systems, and many parameter
adjustments need to be performed to build the model. Therefore, this paper applies data-driven
methods to diagnose gear faults. The data-driven diagnostic process involves two steps: (1) establish a
data model based on known state data, (2) use the established model to diagnose mechanical faults.
The fault diagnosis process can be regarded as the process of applying the model for pattern recognition.
When building a fault diagnosis model, there are generally two processes: feature extraction and
pattern recognition [2]. The purpose of feature extraction is to convert high-dimensional data into
low-dimensional features, which can better perform pattern recognition. There are many methods for
feature extraction such as statistical analysis methods, fast Fourier transform (FFT), Hilbert–Huang
transform (HHT) [3], empirical mode decomposition (EMD) [4], wavelet transform (WT) [5], principal
components analysis (PCA) [6], and so on. There are many traditional pattern recognition methods
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including Bayesian classifier [7], K-nearest neighbor (KNN) algorithms [8], artificial neural network
(ANN), support vector machine (SVM) [9], etc. Traditional ANN can only distinguish less complex
features, and the diagnosis results are greatly affected by process of feature extraction and feature
selection. In recent years, research on deep learning is getting popular. Deep learning can improve the
shortcomings of traditional neural network. There are many types of deep learning methods applied
in fault diagnosis, which can be divided into supervised methods such as deep neural network (DNN),
convolutional neural network (CNN) [10] and unsupervised methods such as deep belief network
(DBN), and autoencoder (AE).

Zhang et al. [11] used DNN to diagnose bearing faults and directly used the collected vibration
signals as the inputs of neural network, removing the error caused by the feature extraction process.
Tested by two publicly available data from University of Cincinnati Center for Intelligent Maintenance
System (IMS) and Case Western Reserve University (CWRU), their proposed method was shown to be
able to effectively diagnose bearing faults. Chen et al. [12] used a CNN to diagnose gearbox faults.
FFT was performed on the vibration signals. Statistical methods were used to extract features from the
time-domain and the frequency domain signals as inputs to the CNN. Chen et al. [13] applied ensemble
empirical mode decomposition (EEMD) to extract features, and then applied DBN to classify the gear
faults. Wang et al. [14] applied unsupervised continuous sparse autoencoder (CSAE) for feature
learning and connected a layer of back propagation (BP) networks behind the CSAE. The training
process first applied CSAE for unsupervised classification, and then used BP for supervised learning.

DBN has been used for fault diagnosis. The research using DBN for fault diagnosis is reviewed
next. Tran et al. [15] used Teager–Kaiser energy operator (TKEO) and DBN to diagnose reciprocating
compressor valves faults. In their paper, TKEO was proposed to estimate the amplitude envelopes.
The collected vibration signal was processed by WT denoising, and then the time domain signal was
converted into a frequency domain. Finally, the statistical methods were used to extract the feature
as inputs of the DBN. The diagnostic method used by Han et al. [16] was similar to the method in
reference [15], except that it adds a particle swarm optimization-support vector machine (PSO-SVM) to
classify extracted parameters. Shao et al. [17] applied the dual-tree complex wavelet packet for feature
extraction, and then used statistical methods for feature selection. Finally, an adaptive DBN was used
for fault classification. Wang et al. [18] also applied statistical methods to process time-frequency
domain signals, and then used DBN to detect multiple faults in axial piston pumps. Lee et al. [19]
used DBN to diagnose the air handling unit (AHU). Ahmed et al. [20] combined DBN and softmax
classifiers to diagnose rolling bearing faults. Tao et al. [21], He et al. [22], and Chen et al. [23] also
applied statistical methods for feature extraction, and then applied DBN for fault classification.

Deutsch et al. [24] integrates DBN and a particle filter for bearing remaining useful life (RUL)
prediction. Geng et al. [25] were inspired by the glial chains to improve the structure of the restricted
Boltzmann machines (RBMs). An improved greedy layer-wise learning algorithm was used to
improve the diagnostic accuracy. Ren et al. [26] combined deep belief networks and multiple models
(DBN-MMs) to diagnose complex systems faults. Shao et al. [27] combined the CNN with the DBN
to process the compressed sensing (CS). In addition, exponential moving average (EMA) technique
was used to improve diagnostic accuracy of the constructed deep model. Jiang et al. [28] proposed a
feature fusion DBN method to diagnose rotating machinery fault. Moreover, the locality preserving
projection (LPP) was used to fusion deep features to further improve the quality of the deep features.

SAE has been used for fault diagnosis recently. The research using SAE to diagnose faults is
reviewed next. Shao et al. [29] proposed ensemble deep auto-encoders (EDAEs) to diagnose bearing
faults. The effects of different activation functions and various AEs on diagnostic results were discussed
in the article. Maurya et al. [30] used stacked autoencoder to fuse the low-level feature. And then a
multi-class SVM was used as classifier. Shao et al. [31] applied deep autoencoder to diagnose rotating
machinery faults. The maximum cross entropy was used as the loss function and artificial fish swarm
(AFS) algorithm was applied to optimize the key parameters of the deep autoencoder. Meng et al. [32]
used denoising autoencoder to diagnose bearing faults. They improved the fault diagnosis rate by
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reusing the data points between the adjacent samples. The hyper parameter was adjusted by changing
the number of units per layer to adapt to the different resilience of the layer.

This paper proposed integrates SAE with GBRBM to diagnose early gear pitting faults. The SAE is
used to convert high-dimensional data into low-dimensional data, and GBRBM is used to accommodate
the continuous distribution of the inputs. The rest of this paper is organized as follows. In Section 2,
the proposed method based the stacked SAE and GBRBM is explained in details. In Section 3,
the description of the experimental test rig used for collecting the vibration data for the seven gear
pitting faults is provided. In Section 4, the validation results and the discussion of the validation results
are presented. Finally, Section 5 concludes the paper.

2. The Proposed Method

2.1. Framework of Proposed Method

Most of the data-driven diagnosis methods involve separate manual feature extraction process.
Manual feature extraction mostly relies on human expertise, and the manual feature extraction process
is time-consuming and labor intensive. Moreover, the diagnostic results are greatly affected by the
feature extraction method. Therefore, diagnostic methods that do not include separate manual feature
process are more desirable. Inspired by the unsupervised learning process, this paper proposes a
diagnostic method that combines supervised learning with unsupervised learning. The framework of
the diagnostic method is shown in Figure 1.
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As shown in Figure 1, the framework of the proposed method includes three parts: (1)
unsupervised feature learning, (2) transfer the learned useful information to the new network, (3)
supervised fine-tuning the restructured network. Stacked SAE, GBRBM and RBMs are combined to
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work as a simultaneous signal processing and unsupervised feature extraction process. The blue circles
in the figure represent the input layer neurons, the red circles represent the hidden layer neurons, and
the green circles represent the output layer neurons. The entire diagnostic model has a total of 6 layers
of neurons. The specific training process contains 6 steps as shown in Figure 1, raw vibration signals
are first used for feature extraction through unsupervised learning, and the data is forwarded through
the SAE, GBRBM, two-layer RBM and softmax layers, then fine-tune the weights and biases from
unsupervised learning process of each layer according to the cross entropy error function.

The network training in Figure 1 consists of 6 steps. Table 1 shows the detailed calculation
principle for the 6 steps, and also includes input values, output values, and parameters transferred
for each layer. Figure 1 and Table 1 in combination gives a general understanding of the training
procedure. First, the unsupervised learning is performed layer by layer. Then, the learned useful
information is transferred into the new network. Finally, supervised fine-tune is performed to adjust
the entire network. The detailed equations are shown in Table 1.

Table 1. Detailed process of proposed method.

Overall process:
(1) Unsupervised: SAE→GBRBM→RBM(1,2)→Softmax→(2) Supervised: Back propagation

Step 1: SAE training
Input: training data x, W and b, λ, β, η1,
max-epochs(1)

for i to max-epochs(1)

• h = sigm(W1x + b1)

• x̂ = sigm(W2x + b2)

• JSAE = JMSE + λ·Jweight + β·Jsparse

• ∆wl
ij = ∆1∂Jsparse/∂wl

ij, ∆bl
i = ∆1∂Jsparse/∂bl

i

end
Output: hSAE, WSAE

1 , bSAE
1

Step 2: GBRBM training
Input: hSAE, max-epochs(2), w1

ij, c1
i , b1

j , σ2
i , η2, α1

for i to max-epochs(2)

• p(vi = v|h) = N(v, c1
i + ∑j w1

ij·hj,σ2
i )

• p(hj = 1|v) = sigm(b1
j + ∑i

vi
σ2

i
w1

ij)

• ∆wnew
ij = α1∆w1

ij + η2(< v(0)i h(0)j − v(1)i h(1)j >)

• ∆bnew
j = α1∆b1

j + η2(< h(0)j − h(1)j >)

• ∆cnew
i = α1∆c1

i + η2(< v(0)i − v(1)i >)

end
Output: hGBRBM, WGBRBM, bGBRBM
Step 3: RBM1 training
Input: hGBRBM, max-epochs(3), w2

ij, c2
i , b2

j , η3, α2

for i to max-epochs(3)

• p(vi = 1|h) = sigm(c2
i + ∑

j
w2

ijhj)

• p(hj = 1|v) = sigm(b2
j + ∑

i
viw2

ij)

• The update process of ∆wnew
ij , ∆bnew

j and ∆cnew
i

is similar to GBRBM

end
Output: hRBM1, WRBM1, bRBM1

Step 4: RBM2 training
Input: hRBM1, max-epochs(4), w3

ij, c3
i , b3

j , η4, α3

• The training process is similar to step 3.

Output: hRBM2, WRBM2, bRBM2
Step 5: Softmax layer
Input: hRBM2, w4

ij, dj

• yj = so f tmax(∑
p
i=1 (hiw4

ij + dj))

• so f tmax(zi) = (ezj / ∑
q
j=1 ezj )

Output: y, Wsoftmax, d
Step 6: Back propagation
Input: y, max-epochs(5), η5
for i to max-epochs(5)

• WSAE
1 , bSAE

1 , WGBRBM, bGBRBM, WRBM1, bRBM1,
WRBM2, bRBM2, Wsoftmax, d as the weight and
bias of fully connected DNN.

• Ecross−entropy =
−((o log y) + (1− o) log (1− y))

• ∆w =
∂Ecross−entropy

∂w , ∆b =
∂Ecross−entropy

∂b

end all
Output: the trained network
Step 7: Test the trained network with test sample
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2.2. Spare Autoencoder

Sparse autoencoder (SAE) [33,34] is an unsupervised learning network mainly used for data
dimensionality reduction and feature extraction. The SAE includes three layers: input layer
(n + 1 neuron), hidden layer (m + 1 neuron, m < n), and output layer (n neurons). Figure 1 show
the structure of SAE, which can be seen to contain two processes of encoding and decoding.

The encoding process of SAE can be implemented by Equation (1), and the decoding process can
be implemented by Equation (2).

h = sigm(W1x + b1) (1)

x̂ = sigm(W2h + b2) (2)

where x is the input matrix, W1 and b1 are the weight matrix and bias vector between input layer and
hidden layer, h is the hidden matrix, W2 and b2 are the weight matrix and bias vector between hidden
layer and output layer, and x̂ is the output matrix; function sigm (·)=1/(1 + e−z).

When the mean square error (MSE) is used as the loss function of SAE, the expected processing
results usually cannot be achieved. In order to make SAE perform better, a new loss function is
designed as Equation (3), which consists of three parts: JMSE, Jweight, and Jsparse [35]. The purpose of
using Jweight is to control the value of the connected weights to avoid overfitting [36]. The added Jsparse

is a sparsity penalty term, which can make SAE learn more features from the input by forcing SAE to
maintain a degree of sparsity [37,38].

JSAE = JMSE + λ · Jweight + β · Jsparse (3)

where JMSE is the mean square error term as show in Equation (4), Jweight is the weight penalty item as
show in Equation (5), Jsparse is the sparsity penalty term as show in Equation (6), λ is the regularization
parameter of weight term, and β is the coefficient of sparsity penalty term.

JMSE =
1
2s

s

∑
i=1
‖xi − x̂i‖ (4)

Jweight =
1
2

k−1

∑
l=1

nl

∑
j=1

nl−1

∑
i=1

W l
ij (5)

Jspare =
m

∑
j=1

KL(ρ‖ρ̂j) =
m

∑
j=1

(ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ

1− ρ̂j

)
) (6)

ρ̂j =
1
s

s

∑
i=1

h
ij

(7)

where s is the sample size of training set, k is the number of layers in the network, nl is the neurons
in layer l, ρ is the set neuron sparsity parameter, and ρ̂j is the sparsity of the j-th neuron as show in
Equation (7).

2.3. Develop the GBRBM based on RBM

Restricted Boltzmann Machine (RBM) is the basic component of the deep belief network
(DBN) [39,40]. Similar to the SAE, it is also an unsupervised learning network that can be used
for feature extraction. The RBM contains two layers: visible layer (contains n visible units) and hidden
layer (contains m hidden units). The neurons in the same layer are not connected, and neurons in
different layer are connected in each other. The weight matrix connecting the two layers is denoted
by W, the bias vector of the visible layer is denoted by c, and the bias vector of the hidden layer is
denoted by b.
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Inspired by statistical physics, it can be found that any probability distribution can be transformed
into an energy-based model. The joint probability distribution of the visible layer and the hidden
layer is proportional to the energy equation [41], as shown in Equation (8). And the joint probability
distribution of v and h can be obtained as shown in Equation (9).

− log P(v, h) ∝ E(v, h|θ) = −
n

∑
i=1

civi −
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viwijhj (8)

P(v, h|θ) = 1
Z(θ)

exp(−E(v, h|θ)) (9)

where vi is the visible layer unit, hj is the hidden layer unit, wij is the weights between visible layer
and hidden layer, ci and bj are the bias of two layers; m hidden units in hidden layer, n visible units
in visible layers, θ = {wij, ci, bj} are the parameters of RBM, and Z(θ) = ∑n ∑m exp(−E(v, h|θ)) is a
partition function.

The probability function of the visible layer is given by Equation (10).

P(v; θ) = ∑
h

P(v, h; θ)

= 1
Z(θ)∑

h
exp

(
n
∑

i=1
civi +

m
∑

j=1
bjhj +

n
∑

i=1

m
∑

j=1
viwijhj

)
= 1

Z(θ) exp
(

n
∑

i=1
civi

)
×

m
∏
j=1

∑
h

exp
(

bjhj +
n
∑

i=1
viwijhj

) (10)

Combining Equations (9) and (10), the conditional probability of the hidden layer can be obtained
as shown in Equation (11).

P(h|v; θ) = P(v,h;θ)
P(v;θ)

= ∏
j

exp
(

bjhj+
n
∑

i=1
viwijhj

)
∑
h

(
bjhj+

n
∑

i=1
viwijhj

) = ∏
j

P
(
hj|v

) (11)

Similarly, the conditional probability of the visible layer can be based on the joint probability of v
and h divided by independent probability of hidden layer, as show in Equation (12).

P(v|h; θ) =
P(v, h; θ)

P(h; θ)
= ∏

i
P(vi|h) (12)

The neurons in the same layer are not connected, meaning that the units are conditionally
independent. So the conditional probability of the visible layer and hidden layer can be calculated by
Equations (13) and (14).

P(vi = 1|h) = sigm

(
ci + ∑

j
wijhj

)
(13)

P
(
hj = 1|v

)
= sigm

(
bj + ∑

i
viwij

)
(14)

where sigm(x) = 1/(1 + exp(−x)) is the sigmoid function.
The parameter update of the RBM can be obtained by performing a stochastic gradient descent on

the negative log-likelihood probability of the training data. The gradient of the negative log probability
visible layer to the network parameters can be calculated by Equations (15)–(17). The value of <·>data
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is easy to get, but the value of <·>model is difficult to get. Therefore, the contrastive divergence (CD)
algorithm was proposed by Hinton [42].

∂ log p(v; θ)

∂wij
= (< vihj >data − < vihj >model) (15)

∂ log p(v; θ)

∂b
= (< hj >data − < hj >model) (16)

∂ log p(v; θ)

∂c
= (< vi >data − < vi >model) (17)

where <·>data indicates expectations for data distribution and <·>model is the expectation of the
distribution of the model definition.

Both the visible layer and the hidden layer of RBM are binary layers. It is not appropriate to
construct the RBM with the binary visible layer when the input is a continuous valued data. So this
paper is to develop the Gauss-Binary RBM (GBRBM) [43–45] instead of standard RBM, and the energy
function of the standard RBM in Equation (8) is changed to Equation (18).

E(v, h|θ) = −
n

∑
i=1

(vi − ci)
2

2σ2
i

−
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

vi

σ2
i

wijhj (18)

where σ2
i is the variance of Gaussian distribution.

With the energy equation in Equation (18), the conditional probability between the visible layer
and the hidden layer can be obtained according to the derivation process in Section 2.2.

P(vi = v|h) = N

(
v; ci + ∑

j
wijhj, σ2

i

)
(19)

P
(
hj = 1|v

)
= sigm

(
bj + ∑

i

vi

σ2
i

wij

)
(20)

where N(·, µ, σ2
i ) is Gaussian distribution, also called normal distribution, µ is the mean, and σ2

i is
the variance.

The softmax classification layer is commonly used in the last layer of the neural network, and its
working principle is shown in Equations (21) and (22).

yj = so f tmax(
p

∑
i=1

(hiwij + dj)) (21)

so f tmax(zi) = ezj /
q

∑
j=1

ezj (22)

where wij and dj are weights and bias of softmax layer, hi is the input of softmax layer, p is the number
of neurons in input layer, and q is the number of neurons in output layer.

3. Experiment Setup and Data Acquisition

In this paper, vibration data collected from experiments of seven gears with early gear pitting
faults on a gear test rig were used to validate the proposed method. Figure 2 shows the gear test rig
and the seven gears with the early gear pitting faults. The gearbox in the test rig consists of a pair
of spur gears. The pinion gear is the driving gear (including 40 teeth, module 3 mm), and the large
gear is the driven gear (including 72 teeth, module 3 mm). The gearbox is powered by two Siemens
servo motors with a power of 45 kW. Motor 1 is the driving motor and motor 2 is the loading motor.
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The gearbox is equipped with a lubrication and cooling system. The tri-axial acceleration sensor was
mounted on the gearbox housing (the red box in the figure) with a sampling rate of 10240 Hz, and the
vibration signals in the three directions of X, Y and Z were collected.
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The gear pitting faults were artificially manufactured by the drill on the driven gear surface.
The specific conditions of the gear pitting faults are shown in Table 2. The fault degree is gradually
increased and the latter one fault includes all of the previous fault conditions.

Table 2. Driven gear pitting type.

Label
Gear Pitting Type

72th Tooth First Tooth Second Tooth

C1 healthy healthy healthy
C2 healthy 10% in middle healthy
C3 healthy 30% in middle healthy
C4 healthy 50% in middle healthy
C5 10% in middle 50% in middle healthy
C6 10% in middle 50% in middle 10% in middle
C7 30% in middle 50% in middle 10% in middle

The vibration signals were collected under 25 working conditions. The 25 working conditions
included combinations of five speeds (100–500 rpm) and five torque levels (100–500 Nm). Taking
the working condition of 500 rpm–500 Nm as an example, each of seven gear types performed five
independent data acquisitions and resulted in a total of 35 sets (120,000 data points per set) of data.
80% of all the data was used for training and the remaining data was used for testing. Hence, a training
data matrix of 120,000 × 28 and testing data matrix of 120,000 × 7 were generated.

If the data matrix is directly used as the inputs, the network will be complex and the training
will be slow. Therefore each data set was divided into several segmentations. For the sampling rate
of 10240 Hz and a rotation speed of 500 RPM, approximately 1200 data points per gear rotation can
be computed. In each segment, 300 data points (quarter of the collected data per gear rotation) were
included [46]. In this case, the training data matrix dimension was 300 × 11200 and test data matrix
dimension was 300 × 2800. Figure 3a shows sample vibration signals of the seven gears in Z-axis
under 500 rpm–500 Nm working condition and Figure 3b represents one segment of the corresponding
sample vibration signals.
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4. Results and Discussion

4.1. PCA Data Visualization During the Training Process

To show the effectiveness by stacking SAE and GBRBM for extracting useful gear pitting fault
information from the raw vibration signals, the network was trained with data from working condition
500 rpm–500 Nm. A total of six layers of neurons constitute the proposed diagnostic model, as shown in
Figure 1. The structure of the proposed diagnostic model had the following structure: SAE: 300 × 300
(300 neurons in the input layer and 300 neurons in the hidden layer), GRRBM: 300 × 200 (300 neurons
in the visible layer and 200 neurons in the hidden layer), RBM 1: 200 × 100 (200 neurons in the visible
layer and 100 neurons in the hidden layer), RBM 2: 100 × 50 (100 neurons in the visible layer and
50 neurons in the hidden layer), Softmax: 50 × 7 (50 neurons in the input layer and seven neurons
in the output layer). The size of the weight matrix and the biases were determined by the structure
of the proposed model. The initial weights (W1 and W2) of SAE layer were randomly generated
between 0 and 1. The initial weights of the softmax layer were randomly generated between 0 and 0.5.
The remaining initial weights and biases were set to 0. The proposed diagnostic model was trained
layer by layer. Steps 1, 2, 3, 4, and 6 were trained in 300 epochs, respectively. The parameter λ of SAE
layer was set to be 0.005, β set to 1.5, and ρ set to 0.1. The learning rate of GBRBM was set to 0.005,
the learning rate of RBM set to 0.5, and the learning rate of the back propagation process set to 0.05.
The minimum training error of the back propagation process was set to 0.05. The entire network was
calculated on a mini-batch with the batch size set to 100. There are many related parameters affecting
the performance of the diagnostic model. The key parameters such as learning rate, structure of the
network, and training epochs that have a great impact on the diagnostic results will be discussed in
Section 4.3 below.

The outputs of each layer in the network structure were obtained and these outputs were further
processed by PCA. The first two principal components of the PCA results are used to draw a scatter
plot in Figure 4 to show the changes of data. The effectiveness of each layer of the network can
be judged by observing the changes in the data through each layer of the neural network. In the
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experiment, the training and testing of the diagnostic model were performed using MATLAB 2014a
software. The PCA results shown in Figure 4 were also obtained using the MATLAB codes. All the
computational experiments were carried out on a PC with Windows 7 system and a CPU of Intel(R)
Core i5-6500 @ 3.2GHz.Sensors 2019, 19, x 13 of 17 
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Figure 4. Each layer PCA result of three methods.

In Figure 4, three methods are shown. The first column in Figure 4 represents a standard DBN.
The middle column represents the method with the first RBM layer of the standard DBN replaced with
a GBRBM. The third column represents the proposed method by adding the SAE layer. As can be seen
in Figure 4, the proposed method has the best fault separation result, and the separation result of the
middle method is better than the standard DBN. Also seen from Figure 4, as the data moves from top



Sensors 2019, 19, 758 11 of 17

down, the level of the fault separation is getting better. Figure 5 shows the confusion matrix of the
gear pitting fault diagnosis results of the three methods. Again, as shown in Figure 5, the proposed
method has the best diagnosis accuracy of 0.9346, the method with the first RBM layer of the standard
DBN replaced with a GBRBM has a diagnosis accuracy of 0.8939, and the standard DBN has the worst
accuracy of 0.3954. Even though the confusion matrix shown in Figure 5b looks similar to that in
Figure 5c obtained by the proposed method, the diagnostic accuracy for the confusion matrix shown in
Figure 5b is 0.8939 while the diagnostic accuracy for the confusion matrix shown in Figure 5c is 0.9346.
Therefore, the proposed method gives more accurate diagnosis results. As shown in Figure 5, the
graph located at the 2nd row in the middle column represents the PCA result without going through
the SAE layer, while the graph located at the 2nd row in the 3rd column represents the PCA result after
being processed by the SAE layer. By comparing these two graphs in Figure 4, one should note that the
PCA result obtained by the SAE layer in the proposed method gives a better pitting fault separation.
The results have shown the effectiveness of SAE layer in the proposed method for extracting useful
fault features when it is used for processing the vibration signals.
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4.2. Diagnostic Results of Proposed Method

Figure 6 shows the diagnostic accuracy of the proposed method and the other seven traditional
methods. The 7 traditional methods include: (1) The first RBM layer of DBN replaced by GBRBM,
(2) standard DBN, (3) standard DNN, (4) ANN with time domain vibration features, (5) ANN with
frequency domain vibration features, (6) SVM with time domain vibration features, and (7) SVM with
frequency domain vibration features. The results include the diagnostic accuracy for each gear pitting
fault condition under 500 rpm–500 Nm working condition and the averaged accuracy over seven gear
pitting fault conditions. From Figure 6, in comparison with other methods, the performance of the
proposed method is significantly better than other methods. It can also be seen that the diagnostic
accuracy for gear pitting conditions C4 and C5 is maintained at a high level in various methods,
indicating that they are easier to diagnose than other fault conditions. This can be explained by
observing the vibration signal in Figure 3b. It can be found that the vibration signal of C4 and C5 are
clearly distinguished from the other gear pitting fault signals.
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rpm–500 Nm working condition.

Figure 7 shows the averaged diagnostic accuracy over all seven gear pitting conditions under
500 rpm–500 Nm working condition in ten trials with eight different methods. It can be seen that
the proposed method has the highest diagnostic accuracy. In comparison with the proposed method,
the accuracy of the method with the first RBM layer of the standard DBN replaced with a GBRBM is
slightly lower. The standard DNN methods also have more prominent diagnosis results.
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As shown in Figures 6 and 7, among the methods compared with the proposed method, standard
DNN has shown a competitive performance under the 500 rpm–500 Nm working condition. To show
the performance of the proposed method in comparison with DNN for all the working conditions, the
vibration signals under 25 working conditions were used compute the diagnostic accuracy for both the
proposed method and the standard DNN. The results are provided in Figure 8, Tables 3 and 4.

In Figure 8, the averaged diagnosis accuracy over seven gear pitting conditions under 25 working
conditions is provided for both the proposed method and the standard DNN. Further, the average
accuracy over all five torque levels for each speed in Figure 8 is computed and provided in Table 3.
The average accuracy over all five speeds for each torque level in Figure 8 is computed and provided
in Table 4.
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Table 3. Averaged accuracy under 5 speeds.

Speed Proposed Method Standard DNN

100 rpm 0.9374 0.9372
200 rpm 0.9245 0.8824
300 rpm 0.9091 0.8831
400 rpm 0.9372 0.9003
500 rpm 0.9344 0.8791

Table 4. Averaged accuracy under 5 torques.

Torque Proposed Method Standard DNN

100 Nm 0.9729 0.9546
200 Nm 0.9279 0.9036
300 Nm 0.9294 0.8997
400 Nm 0.9275 0.8935
500 Nm 0.8848 0.8307

It can be seen from Figure 8, Tables 3 and 4 that the average diagnostic accuracy of the proposed
method is higher than that of the standard DNN under various speeds and torque conditions.

It can be seen from Tables 3 and 4 that the diagnostic accuracy under 100 Nm working condition
can reach to 0.9729. In order to prove the repeatability of the diagnosis results, five consecutive
diagnoses were performed for five working conditions under 100 Nm. The diagnostic results are
shown in Table 5. The averaged diagnostic accuracy of the five diagnosis results under 100Nm working
condition is 0.9744, indicating that the proposed diagnostic method has high diagnostic reliability.
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Table 5. Diagnosis accuracy of 5 trials under 5 working conditions.

Working Condition Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Row Average

100 Nm

100 rpm-100 Nm 0.9546 0.9554 0.9621 0.9354 0.9843 0.9584
200 rpm-100 Nm 0.9861 0.9636 0.9736 0.9236 0.9857 0.9665
300 rpm-100 Nm 1 0.9986 0.9975 0.9989 0.9961 0.9982
400 rpm-100 Nm 0.9954 0.9968 0.9950 0.9921 0.9961 0.9951
500 rpm-100 Nm 0.9582 0.9557 0.9446 0.9550 0.9557 0.9539

Column Average 0.9789 0.9740 0.9746 0.9610 0.9836 0.9744

4.3. The Effect of the Parameters on the Diagnostic Accuracy

To investigate effect of the parameters of the proposed method on the performance of the gear
pitting fault diagnosis, experiments were performed. In the first experiment, diagnostic accuracy
results with epochs increased from 30 to 300 in an increment of 5 were obtained. In the network
structure of the proposed method, the number of neurons in the input layer and the output layer were
300 and 7.

In order to investigate the impact of the network structure on the performance of the proposed
method, a structure parameter Nλ was designed to represent the middle layer. Let Nλ be an integer
coefficient between 1 and 10. In this case, the network structure of the proposed method can be
represented as: 300-Nλ×(30-20-10-5)-7. In the second experiment, diagnostic accuracy results with
Nλ increased from 1 to 10 in an increment of 1 were obtained. The results of the first and second
experiments are provided in Figure 9. From Figure 9a, the average accuracy of ten trials gradually
increases when the training epochs increased from 30 to 120, and reached to constant level after
120 epochs. Figure 9b shows the effect of the parameter Nλ on the diagnostic accuracy of the network
structure. When Nλ is increased from 1 to 4, the diagnostic accuracy is greatly improved. However,
as Nλ reaches over 4, the improvement becomes insignificant.
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To investigate the impact of the learning rate on the performance of the proposed method, in the
third experiment, diagnostic accuracy results with the different learning rates (lr) in RBM and GBRBM
were obtained. The results are provided in Figure 10. As seen from Figure 10, the learning rate of
GBRBM has a greater impact on the diagnostic accuracy. When the learning rate of GBRBM is greater
than 0.03, the accuracy decreased rapidly.
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5. Conclusions

In this paper, a novel method for early gear pitting fault diagnosis with raw vibration signals as
direct inputs was presented. The method was developed by stacking a spare autoencoder (SAE) and
a Gauss-Binary restricted Boltzmann machine (GBRBM). The vibration data collected from the gear
test rig was used to validate the diagnostic capability of the proposed method. The validation results
have shown that the proposed method is capable of gear pitting fault diagnosis with high accuracy.
The performance of the proposed method was also compared with other 7 methods including: (1) The
first RBM layer of DBN replaced by GBRBM, (2) standard DBN, (3) standard DNN, (4) ANN with time
domain vibration features, (5) ANN with frequency domain vibration features, (6) SVM with time
domain vibration features, and (7) SVM with frequency domain vibration features. The results of the
comparison have shown that the proposed method outperform the other methods in terms of the gear
pitting fault diagnostic accuracy. The effect of parameters of the proposed method on the diagnostic
performance of the proposed method was investigated and discussed in the paper.
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