Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell
Abstract
:1. Introduction
2. Basics of Wavelength-Modulation Spectroscopy
3. Experimental Details
3.1. Design of the Dual-Gas Sensor for CH4 and C2H6
3.2. Spectral Line Selection
4. Results and Discussions
4.1. Optimization of Modulation Amplitude for WMS
4.2. Optimization of Modulation Frequency and Phase for WMS
4.3. Investigation on the Potential Cross-Talk
4.4. Baseline Removal
4.5. Allan Deviation
4.6. Simultaneous Detection of Methane and Ethane Leakage
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Faramawy, S.; Zaki, T.; Sakr, A.E. Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng. 2016, 34, 34–54. [Google Scholar] [CrossRef]
- Xiao, Y.; Logan, J.A.; Jacob, D.J.; Hudman, R.C.; Yantosca, R.; Blake, D.R. Global budget of ethane and regional constraints on U.S. sources. J. Geophys. Res. 2008, 113, D21306. [Google Scholar] [CrossRef]
- Moore, C.W.; Zielinska, B.; Pétron, G.; Jackson, R.B. Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environ. Sci. Technol. 2014, 48, 8349–8359. [Google Scholar] [CrossRef] [PubMed]
- Effuggi, A.; Gelosa, D.; Derudi, M.; Rota, R. Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas. Combust. Sci. Technol. 2008, 180, 481–493. [Google Scholar] [CrossRef]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. Anaerobic digestion for global warming control and energy generation—An overview. Renew. Sust. Energy Rev. 2012, 16, 3228–3242. [Google Scholar] [CrossRef]
- Dong, L.; Tittel, F.K.; Li, C.L.; Sanchez, N.P.; Wu, H.P.; Zheng, C.T.; Yu, Y.J.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528–A535. [Google Scholar] [CrossRef]
- Jahjah, M.; Jiang, W.Z.; Sanchez, N.P.; Ren, W.; Patimisco, P.; Spagnolo, V.; Herndon, S.C.; Griffin, R.J.; Tittel, F.K. Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013. Opt. Lett. 2014, 39, 957–960. [Google Scholar] [CrossRef]
- Wu, H.P.; Yin, X.K.; Dong, L.; Pei, K.L.; Sampaolo, A.; Patimisco, P.; Zheng, H.D.; Ma, W.G.; Zhang, L.; Yin, W.B.; et al. Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork. Appl. Phys. Lett. 2017, 110, 121104. [Google Scholar] [CrossRef] [Green Version]
- Sampaolo, A.; Csutak, S.; Patimisco, P.; Giglio, M.; Menduni, G.; Passaro, V.; Tittel, F.K.; Deffenbaugh, M.; Spagnolo, V. Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser. Sens. Actuators B Chem. 2019, 282, 952–960. [Google Scholar] [CrossRef]
- Parameswaran, K.R.; Rosen, D.I.; Allen, M.G.; Ganz, A.M.; Risby, T.H. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl. Opt. 2009, 48, 73–79. [Google Scholar] [CrossRef]
- Chang, H.T.; Chang, J.; Wang, P.P.; Zhu, C.G. Comparison of preprocessing technique of second harmonic detection with tunable diode laser. Opt. Quant. Electron. 2016, 48, 211. [Google Scholar] [CrossRef]
- Reid, J.; Labrie, D. Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory. Appl. Phys. B 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Krzempek, K.; Jahjah, M.; Lewicki, R.; Stefański, P.; So, S.; Thomazy, D.; Tittel, F.K. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl. Phys. B 2013, 112, 461–465. [Google Scholar] [CrossRef]
- Zheng, C.T.; Ye, W.L.; Sanchez, N.P.; Gluszek, A.K.; Hudzikowski, A.J.; Li, C.G.; Dong, L.; Griffin, R.J.; Tittel, F.K. Infrared Dual-Gas CH4/C2H6 Sensor Using Two Continuous-Wave Interband Cascade Lasers. IEEE Photonic Tech. Lett. 2016, 28, 2351–2354. [Google Scholar] [CrossRef]
- Li, C.G.; Zheng, C.T.; Dong, L.; Ye, W.L.; Tittel, F.K.; Wang, Y.D. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser. Appl. Phys. B 2016, 122, 1–13. [Google Scholar] [CrossRef]
- Reed, Z.D.; Hodges, J.T. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 µm. J. Quant. Spectrosc. Radiat. Transfer. 2015, 159, 87–93. [Google Scholar] [CrossRef]
- Hepp, M.; Herman, M. Research note vibration-rotation bands in ethane. Mol. Phys. 2000, 98, 57–61. [Google Scholar] [CrossRef]
- Xia, H.; Liu, W.Q.; Zhang, Y.Z.; Kan, R.F.; Wang, M.; He, Y.; Cui, Y.B.; Ruan, J.; Geng, H. An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy. Chin. Opt. Lett. 2008, 6, 437–440. [Google Scholar] [CrossRef]
- Liu, K.; Wang, L.; Tan, T.; Wang, G.S.; Zhang, W.J.; Chen, W.D.; Gao, X.M. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuators B Chem. 2015, 220, 1000–1005. [Google Scholar] [CrossRef] [Green Version]
- Li, C.L.; Wu, Y.F.; Qiu, X.B.; Deng, L.H. Pressure-Dependent Detection of Carbon Monoxide Employing Wavelength Modulation Spectroscopy Using a Herriott-Type Cell. Appl. Spectrosc. 2017, 71, 809–816. [Google Scholar] [CrossRef]
- Philippe, L.C.; Hanson, R.K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 1993, 32, 6090–6103. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Parchatka, U.; Fischer, H. Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO. Sens. Actuators B-Chem. 2013, 182, 659–667. [Google Scholar] [CrossRef]
- Wei, W.; Chang, J.; Wang, Q.; Qin, Z. Modulation Index Adjustment for Recovery of Pure Wavelength Modulation Spectroscopy Second Harmonic Signal Waveforms. Sensors 2017, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Arndt, R. Analytical Line Shapes for Lorentzian Signals Broadened by Modulation. J. Appl. Phys. 1965, 36, 2522–2524. [Google Scholar] [CrossRef]
- Chen, J.; Hangauer, A.; Strzoda, R.; Amann, M.C. Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing. Appl. Phys. B 2010, 100, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Kluczynski, P.; Lindberg, A.M.; Axner, O. Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment. Appl. Opt. 2001, 40, 794–805. [Google Scholar] [CrossRef]
- Smith, L.G. The infrared spectrum of C2H6. J. Chem. Phys. 1949, 17, 139–167. [Google Scholar] [CrossRef]
- Cheng, G.; Cao, Y.; Liu, K.; Zhu, G.D.; Wang, G.S.; Gao, X.M. Photoacoustic Measurement of Ethane with Near-Infrared DFB Diode Laser. J. Spectrosc. 2018, 2018, 1–5. [Google Scholar] [CrossRef]
- Schilt, S.; Thévenaz, L. Experimental method based on wavelength-modulation spectroscopy for the characterization of semiconductor lasers under direct modulation. Appl. Opt. 2004, 43, 4446–4453. [Google Scholar] [CrossRef] [Green Version]
- Schilt, S.; Thévenaz, L.; Robert, P. Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 2003, 42, 6728–6738. [Google Scholar] [CrossRef]
- Peng, Z.M.; Ding, Y.J.; Jia, J.W.; Lan, L.J.; Du, Y.J.; Li, Z. First harmonic with wavelength modulation spectroscopy to measure integrated absorbance under low absorption. Opt. Express 2013, 21, 23724–23735. [Google Scholar] [CrossRef]
- Oh, D.B.; Paige, M.E.; Bomse, D.S. Frequency Modulation Multiplexing for Simultaneous Detection of Multiple Gases by use of Wavelength Modulation Spectroscopy with Diode Lasers. Appl. Opt. 1998, 37, 2499–2501. [Google Scholar] [CrossRef]
Target Gas | Optimal Modulation Amplitude | Optimal Modulation Phase | Optimal Modulation Frequency |
---|---|---|---|
CH4 | 0.25 V | −140° | 6 kHz |
C2H6 | 0.36 V | −140° | 0.6 kHz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Cao, Y.; Chen, J.; Liu, K.; Wang, G.; Tan, T.; Mei, J.; Chen, W.; Gao, X. Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell. Sensors 2019, 19, 820. https://doi.org/10.3390/s19040820
Tian X, Cao Y, Chen J, Liu K, Wang G, Tan T, Mei J, Chen W, Gao X. Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell. Sensors. 2019; 19(4):820. https://doi.org/10.3390/s19040820
Chicago/Turabian StyleTian, Xing, Yuan Cao, Jiajin Chen, Kun Liu, Guishi Wang, Tu Tan, Jiaoxu Mei, Weidong Chen, and Xiaoming Gao. 2019. "Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell" Sensors 19, no. 4: 820. https://doi.org/10.3390/s19040820
APA StyleTian, X., Cao, Y., Chen, J., Liu, K., Wang, G., Tan, T., Mei, J., Chen, W., & Gao, X. (2019). Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell. Sensors, 19(4), 820. https://doi.org/10.3390/s19040820