Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. No Mass Loading Effect on Healed Plate-Screw Fixated Femur
- The frequency peaks at 15 Hz; 74 Hz; 111 Hz and 127 Hz are observed to increase as the fractured region “healed”. This is attributed to the stiffness increase due to the simulated healing.
- The effects of healing on the dynamic response of the fixated long bone is better shown in the vicinity of 315 Hz and 450 Hz. It is evident that the dynamic response is only evident towards the later part of the experiment when the fractured femur has “healed”.
3.2. Mass Loading Effect on Healed Plate-Screw Fixated Femur
3.3. Healing Assessment of the Fixated Femur with Mass Loading
- At frequencies below 200 Hz, in contrast to the case without mass loading, it is observed that frequency peaks at 16 Hz; 67 Hz and 109 Hz are not sensitive to the state of healing. The response in the vicinity of 179 Hz, however, was affected by the state of healing. The frequency associated with the peak response at this frequency was noted to increase as healing progressed that corresponded to the increased stiffness due to the simulated healing. It was also noted that at frequencies below 200 Hz, the dynamic responses of the fully healed specimens were identical in all three cases presented.
- For the frequencies above 200 Hz, where the effect of mass loading was noted to be significant, the three tests conducted show that the state of healing is reflected by the frequency response measured. The increasing magnitude of the cross-spectra and the corresponding value of the coherence attest healing progression. This observation is similar to the case without mass loading.
- In spite of the presence of mass-loading, the spectra development in the frequency band above 200 Hz, whilst significantly damped, is still evident.
3.4. Healing Index for Quantitative Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C. Treatment of long-bone fractures, malunions, and nonunions: Experience at chang gung memorial hospital, Taoyuan, Taiwan. Chang Gung Med. J. 2006, 29, 347. [Google Scholar] [PubMed]
- Ganesh, V.; Ramakrishna, K.; Ghista, D.N. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed. Eng. Online 2005, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.; An, K.N.; Chao, E.; Kelly, P. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J. Bone Jt. Surg. Am. Vol. 1981, 63, 427–442. [Google Scholar] [CrossRef]
- Carter, D.R.; Vasu, R.; Spengler, D.M.; Dueland, R. Stress fields in the unplated and plated canine femur calculated from in vivo strain measurements. J. Biomech. 1981, 14, 63–70. [Google Scholar] [CrossRef]
- Foux, A.; Yeadon, A.J.; Uhthoff, H.K. Improved fracture healing with less rigid plates: A biomechanical study in dogs. Clin. Orthop. Relat. Res. 1997, 339, 232–245. [Google Scholar] [CrossRef]
- Fujihara, K.; Huang, Z.-M.; Ramakrishna, S.; Satknanantham, K.; Hamada, H. Performance study of braided carbon/peek composite compression bone plates. Biomaterials 2003, 24, 2661–2667. [Google Scholar] [CrossRef]
- Ricci, W.M.; Streubel, P.N.; Morshed, S.; Collinge, C.A.; Nork, S.E.; Gardner, M.J. Risk factors for failure of locked plate fixation of distal femur fractures: An analysis of 335 cases. J. Orthop. Trauma 2014, 28, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Griffin, X.L.; Costa, M.L.; Parsons, N.; Smith, N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst. Rev. 2011, 4, CD008471. [Google Scholar] [CrossRef]
- Cunningham, J.; Kenwright, J.; Kershaw, C. Biomechanical measurement of fracture healing. J. Med. Eng. Technol. 1990, 14, 92–101. [Google Scholar] [CrossRef]
- Brumback, R.J.; Jones, A.L. Interobserver agreement in the classification of open fractures of the tibia. The results of a survey of two hundred and forty-five orthopaedic surgeons. J. Bone Jt. Surg. Am. Vol. 1994, 76, 1162–1166. [Google Scholar] [CrossRef]
- Horn, B.D.; Rettig, M.E. Interobserver reliability in the gustilo and anderson classification of open fractures. J. Orthop. Trauma 1993, 7, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, T.; De Bruine, J.; Bramer, J.; Den Boer, F.; Bakker, F.; Patka, P.; Haarman, H.T.M.; Manoliu, R. The reliability of plain radiography in experimental fracture healing. Skelet. Radiol. 2001, 30, 151–156. [Google Scholar] [CrossRef]
- Hammer, R.; Hammerby, S.; Lindholm, B. Accuracy of radiologic assessment of tibial shaft fracture union in humans. Clin. Orthop. Relat. Res. 1985, 233–238. [Google Scholar]
- Panjabi, M.M.; Lindsey, R.W.; Walter, S.D. The clinician’s ability to evaluate the strength of healing fractures from plain radiographs. J. Orthop. Trauma 1989, 3, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Protopappas, V.C.; Vavva, M.G.; Fotiadis, D.I.; Malizos, K.N. Ultrasonic monitoring of bone fracture healing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Nicol, A.; Hamblen, D. Fracture stiffness measurement in tibial shaft fractures: A non-invasive method. Clin. Biomech. 1995, 10, 395–400. [Google Scholar] [CrossRef]
- Claes, L.; Grass, R.; Schmickal, T.; Kisse, B.; Eggers, C.; Gerngross, H.; Mutschler, W.; Arand, M.; Wintermeyer, T.; Wentzensen, A. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch. Surg. 2002, 387, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Borchani, W.; Aono, K.; Lajnef, N.; Chakrabartty, S. Monitoring of postoperative bone healing using smart trauma-fixation device with integrated self-powered piezo-floating-gate sensors. IEEE Trans. Biomed. Eng. 2016, 63, 1463–1472. [Google Scholar] [CrossRef]
- Nemchand, J.L. Smart Implant: The Biomechanical Testing of Instrumented Intramedullary Nails during Simulated Callus Healing Using Telemetry for Fracture Healing Monitoring; Brunel University London: London, UK, 2015. [Google Scholar]
- Talaia, P.M.; Ramos, A.; Abe, I.; Schiller, M.W.; Lopes, P.; Nogueira, R.N.; Pinto, J.L.; Claramunt, R.; Simões, J.A. Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges. Exp. Mech. 2007, 47, 355–363. [Google Scholar] [CrossRef]
- Wilson, D.; Janna, S. Structural health monitoring of long bone fractures using instrumented intramedullary nails. In Proceedings of the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, MD, USA, 28–30 October 2008; American Society of Mechanical Engineers: New York, NY, USA, 2008; pp. 1–3. [Google Scholar]
- Greve, D.; Oppenheim, I.; Chen, A. An instrumented intramedullary implant to monitor strain in fracture healing. In Proceedings of the 2012 IEEE International Ultrasonics Symposium (IUS), Dresden, Germany, 7–10 October 2012; pp. 1220–1223. [Google Scholar]
- Cornelissen, P.; Cornelissen, M.; Van der Perre, G.; Christensen, A.; Ammitzbøll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ—II. Influence of soft tissues, joints and fibula. J. Biomech. 1986, 19, 551–561. [Google Scholar] [CrossRef]
- Cornelissen, M.; Cornelissen, P.; Van der Perre, G.; Christensen, A.; Ammitzboll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ—III. Sensitivity of different modes and interpretation of vibration measurements. J. Biomech. 1987, 20, 333–342. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Hirayama, T. Assessment of fracture healing by vibration. Acta Orthop. Scand. 1979, 50, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Tower, S.S.; Beals, R.K.; Duwelius, P.J. Resonant frequency analysis of the tibia as a measure of fracture healing. J. Orthop. Trauma 1993, 7, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuchi, Y.; Tsuchikane, A.; Nomura, A. The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method. Med. Eng. Phys. 1996, 18, 575–583. [Google Scholar] [CrossRef]
- Claes, L.; Cunningham, J. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 2009, 467, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Chiu, W.; Russ, M.; Chiu, Z. Extending structural health monitoring concepts for bone healing assessment. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 491–501. [Google Scholar] [CrossRef]
- Ong, W.; Chiu, W.; Russ, M.; Chiu, Z. Integrating sensing elements on external fixators for healing assessment of fractured femur. Struct. Control Health Monit. 2016, 23, 1388–1404. [Google Scholar] [CrossRef]
- Chiu, W.; Ong, W.; Russ, M.; Fitzgerald, M. Simulated vibrational analysis of internally fixated femur to monitor healing at various fracture angles. Procedia Eng. 2017, 188, 408–414. [Google Scholar] [CrossRef]
- Tsuchikane, A.; Nakatsuchi, Y.; Nomura, A. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1995, 209, 149–155. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, P.; Bao, X. The mass loading effect on lightweight cantilever mode frequency measurement by optical fiber sensor. In Proceedings of the Photonics North 2008, Montréal, QC, Canada, 2–4 June 2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; p. 70991X. [Google Scholar]
- Mattei, L.; Longo, A.; Di Puccio, F.; Ciulli, E.; Marchetti, S. Vibration testing procedures for bone stiffness assessment in fractures treated with external fixation. Ann. Biomed. Eng. 2017, 45, 1111–1121. [Google Scholar] [CrossRef]
- Ong, W.; Chiu, W.; Russ, M.; Chiu, Z. Healing assessment of fractured femur: Orthopaedic shm. Struct. Health Monit. 2015, 2, 3139–3146. [Google Scholar]
- Chiu, W.K.; Vien, B.S.; Russ, M.; Fitzgerald, M. Healing assessment of an internally fixated femur using vibration analysis. In Proceedings of the APWSHM 2018—7th Asia Pacific Workshop on Structural Health Monitoring, Hong Kong, China, 12–15 November 2018; Su, Z., Yuan, S., Sohn, H., Eds.; NDT.net: Hong Kong, China, 2018. [Google Scholar]
- Chiu, W.K.; Russ, M.; Fitzgerald, M. Method and System for Assessing the State of Healing of a Fractured Long Bone. Australian Patent No. 2019900018, 3 January 2019. [Google Scholar]
- Heiner, A.D.; Brown, T.D. Structural properties of a new design of composite replicate femurs and tibias. J. Biomech. 2001, 34, 773–781. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Lopes, H.; De Melo, F.; Simoes, J. Experimental modal analysis of a synthetic composite femur. Exp. Mech. 2004, 44, 29–32. [Google Scholar] [CrossRef]
- Wilkens, K.J.; Curtiss, S.; Lee, M.A. Polyaxial locking plate fixation in distal femur fractures: A biomechanical comparison. J. Orthop. Trauma 2008, 22, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, B.R.; Hallstrom, B.; Golladay, G.J.; Hoeffel, D.; Harris, W.H. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: An in vitro study. J. Arthroplast. 2005, 20, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.; Eveleigh, R.; Wight, B.; Goodwin, M. An investigation into the load transfer in interlocking intramedullary nails during simulated healing of a femoral fracture. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1994, 208, 19–26. [Google Scholar] [CrossRef]
- Lewis, J.L. A dynamic model of a healing fractured long bone. J. Biomech. 1975, 8, 17–25. [Google Scholar] [CrossRef]
- Wang, W.; Lynch, J.P. Application of guided wave methods to quantitatively assess healing in osseointegrated prostheses. Struct. Health Monit. 2018. [Google Scholar] [CrossRef]
- Doblaré, M.; Garcıa, J.; Gómez, M. Modelling bone tissue fracture and healing: A review. Eng. Fract. Mech. 2004, 71, 1809–1840. [Google Scholar] [CrossRef]
- McKibbin, B. The biology of fracture healing in long bones. J. Bone Jt. Surg. Br. Vol. 1978, 60, 150–162. [Google Scholar] [CrossRef]
- Einhorn, T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 1998, 355, S7–S21. [Google Scholar] [CrossRef]
Specimen | Mass |
---|---|
Sawbone composite femur | 512 g |
Sawbone composite femur + plate-screw fixation | 598 g |
Sawbone composite femur + plate-screw fixation + modelling clay | 1598 g |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, W.K.; Vien, B.S.; Russ, M.; Fitzgerald, M. Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur. Sensors 2019, 19, 857. https://doi.org/10.3390/s19040857
Chiu WK, Vien BS, Russ M, Fitzgerald M. Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur. Sensors. 2019; 19(4):857. https://doi.org/10.3390/s19040857
Chicago/Turabian StyleChiu, Wing Kong, Benjamin Steven Vien, Matthias Russ, and Mark Fitzgerald. 2019. "Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur" Sensors 19, no. 4: 857. https://doi.org/10.3390/s19040857
APA StyleChiu, W. K., Vien, B. S., Russ, M., & Fitzgerald, M. (2019). Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur. Sensors, 19(4), 857. https://doi.org/10.3390/s19040857