Review of Fiber Optic Sensors for Structural Fire Engineering
Abstract
:1. Introduction
2. Basic Concepts of Fiber Optic Sensors
3. Grating Sensors
3.1. Fiber Bragg Grating Sensors
3.1.1. Principle
3.1.2. Fabrication and Key Characteristics
3.1.3. Structural Fire Applications
3.1.4. Other Promising FBG Technologies
3.2. Long Period Fiber Grating Sensors
3.2.1. Principle, Fabrication, and Key Characteristics
3.2.2. Structural Fire Applications
4. In-line Interferometer Sensors
4.1. In-line Fabry-Perot Interferometer Sensors
4.1.1. Principle
4.1.2. Structural Fire Applications and Key Characteristics
4.2. In-Line Fiber Optic Core-Cladding-Mode Interferometers
4.2.1. Principle
4.2.2. Fabrication
4.2.3. Structural Fire Applications
5. Distributed Fiber Optic Sensors
5.1. Rayleigh Scattering Based Sensing Technologies
5.2. Raman Scattering Based Sensing Technologies
5.3. Brillouin Scattering Based Sensing Technologies
5.4. Structural Fire Applications
6. Summary of Key Characteristics, Challenges, and Opportunities
6.1. Key Characteristics
6.2. Challenges and Opportunities
6.3. Other Fiber Optic Sensors for Fire Safety Study
7. Conclusions
- Fiber Bragg Grating (FBG) sensors that can measure temperature and strain at temperatures up to 1300 °C using fused silica fibers have been reported, however, sophisticated processes are required to achieve gratings stable at temperatures above 400 °C.
- Long-Period Fiber Grating (LPFG) that are stable up to temperatures of 800 °C have been fabricated using cost-effective and simple processes. However, LPFGs have longer sensor lengths than FBGs, resulting in great spatial averaging, and are more sensitive to bending of the optical fiber and the refractive index of the environment. It has been the author’s experience that this requires more attention to be paid to sensor installation and data interpretation.
- Fiber optic interferometer sensors have been developed to allow for the measurement of temperatures up to 1200 °C and strains up to about 10%.
- Compared with grating sensors and interferometric sensors, which are point sensors, distributed fiber optic sensors allow for the measurements of distributions along optical fibers. The upper operating temperature of distributed fiber optic sensors has exceeded 1000 °C with a centimeter-scale spatial resolution for temperature measurements. Bonding of fibers to structural steel and concrete to reliably measure strains at temperatures greater than 100 °C remains a limiting factor for distributed fiber optic sensors.
- The required measurement times for the various techniques must be considered when selecting a technology for an application.
Author Contributions
Funding
Conflicts of Interest
References
- Kodur, V.; Dwaikat, M.; Fike, R. High-temperature properties of steel for fire resistance modeling of structures. J. Mater. Civ. Eng. 2010, 22, 423–434. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Meng, W.; Bao, Y. Tri-axial compressive properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures. Constr. Build. Mater. 2018, 190, 939–947. [Google Scholar] [CrossRef]
- Li, X.; Bao, Y.; Wu, L.; Yan, Q.; Ma, H.; Chen, G.; Zhang, H. Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures. Constr. Build. Mater. 2017, 157, 829–838. [Google Scholar] [CrossRef]
- Li, X.; Bao, Y.; Xue, N.; Chen, G. Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures. Fire Saf. J. 2017, 92, 98–106. [Google Scholar] [CrossRef]
- Hunt, S.P.; Cutonilli, J.; Morgan Hurley, P.E. Evaluation of Enclosure Temperature Empirical Models; Society of Fire Protection Engineers: Bethesda, MD, USA, 2010. [Google Scholar]
- Concrete Society. Assessment, Design and Repair of Fire-Damaged Concrete Structures; Concrete Society: Camberley, UK, 2008. [Google Scholar]
- Luecke, W.E.; Banovic, S.W.; McColskey, J.D. High-Temperature Tensile Constitutive Data and Models for Structural Steels in Fire; Technical Note 1714; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Li, G.; Zhang, C. Simple approach for calculating maximum temperature of insulated steel members in natural-fires. J. Constr. Steel Res. 2012, 71, 104–110. [Google Scholar] [CrossRef]
- Jeffers, A.E.; Sotelino, E.D. An efficient fiber element approach for the thermo-structural simulation of non-uniformly heated frames. Fire Saf. J. 2012, 51, 18–26. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Bao, Y.; Cong, Z. Post-fire seismic behavior of two-bay two-story frames with high-performance fiber-reinforced cementitious composite joints. Eng. Struct. 2019, 183, 150–159. [Google Scholar] [CrossRef]
- Lönnermark, A.; Hedekvist, P.O.; Ingason, H. Gas temperature measurements using fibre Bragg grating during fire experiments in a tunnel. Fire Saf. J. 2008, 43, 119–126. [Google Scholar] [CrossRef]
- Busch, M.; Ecke, W.; Latka, I.; Fischer, D.; Willsch, R.; Bartelt, H. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Meas. Sci. Technol. 2009, 20, 115301. [Google Scholar] [CrossRef]
- Elsmann, T.; Habisreuther, T.; Graf, A.; Rothhardt, M.; Bartelt, H. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express 2013, 21, 4591–4597. [Google Scholar] [CrossRef]
- Li, H.N.; Li, D.S.; Song, G.B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Udd, E.; Spillman, W.B., Jr. (Eds.) Fiber Optic Sensors: An Introduction for Engineers and Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuator A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Krohn, D.A.; MacDougall, T.; Mendez, A. Fiber Optic Sensors: Fundamentals and Applications; SPIE Press: Bellingham, WA, USA, 2014. [Google Scholar]
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed]
- Kersey, A.D.; Berkoff, T.A.; Morey, W.W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett. 1993, 18, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Vengsarkar, A.M. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Lightw. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef]
- Hill, K.O.; Malo, B.; Bilodeau, F.; Johnson, D.C.; Albert, J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993, 62, 1035–1037. [Google Scholar] [CrossRef]
- Canning, J. Fibre gratings and devices for sensors and lasers. Laser Photonics Rev. 2008, 2, 275–289. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef]
- Archambault, J.L.; Reekie, L.; Russell, P.S.J. High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse. Electron. Lett. 1993, 29, 28–29. [Google Scholar] [CrossRef]
- Askins, C.G.; Putman, M.A.; Williams, G.M.; Friebele, E.J. Stepped wavelength optical fiber Bragg grating arrays fabricated in line on a draw tower. Opt. Lett. 1994, 19, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Fokine, M. Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers. J. Non-Cryst. Solids 2004, 349, 98–104. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Canning, J.; Stevenson, M.; Cook, K. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Opt. Lett. 2008, 33, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Dutz, F.J.; Lindner, M.; Heinrich, A.; Seydel, C.G.; Bosselmann, T.; Koch, A.W.; Roths, J. Multipoint high temperature sensing with regenerated fiber Bragg gratings. In Fiber Optic Sensors and Applications XV; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10654, p. 1065407. [Google Scholar]
- Zhang, B.; Kahrizi, M. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sens. J. 2007, 7, 586–591. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.W.; Wang, D.N.; Lu, J.; Sun, T.; Grattan, K.T.V. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express 2009, 17, 19785–19790. [Google Scholar] [CrossRef]
- Canning, J.; Stevenson, M.; Bandyopadhyay, S.; Cook, K. Extreme silica optical fibre gratings. Sensors 2008, 8, 6448–6452. [Google Scholar] [CrossRef]
- Bueno, A.; Torres, B.; Barrera, D.; Calderón, P.; Lloris, J.M.; López, M.J.; Sales, S. Fiber Bragg grating sensors embedded in concrete samples for a normalized fire test. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; Volume 7753, p. 77538. [Google Scholar]
- International Organization for Standardization. Fire Resistance Tests—Elements of Building Construction—Part 10: Specific Requirements to Determine the Contribution of Applied Fire Protection Materials to Structural Steel Elements; ISO 834-10:2014; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Rinaudo, P.; Torres, B.; Paya-Zaforteza, I.; Calderón, P.A.; Sales, S. Evaluation of new regenerated fiber Bragg grating high-temperature sensors in an ISO834 fire test. Fire Saf. J. 2015, 71, 332–339. [Google Scholar] [CrossRef]
- Torres, B.; Payá-Zaforteza, I.; Calderón, P.A.; Sales, S. New fiber optic sensor for monitoring temperatures in concrete structures during fires. Sens. Actuator A Phys. 2017, 254, 116–125. [Google Scholar]
- Martinez, A.; Dubov, M.; Khrushchev, I.; Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 2004, 40, 1170–1172. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Smelser, C.W.; Grobnic, D.; Walker, R.B.; Lu, P.; Ding, H.; Unruh, J. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask. J. Lightw. Technol. 2004, 22, 94–100. [Google Scholar] [CrossRef]
- Smelser, C.; Mihailov, S.; Grobnic, D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express 2005, 13, 5377–5386. [Google Scholar] [CrossRef]
- Grobnic, D.; Smelser, C.W.; Mihailov, S.J.; Walker, R.B. Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol. 2006, 17, 1009–1013. [Google Scholar] [CrossRef]
- Li, Y.; Liao, C.R.; Wang, D.N.; Sun, T.; Grattan, K.T.V. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Opt. Express 2008, 16, 21239–21247. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, F.; Bao, Y.; Chen, G.; Tang, Y. Fe-C coated long period fiber grating sensors for steel corrosion monitoring. Opt. Lett. 2016, 41, 344–346. [Google Scholar]
- Davis, D.D.; Gaylord, T.K.; Glytsis, E.N.; Kosinski, S.G.; Mettler, S.C.; Vengsarkar, A.M. Long-period fibre grating fabrication with focused CO2 laser beams. Electron. Lett. 1998, 34, 302–303. [Google Scholar] [CrossRef]
- Kondo, Y.; Nouchi, K.; Mitsuyu, T.; Watanabe, M.; Kazansky, P.; Hirao, K. Fabrication of long-period fibre gratings by focused irradiation of infra-red femtosecond laser pulses. Opt. Lett. 1999, 24, 646–648. [Google Scholar] [CrossRef]
- Rego, G.; Okhotnikov, O.; Dianov, E.; Sulimov, V. High-temperature stability of long-period fibre gratings using an electric arc. J. Lightw. Technol. 2001, 19, 1574–1579. [Google Scholar] [CrossRef]
- Kakarantzas, G.; Birks, T.A.; Russell, P.S. Structural long-period gratings in photonic crystal fibers. Opt. Lett. 2002, 27, 1013–1015. [Google Scholar] [CrossRef]
- Hwang, I.K.; Yun, S.H.; Kim, B.Y. Long period fibre grating based upon periodic microbends. Opt. Lett. 1999, 24, 1263–1265. [Google Scholar] [CrossRef]
- Kakarantzas, G.; Dimmick, T.E.; Birks, T.A.; Le Roux, R.; St. Russell, P.J. Miniature all-fibre devices based on CO2 microstructuring of tapered fibers. Opt. Lett. 2001, 26, 1137–1139. [Google Scholar] [CrossRef]
- Dianov, E.M.; Karpov, V.I.; Grekov, M.V.; Golant, K.M.; Vasiliev, S.A.; Medvekov, O.I.; Khrapko, R.R. Thermo-induced long period fibre grating. IOOC-ECOC 1997, 2, 53–56. [Google Scholar]
- Guan, B.O.; Tam, H.Y.; Ho, S.L.; Liu, S.Y.; Dong, X.Y. Growth of long-period gratings in H2-loaded fibre after 193 nm UV inscription. IEEE Photonics Technol. Lett. 2000, 12, 642–644. [Google Scholar] [CrossRef]
- Kim, C.S.; Han, Y.; Lee, BH.; Han, W.T.; Paek, U.C.; Chung, Y. Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress. Opt. Commun. 2000, 185, 337–342. [Google Scholar] [CrossRef]
- Humbert, G.; Malki, A. Electric-arc-induced gratings in non-hydrogenated fibres: Fabrication and high-temperature characterizations. J. Opt. A Pure Appl. Opt. 2002, 4, 194–198. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Z.; Zhang, Y.; Chen, G.; Xiao, H. A temperature self-compensated LPFG sensor for large strain measurements at high temperature. IEEE Tract. Instrum. Meas. 2010, 59, 2997–3004. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, G.; Xiao, H.; Zhang, Y.; Zhou, Z. A quasi-distributed optical fiber sensor network for large strain and high temperature measurement of structures. Proc. SPIE 2011, 7983, 1–12. [Google Scholar]
- Huang, Y.; Fang, X.; Bevans, W.J.; Zhou, Z.; Xiao, H.; Chen, G. Large-strain optical fiber sensing and real-time FEM updating of steel structures under the high temperature effect. Smart Mater. Struct. 2013, 22, 015016. [Google Scholar] [CrossRef]
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Lipson, S.G.; Lipson, H.; Tannhauser, D.S. Optical Physics, 3rd ed.; Cambridge University Press: London, UK, 1995; ISBN 0-521-06926-2. [Google Scholar]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric fiber optic sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef]
- Lee, C.E.; Taylor, H.F. Interferometric sensors using internal fiber mirrors. Electron. Lett. 1988, 24, 193–194. [Google Scholar] [CrossRef]
- Mathew, J.; Schneller, O.; Polyzos, D.; Havermann, D.; Carter, R.M.; MacPherson, W.N.; Hand, D.P.; Maier, R.R. In-fiber Fabry–Perot cavity sensor for high-temperature applications. J. Lightw. Technol. 2015, 33, 2419–2425. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.K.; Li, Y.J.; Tsai, H.L.; Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 2008, 16, 5764–5769. [Google Scholar] [CrossRef]
- Duan, D.W.; Rao, Y.J.; Wen, W.P.; Yao, J.; Wu, D.; Xu, L.C.; Zhu, T. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing. Electron. Lett. 2011, 47, 1702–1703. [Google Scholar]
- Machavaram, V.R.; Badcock, R.A.; Fernando, G.F. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching. Sens. Actuator A Phys. 2007, 138, 248–260. [Google Scholar] [CrossRef]
- Tafulo, P.A.; Jorge, P.A.S.; Santos, J.L.; Frazão, O. Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement. Opt. Commun. 2012, 285, 1159–1162. [Google Scholar] [CrossRef]
- Duan, D.W.; Rao, Y.J.; Hou, Y.S.; Zhu, T. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Appl. Opt. 2012, 51, 1033–1036. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Y.; Hoehler, M.S.; Smith, C.M.; Bundy, M.; Chen, G. Temperature and strain measurements with fiber optic sensors for steel beams subjected to fire. In Proceedings of the 9th International Conference on Structures in Fire, Princeton, NJ, USA, 8–10 June 2016. [Google Scholar]
- Claus, R.O.; Gunther, M.F.; Wang, A.; Murphy, K.A. Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C. Smart Mater. Struct. 1992, 1, 237. [Google Scholar] [CrossRef]
- Zhu, T.; Ke, T.; Rao, Y.J.; Chiang, K.S. Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685. [Google Scholar] [CrossRef]
- Li, E.; Peng, G.D.; Ding, X. High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity. Appl. Phys. Lett. 2008, 92, 101117–101119. [Google Scholar] [CrossRef]
- Villatoro, J.; Finazzi, V.; Coviello, G.; Pruneri, V. Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer. Opt. Lett. 2009, 34, 2441–2443. [Google Scholar] [CrossRef]
- Deng, M.; Tang, C.P.; Zhu, T.; Rao, Y.J. PCF-based Fabry-Perot interferometric sensor for strain measurement at high temperatures. IEEE Photonics Technol. Lett. 2011, 23, 700–702. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D. In-line fiber optic interferometric sensors in single-mode fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef]
- Wang, J.; Dong, B.; Lally, E.; Gong, J.; Han, M.; Wang, A. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers. Opt. Lett. 2010, 35, 619–621. [Google Scholar] [CrossRef]
- Huang, C.; Lee, D.; Dai, J.; Xie, W.; Yang, M. Fabrication of high-temperature temperature sensor based on dielectric multilayer film on Sapphire fiber tip. Sens. Actuator A Phys. 2015, 232, 99–102. [Google Scholar] [CrossRef]
- Allsop, T.; Reeves, R.; Webb, D.J.; Bennion, I.; Neal, R. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev. Sci. Instrum. 2002, 73, 1702–1705. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzón-Hernández, D. Low-cost optical fiber refractive-index sensor based on core diameter mismatch. J. Lightw. Technol. 2006, 24, 1409–1413. [Google Scholar] [CrossRef]
- Ngyuen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y.J. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375. [Google Scholar] [CrossRef]
- Zhu, J.J.; Zhang, A.P.; Xia, T.H.; He, S.; Xue, W. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sens. J. 2010, 10, 1415–1418. [Google Scholar]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liao, C.L.; Wang, D.N.; Liu, S.J.; Lu, P.X. Fiber in-line high-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer. J. Opt. Soc. Am. B 2010, 27, 370–374. [Google Scholar] [CrossRef]
- Monzón-Hernández, D.; Minkovich, V.P.; Villatoro, J. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photonics Technol. Lett. 2006, 18, 511–513. [Google Scholar] [CrossRef]
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef]
- Swart, P.L. Long-period grating Michelson refractometric sensor. Meas. Sci. Technol. 2004, 15, 1576–1580. [Google Scholar] [CrossRef]
- Tian, Z.B.; Yam, S.S.H.; Loock, H.P. Single mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef]
- Tian, Z.B.; Yam, S.S.H.; Loock, H.P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107. [Google Scholar] [CrossRef]
- Li, E.; Wang, X.; Zhang, C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Appl. Phys. Lett. 2006, 89, 091119. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Jiang, L.; Wang, S.; Li, B.; Lu, Y. High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber. Appl. Opt. 2013, 52, 2038–2041. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in Brillouin scattering based fiber sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef]
- Takada, K.; Himeno, A.; Yukimatsu, K. Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry. Appl. Phys. Lett. 1991, 59, 2483–2485. [Google Scholar] [CrossRef]
- Yilmaz, G.; Karlik, S.E. A distributed optical fiber sensor for temperature detection in power cables. Sens. Actuator A Phys. 2006, 125, 148–155. [Google Scholar] [CrossRef]
- Pinto, N.M.P.; Frazao, O.; Baptista, J.M.; Santos, J.L. Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR. Opt. Laser Eng. 2006, 44, 771–778. [Google Scholar] [CrossRef]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef]
- Wan, K.T.; Leung, C. Applications of a distributed fiber optic crack sensor for concrete structures. Actuator A Phys. 2007, 135, 458–464. [Google Scholar] [CrossRef]
- Kingsley, S.A.; Davies, D.E.N. OFDR diagnostics for fibre and integrated-optic systems. Electron. Lett. 1985, 21, 434–435. [Google Scholar] [CrossRef]
- Sang, A.K.; Froggatt, M.E.; Gifford, D.K.; Kreger, S.T.; Dickerson, B.D. One centimeter spatial resolution temperature measurement in a nuclear reactor using Rayleigh scatter in optical fiber. IEEE Sens. J. 2008, 8, 1375–1380. [Google Scholar] [CrossRef]
- Dakin, J.P.; Pratt, D.J.; Bibby, G.W.; Ross, J.N. Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 1985, 21, 569–570. [Google Scholar] [CrossRef]
- Tanner, M.G.; Dyer, S.D.; Baek, B.; Hadfield, R.H.; Woo Nam, S. High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors. Appl. Phys. Lett. 2011, 99, 201110. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technol. Lett. 1989, 1, 107–108. [Google Scholar] [CrossRef]
- Brown, G.A.; Hartog, A.H. Optical fiber sensors in upstream oil and gas. J. Pet. Technol. 2002, 54, 63–65. [Google Scholar] [CrossRef]
- Belal, M.; Cho, Y.T.; Ibsen, M.; Newson, T.P. A temperature-compensated high spatial resolution distributed strain sensor. Meas. Sci. Technol. 2010, 21, 015204. [Google Scholar] [CrossRef]
- Shimizu, K.; Horiguchi, T.; Koyamada, Y.; Kurashima, T. Coherenet self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Opt. Lett. 1993, 18, 185–187. [Google Scholar] [CrossRef]
- Kishida, K.; Li, C.H. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system. In Proceedings of the 2nd Structural Health Monitoring of Intelligent Infrastructure, Shenzhen, China, 16–18 November 2006; pp. 471–477. [Google Scholar]
- Garus, D.; Golgolla, T.; Krebber, K.; Schliep, F. Brillouin optical frequency-domain analysis for distributed temperature and strain measurements. J. Lightw. Technol. 1997, 15, 654–662. [Google Scholar] [CrossRef]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a correlation-based technique—Proposal, experiment and simulation. IEICE Trans. Electron. 2000, E83-C, 405–411. [Google Scholar]
- Hotate, K.; Tanaka, M. Distributed fiber Brillouin strain sensing with 1cm spatial resolution by correlation-based continuous-wave Technique. IEEE Photonics Technol. Lett. 2002, 14, 179–181. [Google Scholar] [CrossRef]
- Hotate, K. Brillouin scattering accompanied by acoustic grating in an optical fiber and applications in fiber distributed sensing. Proc. SPIE 2011, 7753, 7–10. [Google Scholar]
- Meacham, B.J. International developments in fire sensor technology. J. Fire Prot. Eng. 1994, 6, 89–98. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Song, G. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe. Smart Mater. Struct. 2016, 25, 045017. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Liu, W.; Li, X.; Yue, C.; Wang, Y.; Wang, Q.; Cai, X. Distributed optical fiber temperature detecting and alarm system. In Proceedings of the 12th International Conference on Automatic Fire Detection, Gaithersburg, MD, USA, 25–28 March 2001. [Google Scholar]
- Liu, Z.G.; Ferrier, G.; Bao, X.; Zeng, X.; Yu, Q.; Kim, A.K. Brillouin scattering based distributed fiber optic temperature sensing for fire detection. In Proceedings of the 7th International Symposium on Fire Safety Conference, Worcester, MA, USA, 16–21 June 2002. [Google Scholar]
- Liu, Z.; Kim, A.K. Review of recent developments in fire detection technologies. J. Fire Prot. Eng. 2003, 13, 129–151. [Google Scholar] [CrossRef]
- Glombitza, U.; Hoff, H. Fibre optic radar system for fire detection in cable trays. In Proceedings of the 13th International Conference on Automatic Fire Detection, Duisberg, Germany, 14–16 September 2004. [Google Scholar]
- Zhang, Z.; Guo, N.; Yu, X.; Wang, J.; Wu, X. Distributed fiber optics Raman high temperature (1000 °C) measurement networks. Proc. SPIE 2001, 4603, 116. [Google Scholar]
- Wang, J. Distributed Pressure and Temperature Sensing Based on Stimulated Brillouin Scattering. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2013. [Google Scholar]
- Fellay, A. Extreme Temperature Sensing Using Brillouin Scattering in Optical Fibers. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, 2003. [Google Scholar]
- Li, Y.; Zhang, F.; Yoshino, T. Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect. J. Lightw. Technol. 2003, 21, 1663–1667. [Google Scholar]
- Bao, Y.; Chen, G. Fully-distributed fiber optic sensor for strain measurement at high temperature. In Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- Bao, Y.; Chen, G. High temperature measurement with Brillouin optical time domain analysis. Opt. Lett. 2016, 41, 3177–3180. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, G. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors. Meas. Sci. Technol. 2016, 27, 65101–65111. [Google Scholar] [CrossRef]
- Bao, Y.; Meng, W.; Chen, Y.; Chen, G.; Khayat, K.H. Measuring mortar shrinkage and cracking by pulse pre-pump Brillouin optical time domain analysis with a single optical fiber. Mater. Lett. 2015, 145, 344–346. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, G. Strain distribution and crack detection in thin unbonded concrete pavement overlays with fully distributed fiber optic sensors. Opt. Eng. 2016, 55, 011008. [Google Scholar] [CrossRef]
- Bao, Y.; Valipour, M.; Meng, W.; Khayat, K.H.; Chen, G. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete bonded over an existing concrete substrate. Smart Mater. Struct. 2017, 26, 085009. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Y.; Hoehler, M.S.; Smith, C.M.; Bundy, M.; Chen, G. Experimental analysis of steel beams subjected to fire enhanced by Brillouin scattering-based fiber optic sensor data. J. Struct. Eng. 2017, 143, 04016143. [Google Scholar] [CrossRef]
- Bao, Y.; Hoehler, M.S.; Smith, C.M.; Bundy, M.; Chen, G. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors. Smart Mater. Struct. 2017, 26, 105034. [Google Scholar] [CrossRef] [Green Version]
- Delepine-Lesoille, S.; Planes, I.; Landolt, M.; Hermand, G.; Perrochon, O. Compared performances of Rayleigh, Raman, and Brillouin distributed temperature measurements during concrete container fire test. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017; Volume 10323, p. 103236. [Google Scholar]
- Wysokiński, K.; Stańczyk, T.; Gibała, K.; Tenderenda, T.; Ziołowicz, A.; Słowikowski, M.; Broczkowska, M.; Nasiłowski, T. New methods of enhancing the thermal durability of silica optical fibers. Materials 2014, 7, 6947–6964. [Google Scholar] [CrossRef]
- Garcia-Pichel, F. A scalar irradiance fiber-optic microprobe for the measurement of ultraviolet radiation at high spatial resolution. Photochem. Photobiol. 1995, 61, 248–254. [Google Scholar] [CrossRef]
- Zheng, Z.; Tong, X.; Wang, H.; Zhang, C.; Deng, C.; He, W. Research on sapphire-based optical fiber deep ultraviolet detection system working at high temperatures. Opt. Fiber Technol. 2019, 47, 88–92. [Google Scholar] [CrossRef]
- Dai, X.; Liu, X.; Liu, L.; Zhu, B.; Fang, Z. A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases. Sens. Actuators B Chem. 2015, 220, 414–419. [Google Scholar] [CrossRef]
- Brenci, M.; Guzzi, D.; Mencaglia, A.; Mignani, A.G. Fibre-optic smoke sensor. Sens. Actuators B Chem. 1992, 7, 780–783. [Google Scholar] [CrossRef]
- Li, M.; Dubaniewicz, T.; Dougherty, H.; Addis, J. Evaluation of fiber optic methane sensor using a smoke chamber. Int. J. Min. Sci. Technol. 2018, 28, 969–974. [Google Scholar] [CrossRef]
- Liu, T. Fibre optic sensors for coal mine hazard detection. In Handbook of Optical Fibers; Springer: New York, NY, USA, 2018; pp. 1–27. [Google Scholar]
- Gong, Z.; Chen, K.; Yang, Y.; Zhou, X.; Yu, Q. Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor. Sens. Actuators B Chem. 2018, 260, 357–363. [Google Scholar] [CrossRef]
- Meacham, B.J. The use of artificial intelligence techniques for signal discrimination in fire detection systems. J. Fire Prot. Eng. 1994, 6, 125–136. [Google Scholar] [CrossRef]
- Arrue, B.C.; Ollero, A.; De Dios, J.M. An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell. Syst. Appl. 2000, 15, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef]
- Ennals, B. Integrated systems—An evolution in building control. Fire Saf. Eng. 1999, 6, 10–12. [Google Scholar]
- Sharples, S.; Callaghan, V.; Clarke, G. A multi-agent architecture for intelligent building sensing and control. Sens. Rev. 1999, 19, 135–140. [Google Scholar] [CrossRef]
Sensor | Type | Measurand | Upper Temperature | Sensor Length | Spatial Resolution | Measurement Time | Fabrication Effort | Technology Stage |
---|---|---|---|---|---|---|---|---|
Ordinary FBG | Point | T, ε | 400 °C | ≈5 mm | - | <1 s | Low | Mature |
RFBG * | Point | T ** | 1295 °C | ≈5 mm | - | <1 s | High | Mature |
fs-FBG * | Point | T ** | 1100 °C | ≈5 mm | - | <1 s | High | Emerging |
Sapphire FBG | Point | T ** | 1850 °C | ≈5 mm | - | <1 s | High | Emerging |
LPFG | Point | T, ε | 1200 °C | ≈30 mm | - | <1 s | Medium | Developing |
EFPI | Point | ε | 1000 °C | ≈5 mm | - | <1 s | High | Developing |
IFPI | Point | T ** | 1100 °C | ≈5 mm | - | <1 s | Medium | Emerging |
CCMI | Point | T ** | 1200 °C | ≈5 mm | - | <1 s | Medium | Emerging |
Rayleigh OTDR | Distributed | T ** | ≈1000 °C | ≈10 km | ≈1 m | 3 min | Low | Developing |
Rayleigh OFDR | Distributed | T ** | ≈1000 °C | ≈0.1 km | ≈1 mm | <1 s | Low | Developing |
Raman OTDR | Distributed | T ** | ≈1000 °C | ≈30 km | ≈10 mm | ≈60 s | Low | Developing |
Brillouin OTDA | Distributed | T, ε | ≈1200 °C | ≈100 km | ≈20 mm | 1 s–60 s | Low | Mature |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Huang, Y.; Hoehler, M.S.; Chen, G. Review of Fiber Optic Sensors for Structural Fire Engineering. Sensors 2019, 19, 877. https://doi.org/10.3390/s19040877
Bao Y, Huang Y, Hoehler MS, Chen G. Review of Fiber Optic Sensors for Structural Fire Engineering. Sensors. 2019; 19(4):877. https://doi.org/10.3390/s19040877
Chicago/Turabian StyleBao, Yi, Ying Huang, Matthew S. Hoehler, and Genda Chen. 2019. "Review of Fiber Optic Sensors for Structural Fire Engineering" Sensors 19, no. 4: 877. https://doi.org/10.3390/s19040877
APA StyleBao, Y., Huang, Y., Hoehler, M. S., & Chen, G. (2019). Review of Fiber Optic Sensors for Structural Fire Engineering. Sensors, 19(4), 877. https://doi.org/10.3390/s19040877