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Abstract: In this paper, a virtual touch sensor using a depth camera is proposed. Touch regions are
detected by finding each region that consists of pixels within a certain distance from a touch surface.
Touch points are detected by finding a pixel in each touch region whose neighboring pixels are closest
to surfaces. A touch path error due to noise in the depth picture is corrected through a filter that
introduces a weight parameter in order to respond quickly even with sudden changes. The virtual
touch sensor is implemented by using the proposed methods for the touch point detection and the
touch path correction. In the virtual touch sensor, a touch surface and pixels of a depth picture can be
regarded as a virtual touch panel and virtual touch units, respectively. The virtual touch sensor can
be applied to wide fields of touch interfaces. Results of simulations show the implementation of the
touch-pen interface using the virtual touch sensor.

Keywords: virtual touch sensor; depth camera; depth picture; touch interface

1. Introduction

Convenient interface methods have been actively researched since the popularization of Internet
of Things (IoT) devices. Touch interface is the most successful interface to replace existing interface
devices such as keyboard and mouse. Touch interface is easy to learn regardless of gender or age.
The interface speed using touch interface is twice as fast as conventional physical interfaces [1].

Currently, capacitive sensing methods [2–7] are the most used touch detection methods for
touch interface. Capacitive sensing detects touch by measuring capacitances of electrodes. When an
object such as a finger touches a panel that applies capacitive sensing, the amount of current that
flows through electrodes mounted on the panel is changed. Capacitive sensing has the highest
touch detection accuracy and speed among touch sensing methods. However, the price of a device
using capacitive sensing increases as a panel size increases, since the touch interface device should
be combined with the panel. Instead of the capacitive sensing method, methods using an infrared
sensor [8–10] and an ultrasonic sensor [11–13] can be used to detect touch on a large screen. In the touch
detection methods using infrared sensors, infrared emitter sensors attached to the screen emit infrared
rays and then infrared detection sensors on the opposite side detect the infrared rays. When touch
occurs, a touch object blocks the infrared rays, so the infrared detection sensors cannot detect the
infrared rays. Touch detection methods using ultrasonic sensors are similar to the methods using
infrared sensors. The touch detection methods using infrared or ultrasonic sensors have a limitation as
the shape of the screen has to be flat.

In order to detect touch on a non-flat panel, pictures captured by cameras instead of various
sensors can be used. Touch detection methods detect an area of the touch object such as a fingertip
in captured pictures for the touch region. The touch point is defined as a pixel that has a highest
probability for touching in the touch region. Research by Malik [14] captures pictures from two
cameras, then detects a fingertip touching a surface by comparing the pictures. The method used
by Sugita [15] detects changes of the color of the fingernail when it touches the surface. However,
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it is difficult to obtain distance information through color pictures. Therefore, the accuracy of color
picture methods is remarkably lower than touch detection methods using sensors. In order to obtain
distance information depth pictures, which are captured by a depth camera, can be used. In a depth
picture, pixel values are set to distances from a depth camera. Studies on applications of depth pictures
have been researched in various fields such as face recognition [16–18], simultaneous localization and
mapping [19,20], object tracking [21–25], and people tracking [26–28]. Interface methods using depth
pictures mainly use gesture recognition. Ren [29] proposed Finger–Earth Mover’s Distance, which is a
method to measure differences between the hand shapes in depth pictures by applying Earth Mover’s
Distance [30], in order to recognize finger gesture. Biswas [31] proposes a gesture recognition method
that classifies differences between adjacent frames of a depth video using a support vector machine.
Li [32] introduces contour tracing and finger vector calculation to recognize finger gesture. Methods
for touch detection using depth pictures have also been studied. Harrison [33] proposes a method
where each fingertip is detected by measuring variations of depth values in the vertical or horizontal
direction in a depth picture. Touch is detected by measuring differences in depth values between the
finger and neighboring areas. Wilson [34] proposes a touch detection method of comparing depth
values between each touch object and surfaces. However, these proposed methods are only for touch
region detection. Studies for touch point detection in depth pictures are insufficient. It is also necessary
to study methods of correcting touch path errors, which are caused by depth picture noise.

In this paper, methods for touch point detection and touch path correction are proposed.
Each touch region is detected as a region approaching a certain distance from surfaces, similar to
Wilson‘s work [34]. Touch points are detected with pixels closest to surfaces, but other points may
also be detected because of depth picture noise. Instead of selecting the closest point to the surfaces,
each touch point is detected by finding a pixel in each touch region whose neighboring pixels are
closest to surfaces. In touch point tracking, touch path errors occur due to depth picture noise and
motion blur. The touch path errors are corrected using a filter similar to the Kalman filter. In the touch
path correction using the Kalman filter, there is the disadvantage of a slow response in case of a sudden
change of touch point movement. However, the proposed filter solves this problem by introducing a
weight parameter that is related to a difference between predicted and measured positions of a touch
point. A touch-pen interface is also implemented by the virtual touch sensor.

Surfaces which the depth camera captures and pixels in pictures are set as a virtual touch panel
and virtual touch detection units, respectively. Conventional touch interface devices need a screen
coupled with sensing devices, while the virtual touch sensor requires only the depth camera as a
sensing device. Therefore, the virtual touch sensor is a screen-independent device.

2. Characteristics of Noise in a Depth Picture

Noise in a depth picture occurs due to measurement errors of the depth camera device. This noise
causes degrading performance in object feature detection in a depth picture. Figure 1 shows changes in
depth values according to frame flow at a certain pixel. The depth values with errors are continuously
measured, but an actual depth value is the most frequent. In addition, an average of the depth values
is close to the actual depth value.
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Shape distortion of a moving object in depth pictures also occurs. Shape distortion is caused by
motion blur [35]. Motion blur occurs when the capturing speed of a camera is slower than the speed of
the object movement. Figure 2 shows the shape distortion in object detection due to motion blur.
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3. Virtual Touch Sensor Using Depth Camera

In this paper, a virtual touch sensor using a depth camera is implemented. Surfaces captured by
the depth camera are defined as a virtual panel. Pixels of each captured picture are defined as virtual
touch units. Figure 3 shows the virtual touch sensor.
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3.1. Touch Region Detection

In order to detect touch objects using a depth camera, it is necessary to obtain the depth values
of a virtual touch panel. Several pictures are used in order to obtain the depth values without noise.
The depth values of the virtual panel can be obtained from an average value or a mode value of each
pixel in the several pictures. A method using the average values is fast to calculate and simple to
implement. However, an incorrect depth value of the virtual touch panel can be obtained if the number
of accumulated pictures is not sufficient. A method using the mode values is slow, because a sort for
the accumulated depth values in each position is required, however this method can obtain the most
accurate depth values of the virtual touch panel. Figure 4 shows methods for obtaining the depth
values of the virtual touch panel at a certain pixel using the average and mode values.
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The depth values of the virtual touch panel are compared with depth values of each captured
depth picture in order to detect touch regions. Depth values of touch objects are different from the
depth values of the virtual touch panel, as shown in Figure 5. The touch objects are detected using
differences between the depth values of the touch object and the stored depth values for the virtual
touch panel as shown in Figure 6b. To consider depth picture noise, regions composed of pixels which
satisfy the following equation is set to the touch regions:

ox,y =

{
1, i f Tl < bx,y − dx,y < Tu

0, otherwise
, (1)

where bx,y and dx,y are depth values of the virtual touch panel and the captured picture in position
(x, y), respectively, and ox,y is a value in position (x, y) of a binarization picture, which is a picture
for touch region detection. A result for touch region detection is shown in Figure 6c. In touch region
detection, regions which are not touch regions may also be detected because of noise. To solve this
problem, each detected region whose size is less than Smin should be regarded as part of the virtual
touch panel. Smin is determined by considering the resolution of the depth picture. Figure 6d shows
the final result of touch region detection by removing noise.
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3.2. Touch Point Detection

For each touch point a certain pixel where the touch occurs is at the edge of each touch region.
To detect touch points, pixels whose distance from the edge of the bounding box of the touch region
is within Ds are set to a search region. Pixels satisfying the following equation in the search region
are detected:

bx,y − dx,y < Tt, (2)
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where Tt means a threshold for touch point detection. Pixels without accurate touch points may also
be detected through Equation (2). In order to detect an accurate touch point, neighboring pixels should
also satisfy Equation (2). If pixels satisfy Equation (2) at the position of the colored box in one of the
3 × 3 block patterns in Figure 7, a center pixel of the block is determined as a touch point.
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3.3. Touch Path Correction

In tracking touch points detected by the proposed methods, touch path errors occur from noise
and motion blur as shown in Figure 10.
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A proposed filter for correcting touch path errors is similar to the Kalman filter that corrects a
measured state through a prediction step, but it introduces a weight parameter in order to respond
quickly even with sudden changes. The weight parameter is related to a difference between the
predicted and measured positions of a touch point. Figure 11 shows the proposed filter.
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The position of a touch point in nth frame can be predicted by using a position and a speed in a
previous frame as follows:

pp(n) = p(n − 1) + v(n − 1)
v(n) ≡ p(n) + p(n − 1)

, (3)

where pp(n), p(n), and v(n) mean a predicted position, a corrected position, and a speed of a touch
point in nth frame, respectively. A weight parameter α is calculated by using the difference between a
measured and a predicted position as follows:

α =

{
1

Tf
e(n), i f e(n) ≤ Tf

1, otherwise
, (4)

where Tf is a filter threshold and e(n) is a pixel distance between pm(n) and pp(n). pp(n) is completely
ignored when e(n) is greater than Tf. p(n) is calculated as follows:

p(n) = αpm(n) + (1 − α)pp(n). (5)
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Figure 12 shows a touch path correction using the proposed filtering.
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3.4. Implementation of Touch-Pen Interface

In a touch interface using captured pictures, the coordinate system in a captured picture is different
from the screen coordinate system. Therefore, it is necessary to match the coordinates of captured
pictures with screen coordinates. Homography transformation can match coordinates between the
screen and the picture. Four pairs consisting of matching coordinates in the screen and in the captured
picture are required for homography transformation. Each pair is obtained by displaying each dot on
the screen and touching it. A touch interface according to the touch position can be implemented after
matching the coordinates of the screen and the picture.

A touch-pen interface that draws lines following touch paths is implemented using the virtual
touch sensor. Scenarios of the touch-pen interface are as follows: (1) A depth camera is placed in
a position where it can capture the whole of the virtual touch panel; (2) four points are displayed
sequentially on a surface of the virtual touch panel and a user touches each displayed point; (3) when
the user drags the virtual touch panel, a line is drawn along dragged paths. Figure 13 shows a sequence
of the touch-pen interface scenarios.
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3.5. Limitations

The virtual touch sensor has an advantage that the size or surface type of the virtual touch panel
does not affect touch detection. However, the virtual touch sensor has limitations as touch detection
performance is dependent on specifications of the depth camera and touch detection on a dynamic
virtual touch panel is difficult. This limitation is caused by using pictures captured by a camera.
A detection interval for touch cannot exceed the frame rate of a depth camera. If the frame rate is
30 Hz, a detection interval cannot be less than about 33 ms. The precision for touch detection depends
on the resolution of the depth camera.

The proposed virtual touch sensor can only detect touch if a virtual touch panel is not changed,
because touch detection uses the pre-stored depth values of the virtual touch panel. A step that
modifies the pre-stored depth values if a virtual touch panel is changed can be introduced to detect
touch on a dynamic virtual touch panel. However, updating changes to the stored depth values after
obtaining the depth values of a changed virtual touch panel take a lot of time. In order to detect touch
in a dynamic touch panel in real time, a method for the classification of a virtual touch panel and
virtual touch objects without previously stored depth values needs to be studied further.

4. Simulation Results

In order to measure the performance of the virtual touch sensor, we used Xtion Pro Live, which is
manufactured by ASUS from Taiwan, as a depth camera. A resolution of depth pictures is specified as
320 × 240. For the virtual touch panel we used a screen with a width and height of 2.2 m and 1.7 m,
respectively. We set the default angle and distance between the camera and the virtual touch panel as
30◦ and 1.5 m, respectively.

We measured the accuracy of the proposed touch-pen interface. A fixed position is touched
20 times. Each position detected as a touch point is displayed in the virtual touch panel as a dot. Each
touch position error is measured as a distance between the touched and displayed position. Smin, Tl, Tu,
Ds, and Tt, which are parameters of the virtual touch sensor, are set as 30, 3, 30, 4, and 10, respectively.

The average touch point detection time using the virtual touch sensor is measured as 20 ms.
However, the actual touch detection interval cannot exceed the frame rate of the camera. Therefore,
the detection time of the virtual touch sensor is slower than conventional touch detection devices using
capacitive sensing. These have a touch point detection time of 10 ms in the case of self-capacitance or
6 ms in the case of mutual-capacitance [7].

In obtaining depth values of the virtual touch panel, touch position errors according to methods
and a number of accumulated pictures is shown in Figure 14. Touch position errors when obtaining
depth values using average values are large when the number of accumulated pictures is less than
about 200. An improvement of touch accuracy doesn‘t appear if the number of accumulated pictures
are more than about 300.
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Table 1 shows success rates of touch region detection and position errors of touch points according
to Tl. Some touch regions are not detected due to depth picture noise when Tl is less than 3. On the
other hand, touch position errors are increased as Tl is more than 4 because some parts of the object
regions are detected as the virtual touch panel.

Table 1. Success rate and position errors according to Tl in touch region detection.

Tl Success Rate of Touch Region Detection (%) Position Error of Touch Point(mm)

1 0 -
2 75 8
3 100 5
4 100 6
5 100 7

Table 2 shows position errors of touch points according to Tt. The position errors increase linearly
as Tt increases. The number of detected pixels increases as Tt increases, so it is hard to detect an
accurate touch point.

Table 2. Position errors according to Tt in touch region detection.

Tt Position Error of Touch Point (mm)

1 3
2 5
3 7
4 9
5 11

Table 3 shows position errors according to an angle between the virtual touch panel and the depth
camera. Touch point detection is most accurate when the angle is set to 30◦. It is difficult to detect an
accurate touch point when the angle is too small, because an area of the virtual touch panel occupied
in a captured picture becomes too small. In contrast, errors in touch region detection increase when
the angle is large. The accuracy of touch point detection increases as the distance is closer.

Table 3. Position errors according to distance and angle between camera and screen.

Angle(◦)
Distance between Camera and Screen (m)

1.5 2 2.5 3 3.5

10 16 17 18 18 19
15 12 13 13 14 14
20 8 8 10 12 12
25 5 6 9 10 10
30 5 6 6 7 7
35 6 6 6 7 7
40 7 7 8 8 9
45 8 9 9 10 13
50 9 11 13 15 17
55 10 12 13 16 18

In order to measure the performance of correcting touch paths by using the proposed touch path
correction, the proposed correction method is compared with the Kalman filter and a low-pass filter.
The low-pass filter corrects touch paths through the following linear equation:

p(n) = (pm(n) + p(n − 1))/2. (6)



Sensors 2019, 19, 885 10 of 13

Equation (6) means that this filter corrects a position as an average between a measured position
in a current frame and a corrected position in a previous frame. Figure 15 shows the responses of
filters to touch point movements. The low-pass filter removes part of the changes in touch point
movement unconditionally. The Kalman filter is more responsive to changes than the low-pass filter,
but it still tends to eliminate large changes. In contrast, the proposed filter responds quickly even if
large change occurs.
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We drew a shape as shown in Figure 16a, consisting of repetitive vertical and horizontal lines
by using the touch-pen interface. Then we measured angles θ1, θ2 as shown in Figure 16b, between
horizontal and vertical axes from a drawn line, respectively. A smaller angle is selected from two
angles. A selected angle can be considered as an amount of touch path error. The angle errors converge
to 0 as the path correction is accurate.
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Figure 16. Measuring performance of proposed touch path filtering: (a) shape for measuring
performance of path correction; (b) method for measuring touch path error.

Average angle errors of the original path, corrected paths by low-pass filter, Kalman filter,
and proposed filter are 12.688◦, 10.792◦, 6.937◦, and 6.813◦, respectively. Figure 17 shows the results of
correcting the touch path.
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Figures 18 and 19 show average angle errors according to Tf. A correction effect is more clear as
Tf increases. However, more shape distortion occurs at positions where movements of touch points
suddenly change as Tf increases as shown in Figure 19.
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5. Conclusions

In this paper, a virtual touch sensor was implemented by using a depth camera. The virtual
touch sensor showed the most accuracy when Tl, Tu, the distance between a virtual touch panel and
the depth camera and an angle were set as 3, 30, 1.5 m, and 30◦, respectively. A touch-pen interface
using the virtual touch sensor was also implemented. The virtual touch sensor is expected to solve the
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problem of applying touch interfaces to a large display, which is a disadvantage of existing physical
touch methods. Conventional touch detection sensors can only use a flat surface as a touch panel, while
the virtual touch sensor can also use a curved surface. The virtual touch sensor has the advantage
that it is cheaper than conventional physical touch sensors. We expect the virtual touch sensor to be
applicable to other fields such as a motion recognition.
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