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Abstract: The spatial quantification of green leaf area index (LAIgreen), the total green
photosynthetically active leaf area per ground area, is a crucial biophysical variable for agroecosystem
monitoring. The Sentinel-2 mission is with (1) a temporal resolution lower than a week, (2) a spatial
resolution of up to 10 m, and (3) narrow bands in the red and red-edge region, a highly promising
mission for agricultural monitoring. The aim of this work is to define an easy implementable LAIgreen

index for the Sentinel-2 mission. Two large and independent multi-crop datasets of in situ collected
LAIgreen measurements were used. Commonly used LAIgreen indices applied on the Sentinel-2
10 m × 10 m pixel resulted in a validation R2 lower than 0.6. By calculating all Sentinel-2 band
combinations to identify high correlation and physical basis with LAIgreen, the new Sentinel-2 LAIgreen

Index (SeLI) was defined. SeLI is a normalized index that uses the 705 nm and 865 nm centered bands,
exploiting the red-edge region for low-saturating absorption sensitivity to photosynthetic vegetation.
A R2 of 0.708 (root mean squared error (RMSE) = 0.67) and a R2 of 0.732 (RMSE = 0.69) were obtained
with a linear fitting for the calibration and validation datasets, respectively, outperforming established
indices. Sentinel-2 LAIgreen maps are presented.
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1. Introduction

Leaf area index (LAI), or the total one-sided leaf area per unit of ground area (m2 leaf per m2

surface or dimensionless), can be distinguished in two types. On the one hand, there is the green
leaf area index (LAIgreen), representing the leaves which are photosynthetically active, being the
most common type of LAI [1], and, on the other hand, there is the brown leaf area index (LAIbrown),
representing the leaf area normalized which is senescent and losing photosynthetic function [2].
The Sentinel-2 mission from the European Space Agency (ESA) has, with the improved optical sensor
bands in the red-edge, an increased sensitivity towards LAIgreen [2], while the shortwave infrared bands
are sensitive to cellulose and lignin (dry matter) absorption [2]. Such improved capabilities to obtain
more accurate quantifications of LAIgreen over large areas provides an important aspect in climatic [3],
ecological [4] and biogeochemical [5] cycles models, as well as for estimating crop vegetation
status [6], developing soil maps [7] and estimating light-use efficiency [8]. Its determination is
crucial for the understanding of biophysical processes of crop canopies, being the main morphological
parameter used for determining crop growth through the correlation with crop productivity [1,9,10].
In the context of agricultural monitoring, there is a strong interest in estimate LAIgreen parameter.
Near real-time LAIgreen estimates provides the tool for farmers to obtain the crop health and growth
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status, further improving the effective technical support in farming practices such as fertilizer
application and water management. In this way, increased crop yields and reduced costs and input
resources for the agricultural sector are envisaged [11,12]. Remote sensing from satellite, aerial and
unmanned aerial vehicle platforms has become a popular technique in monitoring crop LAIgreen

because of its ability to acquire synoptic information at different times and spatial scales [13–15].
For agricultural monitoring by remote sensing, the spatial resolution should be at least 20 m and,
preferably, 10 m in order to make site-specific management possible [16]. A temporal resolution of
less than a week would be required to follow-up acute changes in crop condition and provide timely
response in management practices. These requirements are fulfilled by the ESA’s Sentinel-2 mission,
providing 10 m pixel size products with a 10-day temporal resolution. Sentinel-2 is a polar-orbiting,
superspectral high-resolution imaging mission with twin polar-orbiting satellites, Sentinel-2A and 2B.
The mission’s main objective is providing quality information for agricultural and forestry practices
and, hence, helping manage food security [17]. With Sentinel-2A in orbit (launched 23 June 2015),
the temporal resolution was not yet sufficient for real applications at the individual farmer’s level.
But with the additional availability of data from Sentinel-2B (launched 7 March 2017) the revisit period
goes down to five days under cloud-free conditions.

LAIgreen is functionally linked to the canopy spectral reflectance, so its retrieval from
optical remote-sensing data has prompted many studies using various techniques [18,19].
Essentially, these retrieval techniques can be classified into two groups, i.e., (1) empirical retrieval methods,
which typically consist of relating the biophysical parameter of interest against spectral data through linear
(e.g., vegetation indices) or nonlinear (e.g., machine learning approaches) regression techniques [20–23]
and (2) physically-based retrieval methods, which refers to inversion of radiative transfer models (RTMs)
against remote sensing observations [24–26]. Concerning physical models, experimental studies using
RTMs have shown great flexibility in retrieving plant cover variables, because of being able to
parameterize these models to a wide range of land cover situations and sensor configurations [27,28].
However, two main drawbacks limit the use of the inversion of RTMs for operational applications.
First, RTM approaches typically require some ancillary information to enable the parameterization of
the physical model, which may not always be available [13,29]. An additional problem hereby is that if
uncertainties are introduced the likelihood increases that the model inversion will not lead to a unique
solution and extra steps are required to overcome the ill-posed problem [30]. Second, regardless of the
availability of auxiliary data, there is the intrinsic risk of oversimplifying the architecture of canopy for
those RTMs fast enough for operational applications. The difficulty in describing canopy structure
increases in heterogeneous scenes, such as mosaics of crops at different phenological stages or complex
mixtures of woodlands and/or grasslands [2,31,32]. Non-linear regression techniques are standardly
used for operational LAI products. For Sentinel-2 an operational LAI product, associated with a
quality indicator, is provided through the SNAP (Sentinel Application Platform) toolbox and produced
through a neural network which has been trained by simulated spectra generated from well-known
RTMs [33]. The algorithm is trained with simulated LAIgreen values generated from the SAIL radiative
transfer model [34], which describes the canopy as a homogenous and horizontal turbid-medium, and
the PROSPECT radiative transfer model [35], which considers the leaf as a succession of absorption
layers. However, the accuracy of this product is shown improvable [36]. Other machine learning
algorithms than neural networks have been proposed to study the retrieval opportunities of LAI from
Sentinel-2 and -3 [37], solving the black box problem. However, although machine learning approaches
can be fast and can capture the non-linear relationship between different parameters, they are time
variant and location dependent [38].

Alternatively, linear empirical models, i.e., vegetation indices (VIs), are one of the most
straightforward implementable method in an operational data processing chain. These indices
relate a few spectral bands with the biophysical parameter of interest [39] in a way that enhances
the spectral characteristics of a given vegetation property while minimizing the soil, atmospheric,
and sun-target-sensor geometry effects [22]. Despite the positive aspects of VIs developed for LAI
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retrieval, their major weakness is the lack of a generally applicable index for multiple vegetation
types. The best way to find efficient and robust indices is to use large and diverse field datasets,
with a large variety of canopy structures [22,40]. Early studies identified the red and near-infrared
(NIR) regions as sensitive to LAIgreen, resulting in the common use of the reflectance broad-bands in
these regions through simple ratios [41] or normalized difference ratios [42,43]. It should be mentioned
that while these indices were found to be sensitive to low LAIgreen values, they usually lose sensitivity
as LAIgreen increases (typically above 2–3 according to Haboudane et al. [19]). This saturation of
the reflectance at moderate to high LAIgreen values in the red range (600–700 nm) is due to the high
chlorophyll absorption in this spectral range [9]. The wavelength region located in the visible–near
infrared (VIS-NIR) transition, i.e., between 690 and 750 nm, generally referred as the “red-edge”, is the
region between maximum chlorophyll absorption in the red, and maximum reflection (high scattering)
in the NIR caused by leaf cellular structure abundance, i.e., LAI [44–46]. Reflectance in the red-edge
transition region is much higher than in the visible range especially for these moderate to high LAIgreen

values, where the upwelling radiance in the red-edge range provides a higher and less noisy signal
compared to the low values in the red region. It has been specifically demonstrated, through real [47,48]
and simulated spectral data [42,46], that the shape of the red-edge region and mainly the slope is
strongly influenced by chlorophyll density and, hence, by LAIgreen. Despite this well-known sensitivity,
practically no established indices use the red-edge region for the LAIgreen retrieval as until now no
free operational satellites had narrow-bands in this region. With the Sentinel-2 satellites (13 spectral
bands) not only optimal and temporal resolution for crop monitoring is guaranteed, but, moreover,
also spectral configuration in the red-edge is improved, with narrow-bands centred at 705 nm (B5)
and 740 nm (B6). Recent studies have explored the potential of Sentinel-2 for the LAIgreen retrieval
based on simulated datasets [49,50]. But at this moment, few studies have used real Sentinel-2 images
in combination with in situ datasets for agricultural applications. Moreover, these studies using the
red-edge Sentinel-2 bands for LAIgreen retrieval, calibrated and validated their products for only a few
crop types [51,52], leaving the robustness of a generic retrieval application still an open issue.

In this respect, we aim to develop a simple, accurate empirical algorithm for deriving LAIgreen

from Sentinel-2 real data of multi-crop agricultural fields, using two large in situ field datasets. The first
objective is to determine if the commonly used VIs for estimating LAIgreen may be applicable for a
variety of crop types. Secondly, we want to identify the Sentinel-2 spectral bands that present the
highest correlation for the estimation of a wide variation in crop LAIgreen. Based on this analysis and
on a parallel study of the importance of the new Sentinel-2 red-edge bands, a new robust LAIgreen

index is defined. The performance of the new index and established VIs indices are validated and
applied over two distinct agricultural test sites.

2. Materials and Methods

2.1. Study Sites

Field data was collected at two study sites in the Mediterranean region (Figure 1). The first site
located in Valencia (Spain), named Huerta of Valencia, is an area in an alluvial plain between the
Turia river, the Mediterranean Sea and Albufera lake, with an approximate area of 12,000 hectares.
The climate is typically Mediterranean with mild, wet winters and hot dry summers, and a yearly
average temperature around 18 ◦C. Seasonal rainfall is minimal in summer and maximal in autumn
and spring, with an average annual value of 454 mm [53]. A complex historical irrigation system based
on irrigation ditches brings water to this fertile soil in which cereals, vineyards and olive trees were
originally the main crops and nowadays accompanied by rice, tigernut and new species of vegetables
and citric orchards. All these crop types are currently cultivated in small plots of size 40–100 m. For this
study, crop fields were measured in the Burjassot, Moncada and Alboraya municipalities (study site
central coordinates 39◦31’11.73” N, 0◦23’20.48” W, 18 m above sea level, Datum WGS84).
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from a user’s shadow, following the Land European Remote-Sensing Instruments (VALERI) field 
protocol (http://w3.avignon.inra.fr/valeri/). The VALERI protocol is a sampling strategy 
corresponding to high spatial-resolution satellite imagery, choosing elementary sampling units 
(ESUs) of 20 m × 20 m for each measuring plot. Each ESU was chosen in the middle of the crop field 
which had minimum dimensions of 40 m × 40 m in Valencia and 100 m × 100 m in Foggia. A minimum 
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Figure 1. Test site locations. (a) Valencia (Spain) from the Sentinel-2 image of 6 April 2017, UTM-WGS84
Zone 30S (b) Foggia (Italy) from the Sentinel-2 image of 8 April 2017, UTM-WGS84 Zone 33T.

The second test site is an Italian agricultural area located near Foggia (study site central coordinates
41◦27’36.76” N, 15◦32’45.33” E, 70 m a.s.l., Datum WGS84). The climate is Mediterranean, but with
a marked continental influence being 30 km distant from the coast. This promotes abrupt seasonal
and daily temperature changes, sometimes as high as 20 ◦C. The average annual temperature is
15.8 ◦C but summers can be very hot and dry, with temperatures easily exceeding 35 ◦C, and winters
with temperatures close to 0 ◦C. Rainfall is usually between 350 mm and 700 mm (average 469 mm),
occurring mainly during autumn and winter [54]. The agricultural sector is the mainstay of Foggia’s
economy, where grapefruit, olives, durum wheat and tomato are the majority crops for centuries.
The industries present are mostly devoted to food processing, with tomato processing the major
industry branch.

2.2. Green Leaf Area Index (LAIgreen) Datasets

At each study site, a large LAIgreen dataset was collected with the LAI-2200 Plant Canopy
Analyzer [55], which uses a fish-eyes lens with a hemispheric field of view (±45◦). The detector
is composed of five concentric rings (sensitive to radiation below 490 nm). Each ring responds over a
different range of zenith angles and radiation is, thus, azimuthally integrated. The measurements were
collected in one sensor mode using a 180◦ view cap, in clear sky condition, to avoid interferences from
a user’s shadow, following the Land European Remote-Sensing Instruments (VALERI) field protocol
(http://w3.avignon.inra.fr/valeri/). The VALERI protocol is a sampling strategy corresponding to
high spatial-resolution satellite imagery, choosing elementary sampling units (ESUs) of 20 m × 20 m
for each measuring plot. Each ESU was chosen in the middle of the crop field which had minimum
dimensions of 40 m × 40 m in Valencia and 100 m × 100 m in Foggia. A minimum distance of 20 m
from the edges of the field was kept. To account for the spatial LAIgreen variability within each ESU,
measuring points were sampled following a square spatial sampling with 5 measurements at each

http://w3.avignon.inra.fr/valeri/
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point (A, B, C, D and E), providing a statistically mean LAIgreen estimate per ESU (Figure 2). The centre
of the ESU (sampling point A) was geo-located using a GPS providing an accuracy of less than 5 m for
later matching the mean LAIgreen estimate with the corresponding Sentinel-2 reflectance data. The field
protocol was identic for both study sites.
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Figure 2. Sampling approach for each elementary sampling unit (ESU).

The field dataset collected in Valencia (Figure 1a), hereafter called “VLC17_ES”, consists of
79 average LAIgreen values for the respective ESUs sampled on 22 and 23 May; 18 and 19 July;
and 8 and 9 November 2017. Several dates throughout the season were selected to cover a wider
variety of growth stages. In total, LAIgreen data from 79 ESUs were taken containing orange
tree (Citrus x sinensis), collard (Brassica oleracea), tigernut (Cyperus esculentus), potato (Solanum
tuberosum), artichoke (Cynara scolymus), squash (Cucurbita pepo), alfalfa (Medicago sativa), broad bean
(Vicia faba), watermelon (Citrullus lanatus), pumpkin (Cucurbita maxima), onion (Allium cepa),
celery (Apium graveolens) and lettuce (Lactuca sativa). The number of ESUs, classified by LAIgreen value
range, is given in the corresponding histogram of the VLC17_ES dataset (Figure 3a). Furthermore,
13 bare soil ESUs were included (LAIgreen = 0), with the aim to create a more robust and general method.
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Figure 3. ESUs frequency histogram classified for LAIgreen value range, for (a) the VLC17_ES testing
dataset and (b) the FOG17_IT validation dataset. Bare soil ESUs are not included.

The field dataset collected in Foggia (Figure 1b), hereafter called “FOG17_IT”, was taken in
the framework of the H2020 SENSAGRI (Sentinels Synergy for Agriculture, http://sensagri.eu/)
project. This dataset consists of 99 average LAIgreen values collected on the 16, 21, 22 and 29 March;
5 and 13 April; 11, 17 and 30 May; 12, 15 and 21 June 2017. Mean LAIgreen data of durum wheat
(Triticum durum), tomato (Solanum lycopersicum) and horse bean (Vicia faba) ESUs were measured,
with the number of ESU’s specified in the histogram of Foggia test site (Figure 3b). In addition, 10 bare
soil ESUs were included.

The two standard and independently collected field datasets VLC17_ES (n = 79) and FOG17_IT
(n = 99) were, respectively, used as testing and validation dataset for the LAIgreen index testing and
development. Both datasets are covering a wide range of crop LAI values, i.e., from 0 to 4.5, providing
an optimal experimental dataset for the definition of a new general methodology.

http://sensagri.eu/
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2.3. Sentinel-2 Imagery and Sentinel Application Platform (SNAP) LAI Product

All field campaigns were carried out on days close, with a maximum of five days’ difference,
to overpass dates of Sentinel-2 over the study area. Each Sentinel-2 satellite carries a Multi-Spectral
Imager (MSI) instrument/sensor with a swath of 290 km on board. The MSI provides a versatile set of
13 spectral bands spanning from the visible and NIR to the shortwave infrared (SWIR) (443–2190 nm),
featuring four bands at 10 m (VIS and NIR bands), six bands at 20 m (red-edge and SWIR) and three
bands at 60 m spatial resolution for atmospheric correction (Table 1).

Table 1. Sentinel-2 bands setting.

Band
Number Function Central

Wavelength (nm)
Bandwidth

(nm)
Spatial

Resolution (m)

1 Coastal aerosol 443 27 60
2 Blue 490 98 10
3 Green 560 45 10
4 Red 665 38 10
5 Vegetation red-edge 705 19 20
6 Vegetation red-edge 740 18 20
7 Vegetation red-edge 783 28 20
8 Near infrared (NIR) 842 145 10
8a Vegetation red-edge 865 33 20
9 Water vapour 945 26 60
10 Shortwave infrared (SWIR)-cirrus 1380 75 60
11 SWIR 1610 143 20
12 SWIR 2190 242 20

The images were downloaded directly and free of charge from the ESA server (https://
scihub.copernicus.eu/). ESA provides Level-1C images, being geometrically corrected [56], with
top-of-atmosphere (TOA) reflectance; and Level-2A images, being geometrically and atmospherically
corrected, with top-of-canopy (TOC) reflectance. We downloaded 11 available cloud-free Level-1C
acquisitions of Sentinel-2 over Valencia and Foggia study areas (Table 2). In addition, we used the
SNAP toolbox to process these Level-1C images into Level-2A data, with the retrieval of the LAIgreen

product accompanied by a product quality indicator [33].

Table 2. Sentinel-2 images used in each field campaign.

Location Field Work Date (2017 year) Sentinel-2 Image Code

Valencia
22 and 23 May S2A_MSIL1C_20170526T105031_N0205_R051_T30SYJ_20170526T105518
18 and 19 July S2A_MSIL1C_20170720T105029_N0205_R051_T30SYJ_20170720T105641

8 and 9 November S2A_MSIL1C_20171107T105229_N0206_R051_T30SYJ_20171107T131035

Foggia

16 March S2A_MSIL1C_20170319T095021_N0204_R079_T33TWF_20170319T095021
21 and 22 March S2A_MSIL1C_20170319T095021_N0204_R079_T33TWG_20170319T095021

29 March S2A_MSIL1C_20170329T095021_N0204_R079_T33TWF_20170329T095024
5 and 13 April S2A_MSIL1C_20170408T095031_N0204_R079_T33TWF_20170408T095711
11 and 17 May S2A_MSIL1C_20170518T095031_N0205_R079_T33TWF_20170518T095716

3 May S2A_MSIL1C_20170528T095031_N0205_R079_T33TWF_20170528T095531
12 June S2A_MSIL1C_20170607T095031_N0205_R079_T33TWF_20170607T095031

15 and 21 June S2A_MSIL1C_20170617T095031_N0205_R079_T33TWF_20170617T095546

For each ESU the TOA reflectance spectrum was obtained from the central pixel of the
corresponding plot of the Sentinel-2 image. These images were atmospherically corrected using
the Sen2Cor procedure available in the Sentinel-2 SNAP toolbox, converting TOA reflectance into
TOC reflectance [57]. The Sentinel images were resampled to 10 m pixel size with all selected pixels
falling entirely inside the corresponding ESU. Subsetting was done to reduce the image size and the
processing time, and to cover only the study areas.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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2.4. Established Vegetation Indices Analysis

The performance of commonly used LAIgreen indices was tested (Table 3, indices shaded), with the
specific bands as defined by the original authors. The accuracies of each index was specifically
analyzed with linear (f(x) = ax + b), polynomial of second order (f(x) = ax2 + bx + c), exponential
(f(x) = a × exp(bx)) and exponential of second order fitting (f(x) = a × exp(bx) + c × exp(dx)).
Additionally, we introduced several generic index formulations, i.e., with undefined specific bands,
into a Matlab-based graphical user interface toolbox called ARTMO (Automated Radiative Transfer
Models Operator) [58]. ARTMO consists of multiple RTMs and several retrieval toolboxes that enable
the development and optimization of retrieval algorithms to convert optical images into maps of
vegetation properties. The indices formulation introduced in ARTMO was based on commonly used
LAIgreen indices, among other VIs typically used to estimate various biophysical variables such as
chlorophyll (Table 3, non-shaded indices). The spectral indices assessment toolbox [59] was used
to calibrate and validate generic indices, i.e., looking for those wavelengths that provide the best
correlation with LAIgreen, using the VLC17_ES testing dataset. A cross-validation method with the
k-fold technique was used to ensure more robust results [60]. This method divides the available data
into k subsets. From these k sub-datasets, k-1 sub-datasets are selected as a calibration dataset and
a single k sub-dataset is used for model validation. The cross-validation process is then repeated k
times, with each of the k sub-datasets used as validation dataset. Thus, all VLC17_ES field data are
used for both calibration and validation. Here, we used a 4-fold (k = 4) cross-validation procedure.

Table 3. Generic vegetation indices introduced in Automated Radiative Transfer Models Operator
(ARTMO), where indices based on commonly LAIgreen indices are shown shaded and typically indices
used to estimate other biophysical parameters are shown non-shaded. Rλ represents reflectance at the
wavelength λ. The generic name of each index has been established in this study.

Based Reference Formula Generic Name Abbreviation Generic Formula
[41] R800

R675
Ratio Index RI R1

R2

[43]
R800−R670
R800+R670 Normalized Difference Generic Index NDGI R1−R2

R1+ R2

[42] R704−R665
R704+R665

[61] R520−600 +R630−690
R760−900

Three Ratio Band Index TRBI R1+R2
R3

[62] R680 −R500
R750

Three Difference Band Index TDBI R1−R2
R3

[63] R750−R710
R710−R680

MERIS Terrestrial Generic Index MTGI R1−R2
R2−R3

Normalized Difference 3 band ND3b R1−R2
R2+R3

[64] R750−R705
R750+R705−2R445 Multi-band Normalized Index MNI R1−R2

R1+R2−R3[65] R550−R670
R550+R670−R480

[66] R676 − 0.5(R746 + R665) Generic Line Height GLH R1 − 0.5(R2 + R3)

[67] 0.5[120(R750 − R550)−
200(R670 − R550)]

Triangular Generic Index TGI 0.5[120(R1 − R2)−
200(R3 − R2)]

[68] [(R700 − R670)−
0.2(R700 − R550)](R700/R670)

Modified Chlorophyll Generic Index MCGI [(R1 − R2)−
0.2(R1 − R3)](R1/R2)

The selection of the index and, accordingly, the best performing bands based on the testing dataset
will rely on a series of criteria. First, it should be a simple index, preferably using only two bands to
minimize processing time and improve its operational use. Secondly, the index must have physical
sense, that is, it should be based on areas of the spectrum with high influence of the LAIgreen parameter.
As mentioned earlier, the red, red-edge and NIR regions are the areas with the greatest influence of
this parameter, so the Sentinel-2 bands used by the proposed index will be from these spectral regions.
Third, it must present good statistics when applied to the completely independent validation dataset
(FOG17_IT). The coefficient of determination (R2) and root mean squared error (RMSE) will be selected
as indicators of the accuracy of the statistical estimation models.
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3. Results

In this section we first present the quality results of Sentinel-2 LAI product, comparing them with
both the Valencia and Foggia LAIgreen in situ datasets. In the same way, we show the performance
of the common indices used by the bibliography, presenting graphs with the best settings for each
index. Next, the best band combination for each commonly used index, obtained with ARTMO
toolbox, are shown, defining finally the new SeLI index and showing its validation assessment with
the Foggia dataset.

3.1. Performance of the Sentinel-2 Level-2A LAIgreen Product

The LAIgreen products of both Valencia and Foggia Sentinel-2 images were obtained and compared
with the in situ LAIgreen of the corresponding pixel. The analysis was carried out with only 31 LAIgreen

VLC17_ES values and 99 FOG17_ES values, because only those corresponding pixels indicated with a
good product quality flag were selected. Figure 4 shows the Sentinel-2 LAIgreen product values and
the in situ LAIgreen values, with the 1:1 line (black), its statistics and the linear fitting (red). A clear
underestimation of the product values is shown in Figure 4.
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3.2. Performance of Common LAIgreen Indices for a Multi-Crop Dataset

Commonly used LAIgreen indices (Table 3, indices shaded) were evaluated with their default
bands using the multi-crop VLC17_ES dataset. The R2 obtained with different types of fitting functions
ranged between 0.234–0.663 when applying the respective indices on the multi-crop dataset (Table 4).
Hence, the accuracies of each index obtained with linear, polynomial of second order, exponential and
exponential of second order fitting, were rather low. The p-value is <0.001 in all cases except for the
ratio index (RI).
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Table 4. Statistics obtained with a linear, polynomial of second order, exponential and exponential of
second order fitting for each index. The best fitting is boldfaced.

Index References
Linear Fitting Polynomial Fitting,

Second Order Exponential Fitting Exponential Fitting,
Second Order

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

RI [41]
0.355 0.91 0.314 0.93 0.234 1.13 0.663 0.75

y = 0.15x + 1.11 y = −0.01x2 + 0.33x + 0.55 y = 1.51exp(0.04x) y = 2.59exp(0.01x) −
6.19exp(-0.71x)

NDGI
[43]

0.659 0.72 0.612 0.74 0.571 0.85 0.629 0.79

y = 3.93x − 0.18 y = −1.98x2 + 5.93x − 0.55 y = 0.68exp(1.78x) y = − 1547exp(3.96x) +
1548exp(3.96x)

[42]
0.402 0.86 0.389 0.89 0.310 1.07 0.549 0.88

y = 3.58x + 0.91 y = − 6.51x2 + 9.33x + 0.16 y = 1.33exp(1.18x) y = −3.61exp(−0.08x)
− 3.84exp(−4.21x)

TRBI [61]
0.663 0.75 0.639 0.75 0.625 0.79 0.659 0.76

y = −2.55x + 3.62 y = 0.44x2 − 3.27x + 3.84 y = 4.39exp(−1.42x) y = −7.13exp(−3.34x)
− exp(−3.34x)

Each established index was represented as a function of the VLC17_ES LAIgreen values, to show its
predicting performance (Figure 5). As can be seen, they generally present a scattered performance and
all indices present a saturation problem with high and/or low LAIgreen values. Concretely, the RI index
(Figure 5a) overestimates to an extreme extent at low and high LAIgreen values. The TRBI (Figure 5d)
shows a saturation process with LAIgreen values close to 3. And both normalized indices (Figure 5b,c)
already present their greater value (the unit), with also LAIgreen values close to 3. The normalized index
defined by Delegido et al. (2011) uses a red-edge band (705 nm), but as it is used in combination with
the red band (665 nm) [42], the saturation problem at high LAIgreen values appears. So, the effectiveness
of LAIgreen indices depends entirely on the combination of bands used.

Another demonstration of the saturation produced by the band located at the red region
(B4: 665 nm) is Figure 6. In this Figure, real Sentinel-2 spectra of artichoke (LAI = 2.8 in blue, 3.4 in
orange) and orange tree crops (LAI = 2.3 in blue, 3.9 in orange) with moderate-high LAIgreen values of
the VLC17_ES dataset are represented. Values higher than 2 have been chosen because it is usually
the limit at which saturation process starts with common LAIgreen indices (Figure 5). As can be seen,
they have the same reflectance value in the 665 nm band, that is, at moderate-high LAIgreen values,
chlorophyll maximally absorbs in this region, producing saturation. At the same time, the red-edge
band close to the red (B5: 705 nm) does not show such entire absorption saturation, which brings the
advantage of using red-edge Sentinel-2 bands for LAIgreen estimation.
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3.3. Sensitivity of Spectral Bands against LAIgreen Parameter

In order to investigate more generic index options, the following step involved systematically
calculating all band combinations with the ARTMO toolbox. Table 5 lists the 10 best statistical results
obtained for each generic index and the corresponding bands with a linear fit, using the VLC17_ES
dataset and a cross-validation process. The analysis was performed with linear fitting, because the aim
of this study is to define a simple relationship between the LAIgreen parameter and Sentinel-2 bands,
analysing whether there is a linear relationship between the LAIgreen in situ values and the estimated
values. Furthermore, as seen in Table 4, linear fitting produces one of the best statistical results.

Comparing to the tested established indices, these results already show a more promising
correlation with a R2 ranging between 0.701 and 0.737. However, questions arose when evaluating
the obtained wavelengths of the resulting best-performing bands from a physical point of view.
In the majority of cases, the selected bands were physically not only influenced by chlorophyll
absorption, but mainly by other leaf constituents such as lignin, cellulose and water (e.g., 1610 nm,
2190 nm) affecting the scattering properties in the NIR and SWIR [69,70]. The only case where physical
chlorophyll-related bands were chosen, was the NDGI, using one of the new red-edge bands (705 nm,
in the tail of the chlorophyll absorption peak) and the other in the NIR region (865 nm). The red band
(B4) appeared not to be chosen at all.
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Table 5. Best band combination for each generic vegetation index introduced in ARTMO from
cross-validation of the testing dataset (VLC17_ES), ordered from highest to lowest R2, with a linear fit.

Index Bands R2 RMSE NRMSE (%) p-Value

TRBI 2190;740;865 0.737 0.63 14 <0.001
TDBI 2190;865;740 0.732 0.64 15 <0.001
ND3b 2190;865;740 0.731 0.64 15 <0.001
MNI 2190;865;1610 0.731 0.64 15 <0.001

RI 2190;865 0.728 0.64 15 <0.001
MCGI 1610;865;740 0.717 0.65 15 <0.001

TGI 1610;842;2190 0.713 0.66 15 <0.001
GLH 2190;1610;842 0.708 0.67 15 <0.001
NDGI 865;705 0.708 0.67 15 <0.001
MTGI 2190;865;490 0.701 0.68 15 <0.001

3.4. Optimized Simple Index for LAIgreen Retrieval from Sentinel-2 Data: SeLI

According to the previous outcome of the NDGI, we used this index structure and analysed
all band combinations in red, red-edge and NIR regions, i.e., the bands 4, 5, 6, 7, 8 and 8a (Table 1).
Table 6 summarizes the normalized difference ratio index band combinations with their corresponding
statistics for the independent testing and validation datasets. The statistical results are ranked according
their performance for the testing dataset. All indices perform better compared to the common used
indices, apart from those listed at the bottom. The top four performing combinations do not use the
red band, but instead, all use the red-edge band at 705 nm in combination with a far-red or NIR band.

Table 6. Linear cross-validation fitting results of the normalized difference ratio index with different
band combinations and LAIgreen values from the testing and validation datasets, ordered from highest
to lowest R2 according to the testing dataset.

Bands
Testing (VLC17_ES) Validation (FOG17_IT)

R2 RMSE R2 RMSE

865;705 0.708 0.67 0.732 0.69
783;705 0.702 0.68 0.711 0.71
842;705 0.688 0.69 0.717 0.71
740;705 0.685 0.71 0.686 0.74
783;665 0.675 0.71 0.678 0.75
842;665 0.665 0.72 0.684 0.74
783;740 0.531 0.85 0.674 0.76

As expected, the best result for the testing dataset is again the 705 (B5)–865 (B8a) nm combination
(R2 = 0.708), and, moreover, confirmed by the validation dataset (R2 = 0.732). These both independent
datasets on real in situ data give us the strong experimental proof that the LAIgreen parameter presents
a linear behavior up to values of five, proposing therefore a physiologically-based LAIgreen index,
hereafter called the Sentinel-2 LAIgreen Index (SeLI) (Equation (1)). For the in situ VLC17_ES LAIgreen

dataset (Figure 7a), it is observed that SeLI values vary from 0.03, corresponding to bare soils,
to a maximum of 0.76, corresponding to LAIgreen values up to 4.5, with potato and alfalfa crops
showing the highest LAIgreen values. We do not observe any saturation at these high LAIgreen values,
while previously shown indices did. Hence, SeLI showed the potential to be used in a unified algorithm
for LAIgreen estimation in different crop types.

SeLI =
R865 − R705

R865 + R705
(1)
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From Figure 7a, the LAIgreen estimation equation through SeLI index is extracted, with a linear fit
(Equation (2)). We have tested, besides the linear fitting (R2 = 0.708, RMSE = 0.67), also an exponential
fitting (R2 = 0.603, RMSE = 0.78) and a polynomial of second order (R2 = 0.727, RMSE = 0.65) to fit
the index with in situ LAI values. The polynomial fitting presents slightly higher statistics, but the
adjustment is negative, not presenting much physical sense.

LAIgreen = 5.405 × SeLI − 0.114 (2)

Figure 7b shows the LAIgreen values estimated with Equation (2) together to the validation dataset
taken in Foggia, obtaining a correlation R2 of 0.732 and RMSE of 0.69 (1:1 line), showing strong
validation statistics.

Finally, we applied the SeLI to both field sites, using the 26 May 2017 and 8 April 2017 Sentinel-2
images for the Huerta of Valencia and Foggia site, respectively. The resulting maps are shown in
Figure 8, demonstrating the applicability of SeLI at high spatial resolution for two distinct agricultural
areas. In brown, the pixels with the lowest value of LAIgreen are shown, mainly corresponding to bare
soils, and in green colour, the pixels with the highest LAIgreen value, corresponding to potato and
alfalfa crops in the case of Valencia, and wheat in the case of Foggia. A zoom of each map is shown to
demonstrate the high spatial resolution of Sentinel-2, being able to observe individual agricultural
plots of 40 m × 40 m (Valencia) and 100 m × 100 m (Foggia) based on LAI, while also observing slight
LAI variability within these plots.
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4. Discussion

With the availability of a narrow band in the red-edge region by Sentinel-2, an improved and
simple estimation of LAIgreen based on a simple index becomes possible at high spatial resolution.
The proposed SeLI index shows a significant improvement towards indices using the saturating bands
in the red (B4 in Sentinel-2). Moreover, no saturation appeared in the obtained LAIgreen product based
on the red-edge bands (B5: 705 nm and B6: 740 nm). The B4 (665 nm) saturation at high LAIgreen

values is clearly shown with real Sentinel-2 TOC reflectance spectra for different LAIgreen values,
higher than 2 (Figures 5 and 6). The red-edge bands (B5: 705 nm and B6: 740 nm) in contrast are both
affected by higher scattering, whereby the B5 band is still driven by chlorophyll absorption. This agrees
with numerous authors who emphasize the importance of the red-edge bands for the estimation of
biophysical parameters, mainly the LAIgreen and chlorophyll estimation [42,46,71]. The proposed
Sentinel-2 LAI Index (SeLI) exploits the B5 red-edge band, which has been widely demonstrated that
is highly influenced by the LAIgreen parameter [46–48], and the B8a NIR band, which is driven by the
scattering changes in moderate-to-high LAI values in crops [72]. Very few previous indices have used
bands in the red-edge region because no free operational previous sensors had narrow bands in this
spectral area [42]. Both linear and non-linear empirical regression techniques have been tested for the
LAI retrieval on simulated spectrally resampled airborne data [50,73] and recently on real Sentinel-2
data [10,52]. The band selection obtained from these methodologies appeared to favor (1) green and
SWIR bands in the case of linear regression by VIs, and (2) red, NIR and SWIR bands in the case of
non-linear regression by machine learning approaches [74]. These bands were also chosen by several
of our tested VIs (Table 5), with the difference that the NDGI formulation indicated the use of red-edge
(705 nm) and a NIR band (865 nm) as best band selection.

The robustness and generality of the SeLI index is demonstrated by applying it to an independent
in situ field dataset from a distinct geographical location with crop types different from those included
in the testing dataset, obtaining equally good statistics (R2 of 0.732, RMSE of 0.69). Specifically, SeLI
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does not present problems of saturation when it is applied to a multi-crop Valencia in situ dataset
composed of 13 different crop types and LAIgreen values that go up to 4.5, obtaining R2 of 0.708 and
RMSE of 0.67. Furthermore, when SeLI is applied to the Foggia region, characterized by high LAIgreen

values, the limits of the different crop fields and LAIgreen variability within the crop field appears
even for the high value ranges, indicating variable growing conditions. Such a clear distinction in
LAIgreen variability allows evaluation of management practices at the field level. Hence, it is shown
that the SeLI index generally can be applied for LAIgreen retrieval of different crop types and distinct
areas. A limitation of the index is that it has been calibrated and validated with LAI data up to 5,
so it is only applicable to agricultural areas with this range of values, although it is the common
range of in situ LAI measured values in a lot of studies with a great variety of crop types; such as
wheat [75,76], corn [19], potato [10] and sugar beet [2,47]. Currently, ongoing scientific debate is
taking place on the discussion if there is a linear relationship or not between in situ LAI values and
estimated values [77]. Our study shows that in situ data are linearly related to SeLI, in the value
range of 0 to 5. This result is in accordance with other results in which also LAI of agricultural areas
is estimated through indices and linear models in similar ranges [10,75,78–80]. Generally, no values
higher than 5 are used in these studies constraining the model applicability to this range. As SeLI
has a physiological foundation, the index will be applicable to a higher value range, but the SeLI-LAI
fitting relationship might change depending on the dataset range. To verify this, a LAI in situ data
range >5 would be required. However, one must also consider the instrumental limitations for in situ
measurements. The LAI-2200 Plant Canopy Analyzer [55] calculates LAI by comparing differential
light measurements above and below canopy. The maximum measurable LAI is generally lower for
these devices measuring gap fraction with LAI reaching an asymptotic saturation level at a value
of about 5, compared to that assessed via destructive methods. The cause for this is gap fraction
saturation as LAI approaches five or six [81–83].

In this work, the Sentinel-2 LAIgreen product obtained from the SNAP toolbox was also tested with
the multi-crop dataset from Valencia. The results show underestimated LAI estimations (R2 = 0.475,
RMSE = 0.91). There are some studies, which have also compared this Sentinel-2 LAIgreen product
with in situ LAIgreen crop data, that obtain better R2 [84,85], but they only tested the product with
few crop types. When the product is analysed in different areas and plant species, the results can
be improved [36]. This finding could be explained by the fact that the Sentinel-2 algorithm used for
land surface parameters, including LAIgreen product, ingests almost all spectral bands and applies a
nonlinear regression to estimate each parameter [33], in addition to the fact that it has been proven
that there is a substantial sensitivity of Sentinel-2 biophysical products to the implemented rugged
terrain corrections [36].

The other main challenge in the retrieval of biophysical parameters with vegetation indices is the
difficulty of finding a simple index with such a general character that it can estimate the parameter
of a wide variety of crop types. In this work it has also been shown that the established indices do
not present this general character. This may be because they were developed and calibrated based on
limited experimental data in terms of species, presenting improvable statistics (R2 between 0.234–0.663)
when applied to multi-crop datasets. In an attempt to improve estimations over this multi-crop
dataset, all band combinations were systematically calculated for each index in order to achieve the
highest possible correlation for the estimation of LAIgreen. More promising results were obtained,
with a R2 between 0.701 and 0.737. However, when inspecting these sensitive bands whether they are
physically meaningful, i.e., if the selected bands are actually influenced only or mostly by LAIgreen,
then these indices turned out to be questionable. In the majority of cases, the selected bands were
influenced by leaf constituents such as lignin, cellulose and water (e.g., 1610 nm, 2190 nm) affecting
the scattering properties in the NIR and SWIR [69,70], and being less related to photosynthetically
based LAIgreen. At the field or landscape scale, canopy reflectance patterns represent the integrated
effects of all biophysical parameters. Co-variation mechanisms of leaf constituents is typically causing
the selection of bands related to other covarying biochemicals such as pigments or lignin due to their
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high effect on spectral variability [86]. Similarly, it was earlier observed that due to the covariation
between water content and chlorophyll content (related with LAI parameter), typically bands in the
water content absorption region are selected as most sensitive [87]. To improve the estimation of
LAIgreen (aside from LAIbrown), bands only affected by structural leaf components should be omitted.
Structurally-related NIR and SWIR bands may improve the LAIgreen retrieval when the model is
trained on healthy vegetation [74] but may be less generally applicable for scenarios with different
structural types or stress conditions. With the band selection B5 and B8a, SeLI is functionally related to
green LAI, avoiding absorption saturation in the red region.

It should be mentioned that this is the first time that this kind of LAIgreen retrieval can be carried
out for agricultural areas with plots sizes of only 40–100 m, such as Huerta of Valencia, due to the
lack of an operational satellite with the required spatial and temporal resolution. ESA’s satellite
Sentinel-2 aims to replace and improve the older generation of satellite sensors such as Landsat and
SPOT, with improved spectral and spatial capabilities. Therefore, the Sentinel-2 satellites provide a
great opportunity for global vegetation monitoring, and specifically crop field monitoring, due to its
enhanced spatial, spectral and temporal characteristics [42].

Finally, further validation is required with other field campaigns and synthetic Sentinel-2 data to
reinforce findings. Considering appropriate instrumental tools, the index behavior for LAIgreen values
higher than 5 should be tested, as well as the fitting behavior of these further ranges.

5. Conclusions

Numerous VIs have been proposed for the estimation of green leaf area index (LAIgreen) over
various crop types, but the general problem appears when they are applied to multi-crop datasets,
obtaining low estimation accuracies and additionally at LAIgreen values higher than 2, saturation
problems appear. Based on the availability of Sentinel-2 narrow red-edge bands, we explored new
index possibilities for accurate LAIgreen estimations for heterogeneous agricultural areas, based on
spectral areas influenced mainly by photosynthesis-related absorption regions. The proposed Sentinel-2
LAI Index (SeLI) is a normalized index that uses the new Sentinel-2 narrow B5-band located at the
beginning of the red-edge region (705 nm), a spectral area which balances the influence of strong
chlorophyll absorption and minimal scattering at moderate-high LAIgreen values, and a NIR band
(865 nm) influenced by leaf scattering, as a reference band. SeLI was calibrated with a multi-crop
Valencia dataset composed of LAIgreen values of 13 different crop types, obtaining a R2 of 0.708 and
RMSE of 0.67. The validation of SeLI proved good, with a R2 of 0.732 and RMSE of 0.69. This work
demonstrated the existence of a linear relationship between in situ LAIgreen and the spectral information
of Sentinel-2, in the range of 0 to 5. Sentinel-2 generated maps over the Valencia and Foggia test sites
convincingly illustrate the great potential of high spatial resolution LAIgreen monitoring at the single
agricultural plot level, even for small- and medium-scale agricultural activities.
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