Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.2. Ultrasound Radiofrequency Signal Collection
2.3. Ultrasound Echo Decorrelation Imaging
2.4. Polynomial Approximation
2.5. Ultrasound Radiofrequency Signal Processing
3. Results
3.1. Cumulative Decorrelation Coefficient of Normal Tissue and Thermal Lesions
3.2. Detection of Thermal Lesions
3.3. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Solbiati, L.; Brace, C.L.; Breen, D.J.; Callstrom, M.R.; Charboneau, J.W.; Chen, M.H.; Choi, B.I.; de Baere, T.; Dodd, G.D.; et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria—A 10-year update. Radiology 2014, 273, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Rempp, H.; Kessler, D.E.; Weiss, J.; Pereira, P.L.; Nikolaou, K.; Clasen, S. MR-guided microwave ablation in hepatic tumours: Initial results in clinical routine. Eur. Radiol. 2017, 27, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Yu, J.; Lu, M.D.; Dong, B.W.; Yu, X.L.; Zhou, X.D.; Hu, B.; Xie, M.X.; Cheng, W.; He, W.; et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J. Gastroenterol. 2013, 19, 5430–5438. [Google Scholar] [CrossRef] [PubMed]
- Asvadi, N.H.; Anvari, A.; Uppot, R.N.; Thabet, A.; Zhu, A.X.; Arellano, R.S. CT-guided percutaneous microwave ablation of tumors in the hepatic dome: Assessment of efficacy and safety. J. Vasc. Interv. Radiol. 2016, 27, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Scapaticci, R.; Lopresto, V.; Pinto, R.; Cavagnaro, M.; Crocco, L. Monitoring thermal ablation via microwave tomography: An ex vivo experimental assessment. Diagnostics 2018, 8, e81. [Google Scholar] [CrossRef] [PubMed]
- Gertner, M.R.; Worthington, A.E.; Wilson, B.C.; Sherar, M.D. Ultrasound imaging of thermal therapy in in vitro liver. Ultrasound Med. Biol. 1998, 24, 1023–1032. [Google Scholar] [CrossRef]
- Subramanian, S. Thermal Ablation Monitoring Using Ultrasound Echo Decorrelation Imaging. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2015. [Google Scholar]
- Fosnight, T.R.; Hooi, F.M.; Colbert, S.B.; Keil, R.D.; Barthe, P.G.; Mast, T.D. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays. AIP Conf. Proc. 2017, 1821, 150006. [Google Scholar]
- Fosnight, T.R.; Hooi, F.M.; Keil, R.D.; Ross, A.P.; Subramanian, S.; Akinyi, T.G.; Killin, J.K.; Barthe, P.G.; Rudich, S.M.; Ahmad, S.A.; et al. Echo decorrelation imaging of rabbit liver and VX2 tumor during in vivo ultrasound ablation. Ultrasound Med. Biol. 2017, 43, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Abbass, M.A.; Killin, J.K.; Mahalingam, N.; Mast, T.D. Real-time feedback control of high-intensity focused ultrasound thermal ablation using echo decorrelation imaging. J. Acoust. Soc. Am. 2017, 141, 3550. [Google Scholar] [CrossRef]
- Matsuzawa, R.; Shishitani, T.; Yoshizawa, S.; Umemura, S.I. Monitoring of lesion induced by high-intensity focused ultrasound using correlation method based on block matching. Jpn. J. Appl. Phys. 2012, 51, 07GF26. [Google Scholar] [CrossRef]
- Sasaki, S.; Takagi, R.; Matsuura, K.; Yoshizawa, S.; Umemura, S.I. Monitoring of high-intensity focused ultrasound lesion formation using decorrelation between high-speed ultrasonic images by parallel beamforming. Jpn. J. Appl. Phys. 2014, 53. [Google Scholar] [CrossRef]
- Mast, T.D.; Pucke, D.P.; Subramanian, S.E.; Bowlus, W.J.; Rudich, S.M.; Buell, J.F. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. J. Ultrasound Med. 2008, 27, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Schmidt, D.T.; Rao, M.B.; Mast, T.D. Dependence of ultrasound echo decorrelation on local tissue temperature during ex vivo radiofrequency ablation. Phys. Med. Biol. 2016, 61, 2356–2371. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Rudich, S.M.; Alqadah, A.; Karunakaran, C.P.; Rao, M.B.; Mast, T.D. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging. Ultrasound Med. Biol. 2014, 40, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Hooi, F.M.; Nagle, A.; Subramanian, S.; Douglas Mast, T. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging. J. Acoust. Soc. Am. 2015, 137, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Geng, X.; Yeh, T.S.; Liu, H.L.; Tsui, P.H. Monitoring radiofrequency ablation with ultrasound Nakagami imaging. Med. Phys. 2013, 40, 072901. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, S.; Wang, C.Y.; Ma, H.Y.; Lin, C.C.; Tsui, P.H. Monitoring radiofrequency ablation using real-time ultrasound Nakagami imaging combined with frequency and temporal compounding techniques. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, W.; Wu, S.; Xia, J.; Wang, C.Y.; Yang, C.; Lin, C.C.; Tsui, P.H. A survey of ultrasound elastography approaches to percutaneous ablation monitoring. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, L.; Calcagni, F.; Gherarducci, G.; Tosoratti, N.; Amabile, C.; Tarantino, F.P.; Bargellini, I.; Cassarino, S.; Cioni, R.; Caramella, D. Monitoring of thermal-induced changes in liver stiffness during controlled hyperthermia and microwave ablation in an ex vivo bovine model using point shear wave elastography. Cardiovasc. Intervent. Radiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Fahey, B.J.; Nelson, R.C.; Hsu, S.J.; Bradway, D.P.; Dumont, D.M.; Trahey, G.E. In vivo guidance and assessment of liver radio-frequency ablation with acoustic radiation force elastography. Ultrasound Med. Biol. 2008, 34, 1590–1603. [Google Scholar] [CrossRef] [PubMed]
- Mariani, A.; Kwiecinski, W.; Pernot, M.; Balvay, D.; Tanter, M.; Clement, O.; Cuenod, C.A.; Zinzindohoue, F. Real time shear waves elastography monitoring of thermal ablation: In vivo evaluation in pig livers. J. Surg. Res. 2014, 188, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Techavipoo, U.; Zagzebski, J.A.; Lee, F.T., Jr. Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions. J. Ultrasound Med. 2004, 23, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, S.; Yang, C.; Tsui, P.H. Stress decay, imaging plane, and gas bubble need to be considered when using ultrasound strain elastography to monitor hepatic ablations. Acad. Radiol. 2015, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Mamou, J.; Oelze, M.L. Quantitative Ultrasound in Soft Tissues; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Zhang, S.; Xu, R.; Shang, S.; Han, Y.; Liu, S.; Xu, T.; Gu, C.; Zhu, X.; Niu, G.; Wan, M. In vivo monitoring of microwave ablation in a porcine model using ultrasonic differential attenuation coefficient intercept imaging. Int. J. Hyperth. 2018, 34, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Samimi, K.; White, J.K.; Brace, C.L.; Varghese, T. Monitoring microwave ablation of ex vivo bovine liver using ultrasonic attenuation imaging. Ultrasound Med. Biol. 2017, 43, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shang, S.; Han, Y.; Gu, C.; Wu, S.; Liu, S.; Niu, G.; Bouakaz, A.; Wan, M. Ex vivo and in vivo monitoring and characterization of thermal lesions by high-intensity focused ultrasound and microwave ablation using ultrasonic Nakagami imaging. IEEE Trans. Med. Imaging 2018, 37, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, Y.; Zhu, X.; Shang, S.; Huang, G.; Zhang, L.; Niu, G.; Wang, S.; He, X.; Wan, M. Feasibility of using ultrasonic Nakagami imaging for monitoring microwave-induced thermal lesion in ex vivo porcine liver. Ultrasound Med. Biol. 2017, 43, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, W.; Wu, S.; Jia, K.; Tsui, P.H. A review of ultrasound tissue characterization with mean scatterer spacing. Ultrason. Imaging 2017, 39, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sheng, L.; Wu, S.; Yang, C.; Zeng, Y. Ultrasonic evaluation of microwave-induced thermal lesions based on wavelet analysis of mean scatterer spacing. Ultrasonics 2013, 53, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Rubert, N.; Varghese, T. Mean scatterer spacing estimation in normal and thermally coagulated ex vivo bovine liver. Ultrason. Imaging 2014, 36, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Granchi, S.; Vannacci, E.; Breschi, L.; Biagi, E. Advantages of cooled fiber for monitoring laser tissue ablation through temporal and spectral analysis of RF ultrasound signal: A case study. Ultrasonics 2018, 82, 49–56. [Google Scholar] [CrossRef] [PubMed]
No. | Reference Standard (Gross Pathology) | Detection Results | Accuracy (%) | |||||
---|---|---|---|---|---|---|---|---|
Long Axis a1 (mm) | Short Axis b1 (mm) | Area S1 (mm2) | Long Axis a2 (mm) | Short Axis b2 (mm) | Area S2 (mm2) | |||
1 | 18.2 | 13.8 | 197.16 | 19.9 | 14.3 | 223.39 | 86.70% | |
2 | 15.2 | 13.3 | 158.70 | 16.8 | 12.6 | 166.17 | 95.04% | |
3 | 15.4 | 13.6 | 164.41 | 17.7 | 12.2 | 169.51 | 96.90% | |
4 | 17.1 | 12.1 | 161.47 | 17.9 | 13.3 | 186.88 | 84.26% | |
5 | 17.2 | 14.2 | 191.73 | 19.1 | 14.1 | 211.41 | 89.74% | |
6 | 15.7 | 13.7 | 168.85 | 17.4 | 14.3 | 190.83 | 86.98% | |
7 | 15.7 | 13.3 | 163.92 | 16.7 | 14.3 | 187.47 | 85.63% | |
8 | 14.7 | 12.7 | 146.55 | 13.8 | 11.7 | 126.75 | 86.49% | |
9 | 14.9 | 12.2 | 142.70 | 13.5 | 11.2 | 118.69 | 83.71% | |
10 | 15.7 | 13.6 | 167.61 | 15.8 | 12.6 | 156.28 | 93.24% | |
11 | 16.1 | 12.4 | 156.72 | 15.3 | 13.7 | 164.54 | 95.01% | |
12 | 14.7 | 13.5 | 155.78 | 18.3 | 12.5 | 179.57 | 84.73% | |
13 | 15.9 | 12.4 | 154.77 | 16.8 | 12.1 | 159.57 | 96.90% | |
14 | 14.4 | 13.2 | 149.21 | 19.0 | 11.9 | 177.49 | 81.05% | |
15 | 16.3 | 13.4 | 171.46 | 16.7 | 15.1 | 197.95 | 84.55% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, Y.; Song, S.; Wu, W.; Wu, S.; Tsui, P.-H. Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study. Sensors 2019, 19, 977. https://doi.org/10.3390/s19040977
Zhou Z, Wang Y, Song S, Wu W, Wu S, Tsui P-H. Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study. Sensors. 2019; 19(4):977. https://doi.org/10.3390/s19040977
Chicago/Turabian StyleZhou, Zhuhuang, Yue Wang, Shuang Song, Weiwei Wu, Shuicai Wu, and Po-Hsiang Tsui. 2019. "Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study" Sensors 19, no. 4: 977. https://doi.org/10.3390/s19040977
APA StyleZhou, Z., Wang, Y., Song, S., Wu, W., Wu, S., & Tsui, P. -H. (2019). Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study. Sensors, 19(4), 977. https://doi.org/10.3390/s19040977