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Abstract: The fabrication of a single pixel sensor, which is a fundamental element device for the
fabrication of an array-type pixel sensor, requires an integration technique of a photodetector
and transistor on a wafer. In conventional GaN-based ultraviolet (UV) imaging devices, a
hybrid-type integration process is typically utilized, which involves a backside substrate etching
and a wafer-to-wafer bonding process. In this work, we developed a GaN-based UV passive
pixel sensor (PPS) by integrating a GaN metal-semiconductor-metal (MSM) UV photodetector
and a Schottky-barrier (SB) metal-oxide-semiconductor field-effect transistor (MOSFET) on an
epitaxially grown GaN layer on silicon substrate. An MSM-type UV sensor had a low dark current
density of 3.3 × 10−7 A/cm2 and a high UV/visible rejection ratio of 103. The GaN SB-MOSFET
showed a normally-off operation and exhibited a maximum drain current of 0.5 mA/mm and a
maximum transconductance of 30 µS/mm with a threshold voltage of 4.5 V. The UV PPS showed
good UV response and a high dark-to-photo contrast ratio of 103 under irradiation of 365-nm
UV. This integration technique will provide one possible way for a monolithic integration of the
GaN-based optoelectronic devices.

Keywords: gallium nitride (GaN); ultraviolet (UV); photodetector; Schottky-barrier (SB)
metal-oxide-semiconductor field-effect transistor (MOSFET); passive pixel sensor (PPS); UV image sensor

1. Introduction

Ultraviolet (UV) sensors are widely used in daily life for human safety, scientific, and medical
purposes, such as a fire alarm, ozone monitoring, and skin-health care [1–3]. To fabricate the UV
photodetector, GaN is one of proper materials because it has a wide bandgap of 3.4 eV corresponding
to the UV wavelength region. In the last two decades, various types of GaN-based UV photodetectors
or other material-based UV photodetectors were proposed and reported in literatures [4–10].
The metal-semiconductor-metal (MSM)-type UV photodetector is the most appropriate device for a
development of an optoelectronic integrated circuit compared to those of other-type photodetectors
because of its simple fabrication process, low dark current density, and high process compatibility.
To obtain more detailed information from UV light, an array-type UV pixel sensor is required. A single
pixel sensor, which is a fundamental element of the image sensor, consists of a photodetector for light
detection and one or more transistors for a signal transfer controller. Recently, a hybrid-type UV image
sensor was reported [11]. This hybrid-type UV image sensor was fabricated by the wafer-to-wafer
bonding of an AlGaN UV photodetector array and complementary metal-oxide semiconductor (CMOS)
readout circuit with a backside etching process of the epitaxial substrate. To avoid the complex
additional fabrication processes, such as wafer-to-wafer bonding and the backside etching of substrate,
a monolithic integration technique of GaN-based UV photodetectors and transistors on a wafer should
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be required. Over the last two decades, GaN-based normally-off mode metal-oxide-semiconductor
field-effect transistors (MOSFETs) have been intensively studied for a high-efficiency power electronic
system [12–19]. In particular, the Schottky-barrier (SB)-type GaN MOSFET is the most proper device
for the development of the GaN-based monolithic single pixel sensor because the device structure of
the SB-MOSFET, except for the gate electrode, is the same as the MSM-type photodetector [18,19].

In this work, we demonstrated an operation of a GaN-based UV passive pixel sensor (PPS) by
integrating an MSM-type UV sensor and SB-MOSFET on a highly resistive GaN layer grown on
silicon substrate, which is advantageous for possible mass production. We firstly characterized the
individual devices of GaN photodetector and transistor and showed the output characteristics of the
fabricated GaN UV PPS under dark and 365-nm UV irradiation conditions. In addition, the effects
of an asymmetric current–voltage (I–V) characteristic of GaN MSM UV photodetector on the output
characteristic of PPS are discussed.

2. Experimental Methods

An unintentionally doped GaN layer was epitaxially grown on an n-type Si (111) substrate by
using metal–organic chemical vapor deposition. To release the stress between the Si substrate and the
GaN epitaxial layer, a 150-nm-thick high-temperature AlN layer and step-graded AlxGa1−xN buffer
layers (which have smaller in-plane lattice constants and thermal expansion coefficient) were grown.
This can provide an additional compressive stress to suppress the tensile stress between the GaN layer
and the Si substrate [19,20]. Finally, a 0.7-µm-thick crack-free and highly resistive GaN layer with a
carrier concentration of lower than 2 × 1016 cm−3 was grown at 1070◦C. The total growth pressure of
the proposed structure was fixed at 100 Torr.

Figure 1a shows the mask layout of the proposed GaN UV PPS and the inset of Figure 1a shows
a micro photograph image of it. The schematic circuit diagram and cross-sectional structure of the
proposed GaN UV PPS are shown in Figure 1b,c. An MSM-type GaN UV photodetector, a back-to-back
connection of two Schottky diodes was used for the UV-detection device, and an GaN SB-MOSFET
was used for the current transfer controller. For the Schottky metal electrodes of the MSM UV sensor
and SB-MOSFET, a 100-nm-thick indium-tin-oxide (ITO) was deposited by using a radio-frequency
magnetron sputtering system at 300◦C.
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During the deposition process, we maintained the chamber pressure at 10 mTorr in Ar/O2

ambient (Ar:O2 = 1000:1). To form the gate insulator, a 25-nm-thick SiO2 layer was deposited by using
plasma-enhanced chemical vapor deposition (PECVD) at 300◦C. After the SiO2 layer was patterned
and etched to form contact holes, Ni (20 nm) and Au (100 nm) layers were deposited for the gate
electrode of SB-MOSFET and contact pad of other electrodes by using an e-beam evaporator. The area
of the UV photodetector was 400 × 600 µm2 with a finger length of 200 µm and a finger width and
space of 10 µm. The area of the SB-MOSFET was 100 × 110 µm2, with a gate length of 10 µm and width
of 100 µm. The electrical properties of MSM UV photodetector and SB-MOSFET were characterized
using the semiconductor parameter analyzer (4156C, Agilent). Photoresponsive I–V characteristics
and spectral photo-responsivity characteristics were measured using a 150 W xenon arc lamp with a
monochromator system (Oriel 74000, Newport) and the Newport Low-Power detector.

3. Results and Discussion

Figure 2a shows the dark and photoresponsive I-V characteristics of the fabricated MSM UV
photodetector, where the dark current density was as low as 3.3 × 10−7 A/cm2 and photocurrent
density was 4.5 × 10−2 A/cm2 at 10 V under 365-nm UV irradiation (optical power density of
447 mW/cm2). The low dark current value means that the Schottky contact property of ITO/GaN
is good for the GaN MSM UV photodetector. The photo-to-dark contrast ratio was higher than 105

at a 10 V and 104 at a −10 V bias, respectively. An asymmetry of I–V characteristics and shift of
current minimum in the dark state were possibly attributed to the electron trapping and de-trapping
process at the ITO/GaN interface. The GaN MSM-type photodetector is effectively a back-to-back
connected pair of two Schottky contacts. In the I–V measurement, the bias was swept first from −10 V
to 10 V and swept back from 10 V to −10 V. As shown in Figure 2a, a significant asymmetry of I–V
characteristics was observed in this measurement and the voltage values at the minimum current
points of the dark I–V characteristics were not 0 V, which were shifted to −3.5 V or 3.5 V according to
the direction of the bias sweep. To investigate the reason of the zero-point shift, we performed the
plotting of a Poole-Frenkel emission, a Schottky emission, and a Fowler–Nordheim tunneling by using
the I–V characteristics of the MSM photodetector measured under the forward bias condition. As
shown in Figure 2b, the Poole-Frenkel emission is observed in the dark I–V characteristics over 4 V bias.
On the other hand, the Schottky emission is not observed under dark condition as shown in Figure 2c.
Moreover, not only the Poole-Frenkel emission but also a Fowler–Nordheim tunneling is clearly
observed over 4 V bias, as shown in Figure 2d which means that the interface of ITO/GaN has the deep
level traps and the oxide defects also exist at the interface. On the other hand, in the photoresponsive
I–V characteristics under 365-nm UV irradiation, it showed an excellent bilateral symmetry without
any shift of minimum current point or hysteresis, as shown in Figure 2a. The minimum current point
shift in the I–V characteristic of the GaN MSM photodetector under dark could be explained by current
conduction mechanisms using an electron trapping/de-trapping effect at the interface of ITO/GaN
metal-semiconductor junction. In the equilibrium condition, most of the interface traps below Fermi
level were occupied by electrons. If a highly negative bias was applied between ITO electrodes, the
trapped electrons at the interface could be de-trapped by a trap-assisted tunneling to the GaN layer,
which might contribute to a total current flow. The current is essentially the trap-assisted Poole–Frenkel
emission, as clearly shown in Figure 2b. While the electrons are de-trapped, the residual unoccupied
interface trap states are effectively charged positively by which the Schottky barrier height could be
lowered. As the bias was changed from high voltage to low voltage in the negative bias, the band
bending was reduced, and the electrons were trapped again by trap levels at ITO/GaN interface.
At this condition, the electron transport mechanism consists of the thermionic emission and trapping
of electrons at the interface. By the electron trapping, when the interface trap levels were occupied by
electrons again, the Schottky barrier height was also recovered at the interface, which is an explanation
for a positive current value of fabricated the GaN MSM Schottky diode even at the slightly negative
applied bias. When comparing with Figure 2a, it is clear that the asymmetry of the I–V characteristics
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of the diode is caused by the interface states along ITO/GaN interface and these trap levels can be
released by 365-nm UV irradiation.Sensors 2019, 19, x FOR PEER REVIEW  4 of 9 
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Figure 2. (a) Dark and photoresponsive I–V characteristics of the fabricated GaN metal-semiconductor-
metal (MSM) photodetector under varying bias from −10 V to 10 V (forward direction) and from
10 V to −10 V (reverse direction). (b) Poole–Frenkel emission plot, (c) Schottky emission plot,
and (d) Fowler–Nordheim tunneling plot of the I–V characteristics under dark and 365-nm UV
irradiation conditions.

Figure 3a,b show the spectral photo-responsivity characteristics of the MSM UV photodetector
under varying forward and reverse bias conditions, respectively. The selectively enhanced
photoresponsivity in the 350~365-nm wavelength region is attributed to the step-graded AlxGa1−xN
buffer layers [10]. The average UV-to-visible rejection ratio was about 102 for any bias condition.
This value is slightly lower than that of the values previously reported in the literatures [7–9].
The maximum value of the UV-to-visible rejection ratio was 103 at 1 V bias calculated by the ratio
of responsivity values at 365-nm and 450-nm wavelengths. The lowest responsivity value at the
450-nm wavelength under low bias condition means that the deep level traps corresponding to the
excitation energy of 2.7 eV exist at the ITO/GaN interface. This value increases when increasing the
bias, which means that the field-enhanced photo-excitation mechanism exists in the fabricated MSM
photodetector. There is a photoresponse in the visible wavelength region above 600 nm as well as in
the yellow band, which means that shallow level traps also exist in the ITO/GaN junction. Unlike
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the deep level traps, the shallow level traps were easily excited by light irradiation even at low bias
condition. In the literatures, two dominant traps could exist in the epitaxially grown highly resistive
GaN layer: (i) A strongly lattice-coupled deep donor and (ii) a carbon-related very deep acceptor [21,22].
These two-types of traps have the excitation energies of 1.8 and 2.85 eV, respectively, corresponding to
688 and 435 nm wavelengths, respectively. Since the excitation energy of two trap levels are closely
related to the photoresponse of the GaN MSM photodetector in the visible region, we carefully conclude
the undesirable visible response is attributed to the deep and shallow level traps in the ITO/GaN
interface and GaN epitaxial layer. The UV-to-visible rejection ratio values are comparatively lower
considering the high dark/photo contrast ratio as shown in Figure 2a, which was possibly attributed
to the GaN bulk crystal defects, ITO/GaN interface defects, and SiO2/GaN interface defects that cause
significant density of the deep level traps and shallow level traps. An asymmetry of I–V curve and
photoresponse of MSM UV photodetector over the yellow band in the spectral responsivity support
this analysis. But there is no bias-direction dependency in the spectral responsivity below 365 nm
of wavelength.
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Figure 3. Spectral photo-responsivity characteristics of the fabricated GaN MSM UV photodetector
under varying (a) forward and (b) reverse bias conditions.

Figure 4a shows the output IDS-VDS characteristic of the fabricated GaN SB-MOSFET.
The maximum drain current was 0.5 mA/mm at VDS = 10 V. The transistor region was not entirely
covered by Ni/Au for screening of UV irradiation. In order to verify that there is the UV response
in the transistor, we checked the output IDS-VDS characteristics under 365-nm UV irradiation, as
shown in Figure 4b. Though the off-state drain current was only slightly enhanced by the UV
irradiation, this small variation was not significant for the PPS operation because the on/off ratio
of the MSM UV photodetector is higher than 105 at 10 V. Figure 4c shows the linear and log-scale
IDS–VGS characteristics of the GaN SB-MOSFET in the triode region, where the threshold voltage was
4.5 V, current on/off ratio was 107 at VDS = 1 V. Figure 5a shows the IDS-VGS characteristics of the
GaN SB-MOSFET in the saturation region under a dark condition. The maximum transconductance
was about 25 µS/mm at VDS = 5 V. Except the current on/off ratio, the device performance of the
fabricated GaN SB-MOSFET are relatively lower than that of values reported in literatures [18,19].
The device performance can be improved by the improvement of the crystal quality of GaN epitaxial
layer and interface quality of ITO/GaN junction. The drain current and transconductance values were
increased by one order of magnitude under 365-nm irradiation condition as shown in Figure 5b, which
means that the photoresponsive carriers were generated at the channel region of the GaN SB-MOSFET.
This undesirable photoresponsive current might also affect the off-state leakage current of the PPS as
mentioned above, which can be eliminated by the layout design, for example, covering the transistor
region by metal layer. In the transfer I-V characteristic, the current fluctuated according to the drain
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bias at a high gate bias condition, which was possibly caused by the capture and emission processes
by the deep level traps at the SiO2/GaN interface. The SiO2 layer quality seemed not good enough,
because it was deposited on the GaN epitaxial layer grown on silicon substrate of high lattice mismatch
with GaN, which could affect the carrier transport through the GaN channel region.

Using these two devices as a UV sensor and transistor, we developed the GaN-based UV PPS as
shown in Figure 1. An MSM-type UV sensor was used for the UV-detection, and an SB-MOSFET was
used for the current transfer controller. Figure 6 shows the output I-V characteristics of the fabricated
GaN UV PPS with/without irradiation of 365-nm UV. The gate electrode of SB-MOSFET was used
for select (SEL) electrode and drain electrode was used for output (OUT) electrode. VSEL (7 V) was
applied to the SEL electrode and 0–10 V bias sweep was applied to the OUT electrode. Under the dark
condition, the output current changed from a high negative to a low positive value according to the
increase of the bias voltages, which was closely related to the I-V characteristics of the MSM UV sensor
under dark condition as shown in Figure 2a, which would be eliminated by improving the quality
of the GaN epitaxial layer. In contrast, under 365-nm UV irradiation, the output current was three
orders of magnitude higher than that of the dark state when the bias voltage was increased. The on/off
output current ratio was 103 for 365-nm UV irradiation of 447 mW/cm2 under 5–10 V bias. The UV
on/off state is clearly distinguishable at this range of bias. The output current values under irradiation
of 365-nm UV were 7.47 × 10−7, 2.98 × 10−6, 4.02 × 10−6, and 7.13 × 10−6 A at 1, 3, 5, and 10 V bias,
respectively. The UV photoresponsive current of the fabricated GaN UV PPS was proportional to that
of the GaN MSM UV photodetector.
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Figure 5. Transfer IDS–VGS characteristics of the fabricated GaN SB-MOSFET (a) under dark and (b)
under 365-nm UV irradiation.
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4. Conclusions

We demonstrated the pixel operation of GaN UV PPS by integrating an MSM-type GaN UV
photodetector and a GaN SB-MOSFET that was fabricated on the GaN epitaxial layer grown on silicon
substrate. The fabricated GaN UV PPS showed good UV response characteristics with a high on/off
ratio of 103. If we improve the performance uniformity of the GaN SB-MOSFET and photoresponse
characteristics of an UV photodetector, we would be able to develop the array of an active-type UV
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