Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure
Abstract
:1. Introduction
2. Theory and Experiments
2.1. Theory of the Hybrid Fiber-Optic Sensor
2.2. Theory, Experimental Setup, and Method of Pressure Measurement
2.3. Theory, Experimental Setup, and Method of Temperature Measurement
2.4. Manufacture of a Hybrid Fiber-Optic F–P Sensor
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: an overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Verma, R.; Gupta, B.D. Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sens. Actuators B Chem. 2011, 153, 194–198. [Google Scholar] [CrossRef]
- Kersey, A.D.; Jackson, D.A.; Corke, M. A simple fibre Fabry-Perot sensor. Opt. Commun. 1983, 45, 71–74. [Google Scholar] [CrossRef]
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Yoshino, T.; Kurosawa, K.; Itoh, K.; Ose, T. Fiber-Optic Fabry-Perot Interferometer and its sensor applications. IEEE Trans. Microw. Theory Tech. 1982, 18, 1624–1633. [Google Scholar]
- Gangopadhyay, T.K.; Henderson, P.J. Vibration: history and measurement with an extrinsic Fabry-Perot sensor with solid-state laser interferometry. Appl. Opt. 1999, 38, 2471. [Google Scholar] [CrossRef] [PubMed]
- Quirion, M.; Ballivy, G. Laboratory investigation on Fabry-Perot sensor and conventional extens. Can. J. Civil. Eng. 2000, 27, 1088–1093. [Google Scholar] [CrossRef]
- Márquez-Cruz, V.A.; Hernández-Cordero, J.A. Fiber optic Fabry-Perot sensor for surface tension analysis. Opt. Express 2014, 22, 3028–3038. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Q.; Fan, S.; Peng, X. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm. Opt. Express 2015, 23, 27494. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Miller, D.W.; Talnagi, J.W. Performance evaluation of Fabry-Perot temperature sensors in Nuclear Power Plant Measurements. Nucl. Technol. 2003, 143, 208–216. [Google Scholar] [CrossRef]
- Tseng, F.G.; Lin, C.J. Polymer MEMS-based Fabry-Perot shear stress sensor. IEEE Sens. J. 2003, 3, 812–817. [Google Scholar] [CrossRef]
- Hill, G.C.; Melamud, R.; Declercq, F.E.; Davenport, A.A.; Chan, I.H.; Hartwell, P.G.; Pruitt, B.L. SU-8 MEMS Fabry-Perot pressure sensor. Sens. Actuators A Phys. 2007, 138, 52–62. [Google Scholar] [CrossRef]
- Masson, J.; St-Gelais, R.; Poulin, A.; Peter, Y.A. Tunable fiber laser using a MEMS-Based in plane Fabry-Pérot filter. IEEE J. Quantum Electron. 2010, 46, 1313–1319. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Li, H. Optical MEMS pressure sensor based on Fabry-Perot interferometry. Opt. Express 2006, 14, 1497. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Xiao, H.; Huang, J.; Yuan, L.; Lan, X.; Zhang, Y. High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser: erratum. Opt. Lett. 2013, 38, 4609–4612. [Google Scholar]
- Wu, C.; Fu, H.Y.; Qureshi, K.K.; Guan, B.O.; Tam, H.Y. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Opt. Lett. 2011, 36, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.; Hurrell, A.; Shaw, A.; Zhang, E.; Beard, P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 2009, 125, 3611–3622. [Google Scholar]
- Pang, C.; Bae, H.; Gupta, A.; Bryden, K.; Yu, M. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Opt. Express 2013, 21, 21829. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Yu, M. Miniature Fabry-Perot sensor with polymer dual optical cavities for simultaneous pressure and temperature measurements. Biochemistry 2014, 34, 9059–9070. [Google Scholar]
- Pevec, S.; Donlagic, D. Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature. Appl. Opt. 2012, 51, 4536–4541. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Qiao, X.G.; Jia, Z.A.; Li, M.; Zhao, D.Z. Study of simultaneous measurement of temperature and pressure using double fiber Bragg gratings with polymer package. Opt. Eng. 2005, 85, 4831–4834. [Google Scholar] [CrossRef]
- Kisała, P.; Cięszczyk, S. Method of simultaneous measurement of two direction force and temperature using FBG sensor head. Appl. Opt. 2015, 54, 2677–2687. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, X.; Yu, Q. Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry–Perot interference multiplexing. Opt. Commun. 2012, 285, 3466–3470. [Google Scholar] [CrossRef]
- Wang, D.; Ding, M.; Pi, H.Y.; Li, X.; Yang, F.; Ye, Q.; Cai, H.W.; Wei, F. Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry–Perot cavity. Chin. Phys. B 2018, 27, 024207. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Chen, H. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry–Perot cavity with a SESAM. J. Mod. Opt. 2016, 63, 1–4. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J.; Wang, A.; Claus, R.O. Geometric analysis of optical fiber EFPI sensor performance. Smart Mater. Struct. 1998, 7, 907. [Google Scholar] [CrossRef]
- Jerman, J.H.; Clift, D.J.; Mallinson, S.R. A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support. In Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 4–7 June 1990; Technical Digest. IEEE: Los Alamitos, CA, USA; pp. 140–144. [Google Scholar]
- Murphy, K.A.; Gunther, M.F.; Wang, A.; Claus, R.O.; Vengsarkar, A.M. Extrinsic Fabry-Perot optical fiber sensor. In Proceedings of the Optical Fiber Sensors Conference, Monterey, CA, USA, 29–31 January 1992; pp. 193–196. [Google Scholar]
- Han, M.; Zhang, Y.; Shen, F.; Pickrell, G.R.; Wang, A. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors. Opt. Lett. 2004, 29, 1736–1738. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Murphy, K.A.; Claus, R.O.; Tran, T.A.; Greene, J.A. Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology. Smart Mater. Struct. 1999, 4, 246–251. [Google Scholar] [CrossRef]
- Belleville, C.; Duplain, G. White-light interferometric multimode fiber-optic strain sensor. Opt. Lett. 1993, 18, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. Fiber optic temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime. Rev. Sci. Instrum. 1992, 63, 3177–3181. [Google Scholar] [CrossRef]
- Jing, M.A.; Wen, R.Q. Application of wavelet analysis to potical information processing. Acta Phys. Sin. 1999, 48, 1223–1229. [Google Scholar]
- Tan, L.; Ma, J.; Wang, Q.; Ran, Q. Filtering theory and application of wavelet optics at the spatial. Appl. Opt. 2001, 40, 257–260. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Lin, C.; Huang, Y.; Luo, K.; Zhang, J.; Jiang, Q.; Zhang, C. Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure. Sensors 2019, 19, 1097. https://doi.org/10.3390/s19051097
Jiang X, Lin C, Huang Y, Luo K, Zhang J, Jiang Q, Zhang C. Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure. Sensors. 2019; 19(5):1097. https://doi.org/10.3390/s19051097
Chicago/Turabian StyleJiang, Xiaofeng, Chun Lin, Yuanqing Huang, Kan Luo, Jianhuan Zhang, Qingshan Jiang, and Chentao Zhang. 2019. "Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure" Sensors 19, no. 5: 1097. https://doi.org/10.3390/s19051097
APA StyleJiang, X., Lin, C., Huang, Y., Luo, K., Zhang, J., Jiang, Q., & Zhang, C. (2019). Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure. Sensors, 19(5), 1097. https://doi.org/10.3390/s19051097