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Abstract: AutomationML (AML) can be seen as a partial knowledge-based solution for manufacturing
and automation domains since it permits integrating different engineering data format, and also
contains information about physical and logical structures of production systems, using basic
concepts as resources, process, and products, in semantic structures. However, it is not a complete
knowledge-based solution because it does not have mechanisms for querying and reasoning
procedures, which are basic functions for semantic inferences. Additionally, AutomationML does not
deal with aspects of sensor fusion naturally. In this sense, we propose an ontology to describe those
sensors’ fusion elements, including procedures for runtime processing, and also elements that can
turn AutomationML into a complete knowledge-based solution. The approach was applied in a case
study with two different industrial processes with some sensors under fusion. The results obtained
demonstrate that the ontology allows describing sensors that are under fusion and deal with the
occurrence of data divergence. In a broader view, the results show how to apply AutomationML
description for runtime processing of data generated from different sensors of a manufacturing
system using an ontology to complement the AML description, where AutomationML concentrates
knowledge about a specific production system and the ontology describes a general and reusable
knowledge about sensor fusion.

Keywords: sensor fusion; AutomationML; ontology

1. Introduction

Industrie 4.0 constraints require that information processing has to be enhanced towards a
semantically integrated approach, which allows data analysis on big data coming both from product
and production system life-cycle processes. In production system engineering, the current focus on
data processing has to be moved on to information processing of semantically enriched data [1].

Knowledge-based approaches are able to deal with the data heterogeneity aspects of engineering
of production systems. Moreover, they enable advanced capabilities, since they support: (i) the explicit
representation of knowledge in a domain of interest and (ii) the exploitation of such knowledge through
appropriate reasoning mechanisms in order to provide high-level problem-solving performance [1].

Originally, AutomationML (AML) is an open, XML-based data exchange format developed for
supporting the exchange of diverse engineering data within the engineering process in manufacturing
systems, including partially features of a semantically integrated approach [2]. AutomationML uses
a representation of semantic mapping types that represent relations and dependencies between
engineering models, which can be used to improve the machine-understandable modeling of the
dependencies, enabling the automation of engineering process [3].
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To enable the engineering and production processes for flexible production systems, integrated
information processing intends to ensure the lossless exchange and correct (meaningful) application
of engineering and runtime information of a production system to gain additional value and/or to
avoid current limitations of production system engineering and use. However, AutomationML needs
some complementary approach to include querying and reasoning methods in the sense of a more
complete knowledge-based solution. An ontology can support data analysis across the discipline/tool
boundaries in that process [2].

Additionally, in the context of integrated information processing on AutomationML, the aspects
of multisensor fusion and integration are missing. Multisensor fusion and integration generate a
synergistic combination of sensory data from multiple sources to provide more reliable and accurate
information. Systems including multisensor fusion and integration have properties such as redundancy,
complementarity, timeliness, and cost of information [4]. It can reduce overall uncertainty and serve
to improve the accuracy with the features perceived from the system. Multiple sensors providing
redundant information increase the reliability in case of failure or even errors [5]. Complementary
information using multiple sensors allows inferring information from the environment that is
impossible to perceive using information from individual sensors separately. Timely information has
more accuracy since it is possible to perceive data from sensors with different speeds of operation [6].
Currently, AutomationML presents structures able to import data from different sources of sensors,
including data from manufacturers of different brands, and even data from another AutomationML
specification [7]. However, it is needed an external support to manipulate data from multisensor fusion
and integration.

Using ontologies as a framework to reuse vocabularies, concepts and instances is a common
practice, even when dealing with sensors.

On the other hand, some proposals using ontologies for the description and treatment of industrial
information systems arise in the literature. A hydrological sensor web ontology based on Semantic
Sensor Network (SSN) [8] ontology was proposed to describe heterogeneous hydrological sensor
web resources by importing the time and space ontology, instantiating the hydrological classes,
and establishing reasoning rules. This new ontology provides a new perspective on managing and
responding to natural disasters, as well as reliable and efficient information to decision-making
processes [9].

Ontology is also used as a context model for facilitating context sharing between heterogeneous
devices and network optimizations, in this case exploiting context awareness in Wireless Sensor
Networks [10]. The motivation is to provide a context model for modeling different situations and
conditions of an Internet of Thing system with the aim of optimizing the underlying network using
contextualized information.

Semantic Sensor Web is an area linking the elements from Semantic Web [11] technologies with
sensor networks, and has among its main features the use of ontologies. One of its key challenges is to
provide mechanisms to integrate and exchange knowledge from heterogeneous sources, which can be
done using procedures for ontology alignment. These procedures can use fuzzy logic techniques to
combine similarity measures between entities of different ontologies [12].

Another solution similar to ours also uses SSN as a base for a generic ontology used in the design
and implementation of a sensor-based maintenance process. Its generic property permits using it to
support the creation and management of other kinds of a sensor-based industrial process such as
the continuous control of a production system [13]. Like our ontology, this one uses the knowledge
obtained during the design process to aid in the maintenance design, especially about the sensors
needed for monitoring that kind of tasks. However, all of this knowledge is integrated into the
same ontology.

However, none of these solutions are able to reuse the whole knowledge available of a specific
production system such as those described in an AutomationML file, which is able to integrate
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generic demands and descriptions of production system with data from specific types of equipment
and devices.

The literature presents some recent research about the combination of AutomationML and
ontologies, which can be considered as another framing of this work.

For fostering fast prototyping and reuse of robotic software, it has proposed a model-driven
approach that uses AutomationML as modeling framework and ontological reasoning as inference
framework for constructing robotic application using Robot Operating Systems (ROS) [14].
This approach is able to classify and model different robotic components with AutomationML, compose
them together to a production system, and process these models semantically by utilizing Semantic
Web technologies and ontological reasoning [15].

The combination AutomationML and ontology can also be used to validate plant models. The use
of reasoning and querying for some validation features is possible along a CAEX plant engineering
process using Semantic Web procedures [16]. Another possibility is to use ontology for matching
and mapping methods in the context of data modeling for production planning, combining domain
dependent knowledge from a Manufacturing Execution System (MES) with an AutomatiomML
description [17].

The Ontology Web Language (OWL) can also be represented in the AutomationML and Open
Platform Communications Unifying Architecture (OPC UA), enabling the collection and usage of data
through the whole life cycle in OWL, and also extending the possibility for knowledge-based services
such as self-configuration, self-optimization or self-diagnosis. However, this approach does not permit
that OWL full ontologies be represented in the OPC UA information model. In addition, Semantic
Web Rules Language (SWRL) rules cannot also be represented, but, by representing them in a string
array, they are accessible [18].

The AutomationML Ontology (AMLO) has been proposed following best practices for ontology
engineering, covering the entire CAEX standard, and not just portions relevant for a use case, and is
open for the community by following latest guidelines on resource sharing and publishing [19].

When analyzing works under the perspective of a combination of AutomationML and ontologies,
any of these approaches are unable to integrate general conceptions of a production system, such
as arrangements of fusion sensors on the field, with specific engineering data, such as those in an
AutomationML description, and inferring those arrangements automatically.

The main research question addressed in this paper is how to take advantage of AutomationML as
a complete knowledge-based solution for the engineering, operation and maintenance of a production
system? What is needed to complement AutomationML as a complete knowledge-based solution?
How does one integrate knowledge of different forms of combinations of sensory data in AML
descriptions?

With this background information, we propose in this paper an ontology which is complementary
with AutomationML targeting a complete knowledge-based approach. The goal is to provide
AutomationML with structures and procedures that make it possible to represent the different
techniques of fusion of sensors and share this information with the information systems that manipulate
runtime data of the plant, namely, control and supervision systems. Herewith, it is possible to take
advantage of the whole topological information contained in the AutomationML description for
monitor, supervisory and control tasks, while it is possible to execute querying and reasoning methods
on this information. Even that AutomationML was previously conceived to be a storage format for
engineering data, it has a potential for a full semantic solution since it is able to represent data of
different disciplines that compose a production system, which by itself is a powerful knowledge
source for any information system. The proposed ontology was validated in a case study based on
two different industrial processes with some sensors under fusion. The approach is able to describe
all existent fusion in the plant pointing out the occurrence of data divergence. Thus, the developed
ontology can be considered a compliment for AutomationML able to turn it in a full knowledge-based
solution. The main contribution of the paper is an approach to complement the specific knowledge



Sensors 2019, 19, 1311 4 0f 18

of a production system described in AutomationML with general conceptualizations about sensor
fusion in an ontology, which in its turn can be reused on another systems. This approach reduces the
time and work necessary to integrate new sensors in the field, once the AutomationML description
acknowledges them straightaway and the Ontology can identify if any sensor will integrate some
fusion arrangement.

The paper is organized in the following way. The next section describes the whole theoretical
background needed for the ontology conception and implementation. Section 3 presents the ontology
description. Section 4 presents a case study applying the developed ontology and, finally, Section 5
describes a final synthesis of this work and some reflections about future works.

2. Background

Industrie 4.0 envisions the dynamic integration of components within the production systems
runtime looking for a sufficient resource-related flexibility. To make integration possible, two
information processing features are required. First, the newly integrated production system component
has to provide information about (i) its capabilities, (ii) its access paths, and (iii) its control-related
features. Second, the overall control system of the production system must be able to reason about the
component information and also integrate it at runtime within the processes [1].

On the other hand, Industrie 4.0 also demands product-related flexibility since it assumes that
each product should know the required material and processes for its creation. In this context, the
information will be used for the identification of the manufacturing resources and to parameterize the
processes executed by applying the related values within the control systems.

A common process description based on the product-process-resource concept would be desirable.
This description would permit expressing the concepts and relationships in a semantically well-defined
and comparable way, about: (i) the needs for capabilities of production system components and devices;
(ii) the component/device use conditions (access path and control); and (iii) product-related processing
requirements [1]. In summary, according to this view, the intention of any production system is to
execute production processes using production resources in order to create products [20].

AutomationML is a solution for integrating data of different disciplines needed to conceive
production systems, especially recommended when using Cyber-Physical Systems (CPS) paradigm [21],
for example. It was conceived as an XML based data format permitting the exchange of plant
engineering information [7].

The AutomationML approach is based on a three-view-concept for interlinked engineering data:
resources, process, and products. Resource is an entity in production which executes processes and
handles products. It can be hardware components or even software: robots, conveyors, machines;
SCADA systems. A product depicts a produced good. It is processed by resources and can be
built up hierarchically and described by an assembly tree. Finally, a process represents a production
process including sub-process, process parameters, and the process chain. In addition, processes
modify products.

AutomationML includes information about system topology, geometry, kinematics, and control
behavior and allows including links to detailed engineering models representing such information,
like COLLADA or PLCopen files [20].

AutomationML follows the object oriented paradigm and allows modelling of physical and
logical components as data objects encapsulating different aspects. Thus, an object may consist of
different sub-objects, and also be part of a larger composition or aggregation. Typical objects may
be information on topology, geometry, kinematics and logic, whereas logic comprises sequencing,
behavior and control. The core of AML is the top-level data format CAEX, which is used to interconnect
the different data formats. Therefore, AML has inherent distributed document architecture [22].

AutomationML can store and exchange information from [22]:
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e Plant topology information: a hierarchical structure of individual plant objects, which are
represented by individual data objects. The plant topology acts as the top-level data structure
and it is stored by means of the CAEX data format.

e  Geometry and kinematics information: The geometry of an object comprises its geometrical
representation, whereas the kinematics information describes the physical connections of 3D
solids and dependencies among objects. Both types of information are manipulated using the file
format COLLADA.

e Logic Information: It describes sequences of actions and the behaviour of objects including
I/0O connections and logical variables. Sequences are manipulated based on PLCOpen XML
documents, and variables or signals are published as CAEX Externallnterfaces.

o  Reference and relation information: References are links from CAEX objects to externally store
information, whereas relations are associations between CAEX objects.

A complex production system generates an immense volume of heterogeneous data, which must
be provided in real time for the all control and supervisory systems. For working properly, it must
guarantee the correctness of data provided within real-time requirements for those systems.

Working as a network, scalability, and redundancy can be more naturally approached when
dealing with sensors data and for generating information for upper systems with reliability and
integrity. However, those properties can only be achieved once strategies for data treatment are applied.

The literature presents some different nomenclatures to refer about using a set of sensors in an
integrated way. The terms “data fusion”, “sensor fusion”, “multi-sensor integration” have been used
to refer to a variety of techniques, technologies, systems, and applications that employ and/or combine
data derived from multiple information sources. More strictly, sensor fusion is about the combination
of data from multiple sources to provide enhanced information quality and availability over that which
is available from any individual source alone [23].

If we consider production systems with properties like flexibility, reconfigurability, and especially,
with plug-and-play capabilities, traditional techniques for integration of multi-sensor are not a good
solution once they are normally based on static topological structures. It would be interesting in
systems based on CPS concepts, for example, that, when replacing a device, the whole system would
recognize the new device and automatically insert it into the compounded sensors” arrangement.

A common situation when reading data from multiple sources is the presence of different readings
for the same variable since we can have multiple sensors responsible for the same phenomena. In this
context, we consider that the system presents data divergence between sensors responsible for the
same variable.

However, AutomationML is not able to deal with run-time divergent information, which would
be interesting for maintenance procedures, for example. The engineering knowledge available in
AutomationML could be applied to ensure the correct integration of new devices within replacement
strategies. Besides that, a reasoning and querying mechanism would permit some level of guarantee
for new system components fulfilling the needs of the application, even if the new component is not
an exact copy of the component being replaced.

To incorporate those features, we propose an ontology for complementing AutomationML that
enables it to make queries and inferences about the whole knowledge of the production system
including runtime processing from plant data. Besides that, the ontology must present elements to
represent arrangements of sensor fusions indicating the occurrence of divergence between data when
they happen. Those features are relevant for the whole set of control and supervisory system that can
act correctly based on a more reliable data set.

A sensor ontology for manufacturing must include [24]:

o  detailed standard knowledge representation of sensor physical dimensions, weight, resolution,

associated system performance, and operating conditions;
e  representation of system capabilities, to categorize the functions that individual and groups of
sensors can perform;
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e  representation of sensors embedding in sensor networks and the manufacturing environment.

Besides those features, we include the representation of arrangements for sensor fusion indicating
when divergence of data between the sensors of a specific arrangement occurs.

Unfortunately, reusing ontologies on the automation and manufacturing domains is not a usual
practice. This is exemplified by the issues we found about different approaches for modularity, absence
of public licenses and documentation, and, mainly, due to heterogeneous application fields (e.g.,
industry, building, grid automation) and due often to strong dependencies between vendor-specific
hardware devices and tooling [25]. Besides that, since a strong requirement for us was to build a
complementary ontology for AutomationML, we decided to propose a new ontology.

The ontology described in this work was developed using the methodology named
Methontology [26], which was chosen because it presents a formal conception for the whole life-cycle of
development for ontologies: (i) requirements specification; (ii) conceptual modeling; (iii) formalization;
(iv) implementation; (v) integration; (vi) assessment; and (vii) documentation. A special feature
required is the capability of integrating with another ontologies or data description, which was
important in the sense of a complementary AutomationML.

The next section describes the ontology developed to complement AutomationML capabilities as
a full knowledge-based solution.

3. An Ontology for Complementing AutomationML

Once we select Methontology as the methodology to build our ontology, it was necessary to search
for a knowledge source to provide concepts and relations between the manufacturing domain elements,
in order to define a taxonomy. Besides that, it was also defined the type of user for the ontology.

Regarding the users, the classical picture of the ISA-95 automation pyramid, replicated in Figure 1,
is taken as Ref. [27]. Our ontology is intended to be manipulated by operators working on levels 0, 1,
2, and 3, namely, field technicians and engineers.

4 - Establishing the basic plant schedule -
production, material use, delivery, and
shipping. Determining inventory levels.
Time Frame

Months, weeks, days

Business Planning

& Logistics
Plant Production Scheduling,
Operational Management, atc

3 - Work flow / recipe control to produce the
desired end products. Maintaining records
and optimizing the production process.

ime Frame
Days, shifts, hours, minutes, seconds

Manufacturing

Operations Management
Dispatching Production, Detailed Production
cheduling, Reliability Assurance,

4 "Monitoring, supervisory control and i
automated control of the production process |

i Time Frame i
Discrete Hours, minutes, seconds, subseconds i
O I e———— -

1 - Sensing the production process,
manipulating the production process |

Figure 1. The automation pyramid [27].

The taxonomy was designed based on the AML descriptions, using International Electrotechnical
Commission (IEC) standards to formalize concepts [28] and its relations. Following the taxonomy
described in Figure 2, it has a main root named generically Thing, which is followed by four main
distinct modules: (i) Element where the physical components of a plant are described; (ii) SensorFusion,
where components present in sensor fusion are listed; (iii) Parameters: a list of parameters for each
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measured phenomena (pressure, flow, level, temperature, ...) for each resource; and (iv) Divergence for
divergence detection under fusion measures.

Figure 3 describes the theoretical conception of our knowledge-based solution, integrating base
components of a full semantic solution. According to this figure, the proposed ontology is inserted such
as middleware between sensors in the plant and the control system that will manipulate it. The AML
must be loaded with runtime data from the field. This composed structure, AML + data, is instantiated
inside the ontology through a parser procedure, which enables all kind of semantic procedures, such
as queries and reasoning actions. In Section 4, we present a possible implementation solution for this
model using manufacturing standard technologies.
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Figure 2. A partial description of the proposed ontology.
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Figure 3. Ontology description.

It is not possible to produce a legible figure with a full taxonomy description since there is no
space for it in a single page. A partial description of our ontology, including all modules and some
classes, is presented in Figure 2. However, each module, class, and properties are detailed in the next
subsections. In fact, for a complete description, it lacks the subclass of the SensorType class. However,
those missing data can be checked at Figure 4.

7@ Element
- Area
@ ProductionLine
@ Resource
v @ SensorType
@ sensorFlow
- SensorHumidity
- SensorLevel
- SensorPressure

@ site

(a)Classes.

@ SensorTemperature

V- ™ hasElement
.M hasArea
™ hasProductionLine
- hasResource
v- ™ hasSensorType
" hasSensorFlow
"4 hasSensorHumidity
- hasSensorLevel
™ hasSensorPressure
M hasSensorTemperature

V- ®isElementOf

MisAreaOf
- isProductionLineOf
- jsResourceOf
v-mjisSensorTypeOf
MisSensorFlowOf
- ijsSensorHumidityOf
- mljgsSensorLevelOf
MisSensorPressureOf
MisSensorTemperatureOf

(b)Properties.

Figure 4. Classes (yellow) and Properties (blue) of module Element.

3.1. The Element Module

Figure 5 describes the physical elements that were conceived in a module named Element, which is
based on IEC 62264-1:2013, defined as an hierarchical taxonomy of physical structures, production
lines and resources, and the last level contains the different kind of sensors.

I e s emp— -
H Process Production Production Storage S i, Work
. Cell Unit Line Zone + i Centers
«~ - oo oo oo .- - - - o
"....A.-...... s=sszszsglsssszszss =%,
] Wiork Storage s Work
L Unit Unit | Cell Unit S Units
b o

Figure 5. The physical component conception inside the proposed ontology [28].
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The module Element is composed of the following classes:

o C(lass SITE: a physical, geographic or logical grouping that is composed of a physical area,
production lines, process cells and production units.

e (lass AREA: a physical, geographic or logical grouping determined by the SITE. It can contain
process cells, production units, production lines, and storage zones. An area is related to just one
site. Nevertheless, an area can be composed of many production lines.

e Class PRODUCTIONLINE: main activities of processes and/or assembly are allocated to a
production line. In the hierarchical taxonomy proposed by IEC 62264-1, production lines and
work cells are the lowest levels for equipment. However, work cells are normally applied when
there are demands for routing inside of a production line.

e  Class RESOURCE: this class was included as a basic type of AML, once it is not part of the IEC
standard. It is used to describe any kind of production resource, and in the ontology proposed
in this paper, resources are equipment like tanks, pipes, where sensors under fusion are directly
installed. A resource has a relationship with only one production line.

e  Class SENSORTYPE: it was designed to represent sensors and is also an AML abstract type, as
the class RESOURCE. There are specific subclasses for each type of sensors that were declared
as disjunct. One sensor has a relationship with one resource, but, once there are different types
of sensors, there is a specific domain for each type, but with the same range, defined by the
class RESOURCE.

Figure 4 shows the different classes and properties inside the Element module.

3.2. The Sensor Fusion Module

SensorFusion module is composed of a set of classes applied to identify individuals (sites, areas,
production lines, resources and sensors) present in a sensors’ fusion. All classes at this module are
high level classes, and the individuals at this class are logical instances. Individuals at high level
classes are inserted by SWRL rules [29], once it is necessary to activate the inference engine to detect
the condition associated with the sensor fusion, which includes at least one resource and two sensors
of the same type.

The subclasses at this module are declared as disjunctive to avoid that a sensor belongs to two or
more different fusions. SensorFusion module is described in Figure 6.

v SensorFusion
-~ TemperatureSF
@ PressureSF
pe LevelSF
- HumiditySF
- FlowSF

Figure 6. Sensor fusion module.

The first SWRL rule, from now on named rule(1), defines a fusion when a resource is composed
of at least two sensors of the same type. In case of level sensors, the SWRL rule is:

Resource(?r), SensorLevel (?s11), SensorLevel (?s12), hasSensorLevel (?r, ?sI1),
hasSensorLevel (?r,?s12), Dif ferentFrom(?sl1, ?s12) — SensorFusion(?r),
Level SF(?s11), Level SF(?s12),

where r is a resource, and s/1 and s/2 are level sensors.
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The second SWRL rule, named rule(2), is necessary to indicate upper levels in the ontology if
fusion exists below that level. For example, the following rule indicates that, if a resource has sensors
in fusion and it belongs to a production line; consequently, this production line has elements in fusion:

Resource(?r), SensorFusion(?r), ProductionLine(?p1),
hasresource(?p1,?r) — SensorFusion(?p1),

where r is a resource and p1 is a production line.

The SWRL rule(3) defines which areas has sensor fusion, and inherit the definitions of both
previous rules. In this case, if an area has a production line that has sensor fusion; consequently, this
area has elements in fusion. The rule(3) is:

Area(?a), ProductionLine(?pl), SensorFusion(?pl),
hasProductionLine(?a,?pl) — SensorFusion(?a),

where g is an area and p1 is a production line.

The last rule about physical elements, rule(4), and the highest level in the ontology structure
refers to sites. As the previous rules, it inherits the definitions and is defined in the following way: if a
site has an area and this area has sensor fusion; consequently, this site has elements in fusion:

Site(?s), Area(?a), SensorFusion(?a), hasArea(?s,?a) —
SensorFusion(?s),

where s is a site and 4 is a area.

3.3. The Parameters Module

The Parameters module is able to represent parameters for each resource in a sensor fusion,
including each sensor type described in the ontology. Individuals in this class are parameters with two
data properties used to specify the minimal and maximal values for each resource for each sensor type
that belongs to a fusion. Object properties of the Parameter module are described in Figure 7.

v-™= hasParameter
™= hasParameterFlow
"4 hasParameterHumidity
"= hasParameterLevel
™ hasParameterPressure
™ hasParameterTemperature

Figure 7. Element module inverse properties.

Parameters module properties are specified for each sensor type, and all of them have the same
Domain, the Resource class, but with a specific range for each sensor type. The data properties for
parameters type are described in Figure 8.
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v-®Eowl:topDataProperty
M measuredValue
- paramMaxFlow
---- B paramMaxHumidity
~H8paramMaxLevel
- M paramMaxPressure
»»»»» B paramMaxTemperature
B paramMinFlow
-~ paramMinHumidity
B paramMinLevel
-~ paramMinPressure
-l paramMinTemperature

Figure 8. Data properties for parameter types.
3.4. The Divergence Module

The Divergence module is composed of DIVERGENCEDOWN and DIVERGENCEUP classes.
They are also high level classes, in a way that DIVERGENCEDOWN indicates occurrences of
divergences below the minimal parameter defined for a specific phenomena in a specific resource,
and DIVERGENCEUP when the divergence occurrence is above the maximal parameter of a specific
phenomena in a specific resource. The constraints of both classes are specified by SWRL rules.
The module Divergence is described in Figure 9.

v Divergence
P DivergenceDown
DivergenceUp

Figure 9. The Divergence module.

Detecting divergence above the defined limit is possible applying this SWRL rule, i.e., rule(5):

Resource(?r), SensorFusion(?r), SensorLevel (?s), hasSensorLevel (?r,?s),
measuredValue(?s, ?mv), ParameterLevel (levelt1), hasParameterLevel (?r, levelt1),
paramMaxLevel (leveltl, ?pmax), swrlb : greaterThan(?mv, ?pmax) — Divergencellp(?s),

where 7 is a resource, s is a level sensor, mv is a level parameter, levelt1 is the maximum value defined
for a level parameter and pmax is the maximum value measured. This rule uses a SWRL function,
swrlb : greaterThan, from a specific SWRL mathematical library, which returns TRUE if the function
premise value is greater than the function conclusion value.

The rule(6) uses the same principle of rule(5), but for detecting divergence below of the defined
limit and applying the swrlb : lessThan SWRL function:

Resource(?r), SensorFusion(?r), SensorLevel (?s), hasSensorLevel (?r,?s),

measuredValue(?s,?mv), ParameterLevel (levelt1), hasParameterLevel (?r, levelt1),

paramMaxLevel (levelt1, ?pmax), swrlb : lessThan(?mv, ?pmax) — DivergenceDown(?s).

4. A Case Study

A case study was deployed using two different industrial processes in a fusion context.
Both processes are conceived to heat a fluid, which can be done in an isolated or integrated way.
In this sense, the processes have sensors for level, temperature, and pressure, besides some actuators
to manipulate the fluid between different tanks. The difference between those processes is that the first
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one has more sensors than the second one. It was performed in SMAR’s Instructional Didactic Plant
that is designed to demonstrate the operation of several control loops using the same equipment and
configuration tools developed for industrial control applications [30].

The goal was to validate the proposed ontology integrated with topological information from an
AutomationML description, demonstrating that it is able to identify which sensors are in fusion and
where they are located in a plant. In this case, only level sensors were employed, since the procedure
is the same to other types of sensors. Each process had the following description:

e  Processl: Site: process] / Area: buildingl / Production Line: smarl / Resource: tank1/ tankl has
three level sensors: sl1, sI2 and sl3 / tank] has a level parameter: levelt1;

° ProcessA: Site: processA / Area: buildingA / Production Line: smarA / Resource: tankA/ tankA
has two level sensors: slA and sIB / tankA has a level parameter: leveltA.

The runtime data from the processes is instantiated in the AutomationML description of the process
evaluated, which generates an XML file. Using this description, the integrity about the plant structure
and data generated is guaranteed. Currently, this process is executed by an external software coded
in C language. However, since there is not any inference engine for AutomationML descriptions,
an ontology OWL instance [31] is also necessary running in a Protégé environment [32]. Then, data
from the plant with AutomationML description are sent to an OPC server, which is an OWL instance.
Figure 10 describes the whole process including the plant, OPC server, AML, and OWL descriptions.
In fact, Figure 10 is a specific implementation of Figure 3, since the plant and the OPC server execute
the role of the Sensors block, and the AML block and the whole blocks of the Ontology are represented
by the W3C and AutomationML logos.

<AutomationML/>

Cus

Figure 10. The case study components.

An AML partial description is presented in Figure 11, where the plant resources and the related
classes are defined.
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~) B SMARDidaticPD3
~ E Recursos { Class Role }
~ | [If] TanqueReservatoric { Class Role Resource }
- E BombaHidraulical { Class BornbaHidraulica Role Actuator }
v E Rotametrol { Class Rotametro Role Senszor }
w E TransmissorPressaoVazaol { Class TransmissorPressacVazao Role Sensor }
i, E PosicionadorValvulal { Class Posicionadoryalvula Role Actuator }
- E TanqueAquecimento { Class Role Resocurce }
v [IE] TangqueMistura { Class Role Resource |
- E PosicionadorValvulal { Class PosicionadorValvula Role Actuator }
v [IE] TransmissorPressacVazaol { Class TransmissorPressaoVazac Role Actuator }
- E Rotametrol { Class Rotametro Role Sensor }
v E BombaHidraulica2 { Class BormbaHidraulica Role Actuator }

Figure 11. AML partial description.

Once the OWL and AML descriptions have loaded plant data from the OPC server, a set of tests to
validate the structure of fusion sensors in the process has been carried out. In this sense, four different
queries to the ontology were made: (i) which resources and sensors are in fusion; (ii) which line
production has some fusion; (iii) which areas has some fusion; and (iv) which sites have some fusion.

The first query is a compound one, once it is necessary to characterize logical and physical
conditions, i.e., which resources have sensor fusion and which sensors are in those fusions. Running
the inference engine of the Protégé, the Pellet [33], the results in Figure 12 are returned.

v
TemperatureSF BT
PressureSF Instances vy P
LevelSF @ tanquel SensorFusion
HumiditySF @ tanqueA
FlowSF
Execute | | Add to
Query results
Instances (7 of 7)
© LevelSF Instances ®si1
HumiditySF
FlowSF el @si2
®s2 ®si3
sz ®sa
®sa ®sB
®siB ®tanquel
®tanqueA

Figure 12. The first query: the upper left side shows the resources with fusion, and on the same side
below shows the level sensors that are in fusion; on the right side, the DL Query including all the
elements in fusion is shown.

The first query presented in Figure 12 was validated, since it has returned the correct aggregation,
i.e., tank1 with three sensors sl1, sI2 and sI3, and tankA with both level sensors, sl A and sIB.

When conceiving the scenarios for the case study, different quantities of sensors for each tank
were included to verify if a query like this one could cater to minimal quantity requirement, i.e, a
fusion with only two sensors, and above the minimum, when it is grouped with the resource, which
also returned a correct answer. In addition, when a sensor in fankl was removed, and, in tankA, the
resource was removed, Pellet did not indicate fusion for both cases.
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The second query to be evaluated is to infer which production lines have sensor fusion. This query
is situated in the next level after sensors and resources. The production lines level is composed by
those two elements. Figure 13 describes the results of this query, since tankl was assigned as from
production line smarl, and tank A was assigned as of the production line smarA. Since both tanks have
sensor fusion; consequently, both production lines also have fusion.

Query (class expression)

SensorFusion

Execute | | Add to ontolo

M
TemperatureSF Query results
PressureSF nstances Ihetances (4 of g
LevelSF ®:smart
idi ®sin
HumiditySF @ smarA p4
FlowSF ——— sl2
@ tanquel
&t n ®siz
anque
d ®siA
& siB
®smar1
@ smarA
tanquel
®tanqueA

Figure 13. The left side shows the elements and, with a red square, the production lines with fusion.
The right side shows the DL Query with all elements that are in fusion, including the production lines.

The same procedure adopted in the first query was also applied for the second one, i.e, some
components from the lower level were removed, which caused Pellet to not identify any fusion in any
of the production lines. In these terms, the second query was considered correct.

The third query aims to validate rule(3), indicating sensor fusion under an area, as demonstrated
by Figure 14. In the same way as previous ones, this query was able to identify the areas in fusion, since
production line smarl was assigned to builingl and smar A was assigned to buildingA. In addition, the
same procedure removing some elements of the fusion was performed and the Pellet did not identify
any fusion, as it was supposed to do. Thus, the third query was considered also correct.

Query (class expre

SensorFusion

Execute | | Add to

MO SensorFusion | S Query results

TemperatureSF
PressureSF Instances Instances (11 of 11)

LevelSF i® predio1 @ prediol |

?I‘;'L“S;WSF 9 predioA @ predioA
®smarl ®sn
®smara ®s12

@ tanquel ®si3
@ tanqueA ®sia

&siB
®smar1
®smarA
®tanquel
@ tanqueA

Figure 14. The left side of the figure shows resources, production lines and, inside of the red square,
areas in fusion. The right side of the figure shows the Description Logic (DL) Query with all the elements
that are in fusion, including areas.
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The last query about the physical elements of the ontology was also successful. The results are
presented in Figure 15. The inference returned that the area bulding1l was assigned to site process1 and
the area building A was assigned to site processA, as expected. Since both areas have sensor fusion, the
inference returned that both sites have elements in fusion. In addition, the same procedure removing
individuals of fusions was performed, which immediately was identified by the Pellet indicating no
more fusion.

Query (class expr
SensorFusion

v instances Bxeatte || Addk

TemperatureSF

PressureSF ¢ plantal Query results

LevelSF @ plantaA - e
n nstances (13 of )

HumiditySF prediol '

FlowSF @ predioA :plantal
®smar1 plantaA
®smara ® prediol
@ tanquel @ predioA
@ tanqueA ®sn

®si2
®si3
®sia
&®siB
®smar1
@® smarA
®tanquel
@ tanqueA

Figure 15. The left side shows resources, production lines, areas and, inside of the red square, sites
with sensor fusion. The right side shows the DL Query with all the elements that are in the fusion,
including sites.

Regarding the last rules, only data properties for parameter types considering continuous values
were demonstrated. However, a specific way to handle binary signals may be described, where it
would return FALSE in case of some divergence, or TRUE otherwise. This rule was not demonstrated
because the SMAR didactic plant does not have any instrument with those properties.

This case study was carried out with a few sensors. However, extending this scenario with
hundreds or even thousands of sensors, it is possible to distinguish two main components: (i) the
knowledge base about the production system, considering its devices, structure and capabilities, which
it is described by the AML description; (ii) and the queries and inference mechanisms, implemented
in a general way, can be reused for different AML descriptions. In this sense, one can imagine the
development of different oil refineries, which will produce different kinds of fuels. This scenario will
be composed by production systems with thousands of tags associated with some Programmable
Logic Controllers (PLC). Each refinery will be characterized by its process and capabilities, which will
be featured by different AML descriptions. However, queries and inference mechanisms about the
sensor fusion can be easily reused for both production systems. In addition, it is important to consider
that even AutomationML has mechanisms to import knowledge from other AML descriptions, which
can anticipate steps in the constitution of production system in different scales.

Another important aspect to be considered is the simplicity of SWRL rules and also of the
ontology as a whole. This due to the fact that most of the knowledge necessary to represent fusion
arrangements are already defined in the AutomationML description, which, in the process of a
production system development, is a mandatory requirement in the sense of full semantic integration.
According to rule (1), a fusion is identified if sensors are from the same type and also if they pertain
to the same resource, and the resource is defined in the AML description. If properly structured,
the AML enables the ontology to identify different types of fusion arrangement. However, if it is
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not the case, the additional specifications must be made in the conception of the resource inside the
ontology description.

Finally, an important assumption about the presented approach is that we develop the ontology
aiming to identify and indicate some kind of divergence for the monitoring and control systems,
considering that those systems will handle this divergence. This assumption was made since each
control system has specific requisites about data accuracy and reliability. In this sense, we understand
that our case study attends all requirements for the approach validation.

5. Conclusions

AutomationML is a powerful industrial standard in order to integrate different engineering
data formats used to design and implement complex production systems. However, it is not a
complete solution since it lacks procedures for querying and reasoning tasks when proposed as a
knowledge-based solution and also lacks basic structures to represent basic arrangements as fusion
sensors, which is very common in this environment. In this paper, we proposed an ontology for
complementing AutomationML fulfilling this gap. It is based on IEC standards complemented with
some specific AML conceptions. The main contribution of the proposed approach is to integrate all of
the knowledge available on an AML description, about physical and logical structures of production
systems with general conceptualizations about fusion sensors. The ontology can be reused with
other AML descriptions when dealing with fusion sensor arrangements in other systems. Besides
that, it permits all kinds of semantic queries and reasoning including the knowledge available in the
AutomationML and in the ontology itself. Most works in the literature use some kind of standard
ontology for sensors in order to reuse general definitions, including specific aspects of each domain
applied. However, they integrate all of the knowledge in only one extended ontology, becoming
difficult to reuse them; once, in these cases, the ontology is tailored for specific domains, becoming
almost an ad hoc solution.

The approach proposed was validated in a case study composed of two different industrial
processes implemented in SMAR'’s Instructional Didactic Plant. Those processes illustrate the
most basic conception of sensor fusion, and also the most difficult situation to identify it since the
arrangements have a minimal quantity of sensors for a fusion. The ontology is able to identify all
sensor fusion presented in the plant, and where they are located, in runtime, as well is able to identify
when a fusion is disassembled. In this sense, the ontology aggregates elements to an AutomatiomML
description, becoming a complete knowledge-based solution.

It is intended as future work to incorporate a routine inside an OPC server for feeding the
AutomationML description with data from the field. Currently, this procedure is executed by an
external software coded in C. The resulting file of this process must be instantiated inside the ontology
OWL description, which already is done using the temporary C routine. The new version to be
developed integrates all routines for OWL and AML integration inside an OPC server. Besides that,
we also intend to integrate AutomationML and this ontology to CPS reference architectures, as, for
example [21,34], since it will naturally include some important requirements for this kind of solution as,
for example, interoperability, reconfigurability, and flexibility, which can decrease the time necessary
for engineering, development, maintenance, and operation of production systems, increasing industry
efficiency and productivity.
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Abbreviations

The following abbreviations are used in this manuscript:

AML
AML
CPS
IEC
MES

AutomationML
O AutomationML Ontology
Cyber-Physical Systems
International Electrotechnical Commission
Manufacturing Execution System

OWL Ontology Web Language

XML

Extensible Markup Language

SWRL Semantic Web Rule Language

OPC

UA  Open Platform Communications Unified Architecture

SCADA  Supervisory Control and Data Acquisition
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