RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams
Abstract
:1. Introduction
2. Theoretical Background
2.1. Backscatter Power
2.2. Volume Index
2.3. Damage Index
3. UHPC
4. Methodology
4.1. Specimen
4.2. Damage Description
4.3. RFID-Based Crack Sensors with Modifications for UHPC
4.4. Measurement Setup
4.5. Experimental Validation
4.5.1. Test 1: Read Distance Identification
4.5.2. Test 2: Crack Detection Using the Lab-Based System
4.5.3. Test 3: Crack Detection Using the Handheld System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ASCE. 2017 Report Card for America’s Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2017. Available online: http://www.asce.org (accessed on 15 January 2019).
- Acheampong, A.; Ayarkwa, J.; Adom-Asamoah, M.; Baiden, B.K. Comparative Study of the Physical Properties of Palm Kernel Shells Concrete and Normal Weight Concrete in Ghana. J. Sci. Multidiscip. Res. 2013, 5, 129–146. [Google Scholar]
- Chang, P.C.; Alfred, S. Building Construction. In Encyclopædia Britannica; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2017; Available online: http://www.britannica.com/technology/building-construction/Early-steel-frame-high-rises#ref105155 (accessed on 9 January 2019).
- Graybeal, B. Ultra-High Performance Concrete; TechNote, FHWA-HRT-11-038; Federal Highway Administration: McLean, VA, USA, 2011.
- Graybeal, A.; Russell, H. Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community; U.S. Department of Transportation, Federal Highway Administration, Research, Development, and Technology, Turner-Fairbank Highway Research Center: McLean, VA, USA, 2013; pp. 1–163.
- Rahman, M.A.; McQuaker, T. Application of Ultra High Performance Concrete in Expediting the Replacement and Rehabilitation of Highway Bridges. Iastate.edu. First International Interactive Symposium on UHPC. 2016. Available online: http://www.extension.iastate.edu/registration/events/UHPCPapers/UHPC_ID124.pdf (accessed on 16 January 2019).
- Zhang, J.; Tian, G.; Marindra, A.; Sunny, A.; Zhao, A. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications. Sensors 2017, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Kainuma, S.; Kim, I.-T. Shear failure behaviors of a web panel with local corrosion depending on web boundary conditions. Thin-Walled Struct. 2013, 73, 302–317. [Google Scholar] [CrossRef]
- Doiron, G. Pier Repair/Retrofit Using Uhpc Examples of Completed Projects in North America. Iastate.edu. First International Interactive Symposium on UHPC. 2016. Available online: http://www.extension.iastate.edu/registration/events/UHPCPapers/UHPC_ID99.pdf (accessed on 17 January 2019).
- Huang, H.; Gao, X.; Zhang, A. Numerical Simulation and Visualization of Motion and Orientation of Steel Fibers in UHPC Under Controlling Flow Condition. Constr. Build. Mater. 2019, 199, 624–636. [Google Scholar] [CrossRef]
- Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and Numerical Studies of Ultra-High Performance Concrete Targets Against High-Velocity Projectile Impacts. Eng. Struct. 2018, 173, 166–179. [Google Scholar] [CrossRef]
- Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A review of rock bolt monitoring using smart sensors. Sensors 2017, 17, 776. [Google Scholar] [CrossRef] [PubMed]
- Kalansuriya, P.; Bhattacharyya, R.; Sarma, S. RFID tag antenna-based sensing for pervasive surface crack detection. IEEE Sens. J. 2013, 13, 1564–1570. [Google Scholar] [CrossRef]
- Martínez-Castro, R.E.; Jang, S.; Nicholas, J.; Bansal, R. Experimental Assessment of an RFID-Based Crack Sensor for Steel Structures. Smart Mater. Struct. 2017, 26, 085035. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, L. Rapid structural condition assessment using radio frequency identification (RFID) based wireless strain sensor. Autom. Constr. 2015, 54, 1–11. [Google Scholar] [CrossRef]
- Caizzone, S.; DiGiampaolo, E. Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sens. J. 2015, 15, 6767–6774. [Google Scholar] [CrossRef]
- McGovern, J.; Randall, A. Bridge Insepction Manual Version 2.1; United States, Department of Transportation, Connecticut Department of Transportation: Newington, CT, USA, 2001.
- Wan-Wendner, L.; Wan-Wendner, R.; Cusatis, G. Age-dependent size effect and fracture characteristics of ultra-high performance concrete. Cem. Concr. Compos. 2018, 85, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Ekenel, M.; Rizzo, A.; Myers, J.J.; Nanni, A. Effects of Fatigue Loading on Flexural Performance of Reinforced Concrete Beams Strengthened with FRP Fabirc and Pre-Cured Laminate Systems. In Proceedings of the Third International Conference on Composites in Construction, Lyon, France, 11–13 July 2005; pp. 405–412. [Google Scholar]
- Hasgul, U.; Turker, K.; Birol, T.; Yavas, A. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct. Concr. 2018, 19, 1577–1590. [Google Scholar] [CrossRef]
- Development of Non-Proprietary Ultra-High Performance Concrete for Use in the Highway Bridge Sector; U.S. Department of Transportation/Federal Highway Administration: Washington, DC, USA, 2013. Available online: http://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/13100/index.cfm (accessed on 5 January 2019).
- Shim, J. Prediction of Early-Age Cracking of UHPC Materials and Structures: A Thremo-Chemo-Mechanics Approach. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1 Febuary 2005. Available online: http://dspace.mit.edu/handle/1721.1/30198 (accessed on 5 January 2019).
- Haber, Z.; Graybeal, B.A. Performance of Different UHPC-Class Materials in Prefabricated Bridge Deck Connections. In Proceedings of the First International Interactive Symposium on UHPC, Des Moines, IA, USA, 19 June 2016. [Google Scholar] [CrossRef]
- Saradar, A.; Tahmouresi, B.; Mohseni, E.; Shadmani, A. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete. Fibers 2018, 6, 12. [Google Scholar] [CrossRef]
- Ductal® Ultra-High Performance Concrete (UHPC). LafargeHolcim US. 28 September 2017. Available online: http://www.lafargeholcim.us/ductalr-ultra-high-performance-concrete-uhpc (accessed on 15 January 2019).
- Yuan, J.; Graybeal, B.A. Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete. FHWA. October 2014. Available online: http://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/14090/14090.pdf (accessed on 22 November 2018).
- Alien Short RFID White Wet Inlay (ALN-9662, Higgs-3). AtlasRFIDstore. 2014. Available online: http://www.atlasrfidstore.com/alien-short-rfid-white-wet-inlay-aln-9662-higgs-3/ (accessed on 15 January 2019).
- Martínez-Castro, R.E. Structural Health Monitoring of Critical Load-Carrying Members. Doctoral Dissertation, University of Connecticut Graduate School, Mansfield, CT, USA, 2018. Available online: https://opencommons.uconn.edu/dissertations/1952 (accessed on 13 November 2018).
Components | Amount (lb/yd3) | Amount (kg/m3) |
---|---|---|
Premix Power | 3700 | 2200 |
Water | 219 | 130 |
Premia 150 | 30.0 | 18.0 |
Optima 100 | 20.0 | 12.0 |
Turbocast 650A | 39.0 | 23.0 |
Steel Fibers (2%) | 263 | 156 |
Damage Stage | Crack Volume (in3) | Crack Volume (m3) | Total Damage Index (%) |
---|---|---|---|
1 | 0.00137 | 2.25 | 0.00990 |
2 | 0.00252 | 4.13 | 0.568 |
3 | 0.00303 | 4.97 | 1.29 |
Damage Stage | Crack Volume (in3) | Crack Volume (m3) | Total Damage Index (%) |
---|---|---|---|
1 | 0.0000119 | 1.95 | 0.177 |
2 | 0.00200 | 3.28 | 1.06 |
3 | 0.00388 | 6.36 | 1.18 |
4 | 0.00720 | 1.18 | 1.25 |
Damage Stage | Crack Volume (in3) | Crack Volume (m3) | Total Damage Index (%) |
---|---|---|---|
1 | 0.0000194 | 3.18 | 0.60 |
2 | 0.000670 | 1.10 | 1.88 |
3 | 0.00137 | 2.25 | 2.68 |
4 | 0.00253 | 4.15 | 2.63 |
5 | 0.00303 | 4.97 | 2.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruciati, B.; Jang, S.; Fils, P. RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams. Sensors 2019, 19, 1573. https://doi.org/10.3390/s19071573
Bruciati B, Jang S, Fils P. RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams. Sensors. 2019; 19(7):1573. https://doi.org/10.3390/s19071573
Chicago/Turabian StyleBruciati, Benjamin, Shinae Jang, and Pierre Fils. 2019. "RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams" Sensors 19, no. 7: 1573. https://doi.org/10.3390/s19071573
APA StyleBruciati, B., Jang, S., & Fils, P. (2019). RFID-Based Crack Detection of Ultra High-Performance Concrete Retrofitted Beams. Sensors, 19(7), 1573. https://doi.org/10.3390/s19071573