A Printed Wearable Dual-Band Antenna for Wireless Power Transfer
Abstract
:1. Introduction
2. Design and Fabrication
3. Experimental and Simulation Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garnica, J.; Chinga, R.A.; Lin, J. Wireless Power Transmission: From Far Field to Near Field. Proc. IEEE 2013, 101, 1321–1331. [Google Scholar] [CrossRef]
- Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. Energies 2017, 10, 1022. [Google Scholar]
- Shadid, R.; Noghanian, S. A Literature Survey on Wireless Power Transfer for Biomedical Devices. Int. J. Antennas Propag. 2018. [Google Scholar] [CrossRef]
- Khaleel, R.H.; Al-Rizzo, M.H.; Abbosh, I.A. Design, Fabrication, and Testing of Flexible Antennas. Adv. Microstrip Antennas Recent Appl. 2013, 363–383. [Google Scholar]
- Zhu, D.; Grabham, N.J.; Clare, L.; Stark, B.H.; Beeby, S.P. Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference, WPTC 2015, Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Kota, P.K.; Nguyen, M.Q.; Dubey, S.; Rao, S.; Mays, J.; Chiao, J.C. Wireless power transfer for autonomous wearable neurotransmitter sensors. Sensors 2015, 15, 24553–24572. [Google Scholar]
- Basar, M.R.; Ahmad, M.Y.; Cho, J.; Ibrahim, F.B. An Improved Wearable Resonant Wireless Power Transfer System for Biomedical Capsule Endoscope. IEEE Trans. Ind. Electron. 2018, 65, 7772–7781. [Google Scholar] [CrossRef]
- Heo, E.; Choi, K.Y.; Kim, J.; Park, J.H.; Lee, H. A wearable textile antenna for wireless power transfer by magnetic resonance. Text. Res. J. 2018, 88, 913–921. [Google Scholar] [CrossRef]
- Letcher, J.; Tierney, D.; Raad, H. Fabrication of Wearable Antennas through Thermal Deposition. Int. Sch. Sci. Res. Innov. 2017, 11, 183–186. [Google Scholar]
- Paracha, K.N.; Rahim, S.K.A.; Chattha, H.T.; Aljaafreh, S.S.; Ur Rehman, S.; Lo, Y.C. Low-cost printed flexible antenna by using an office printer for conformal applications. Int. J. Antennas Propag. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Berges, R.; Fadel, L.; Oyhenart, L.; Vigneras, V.; Berges, R.; Fadel, L.; Oyhenart, L.; Vigneras, V.; Flexible, T.T.A.; Berges, R.; et al. A Flexible printed dual-band antenna dedicated to RF Energy Harvesting Application. Journées Nationalessur la Récupération et le Stockage d’Énergie 2017, Hal-01484377. [Google Scholar]
- Haerinia, M.; Mosallanejad, A.; Afjei, E.S. Electromagnetic analysis of different geometry of transmitting coils for wireless power transmission applications. Prog. Electromagn. Res. M 2016, 50, 161–168. [Google Scholar] [CrossRef]
- Haerinia, M.; Afjei, E.S. Resonant inductive coupling as a potential means for wireless power transfer to printed spiral coil. J. Electr. Eng. 2016, 16, 65–74. [Google Scholar]
- Haerinia, M.; Afjei, E.S. Design and analysis of class EF2 inverter for driving transmitting printed spiral coil. J. Electr. Eng. 2018, 18, 1–5. [Google Scholar]
- Haerinia, M. Modeling and simulation of inductive-based wireless power transmission systems. In Book Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design, 1st ed.; Olfa, K., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018; pp. 197–220. [Google Scholar] [CrossRef]
- Haerinia, M.; Noghanian, S. Analysis of misalignment effects on link budget of an implantable antenna. In Proceedings of the URSI EM Theory Symposium, EMTS 2019, San Diego, CA, USA, 27–31 May 2019. accepted. [Google Scholar]
- Haerinia, M.; Noghanian, S. Design of hybrid wireless power transfer and dual ultrahigh-frequency antenna system. In Proceedings of the URSI EM Theory Symposium, EMTS 2019, San Diego, CA, USA, 27–31 May 2019. accepted. [Google Scholar]
- Shadid, R.; Haerinia, M.; Sayan, R.; Noghanian, S. Hybrid Inductive Power Transfer and Wireless Antenna System for Biomedical Implanted Devices. Prog. Electromagn. Res. C 2018, 88, 77–88. [Google Scholar]
- Miyamura, K.; Miyaji, Y.; Ohmura, R. Feasibility study on wireless power transfer for wearable devices. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; pp. 166–167. [Google Scholar]
- Asif, S.M.; Iftikhar, A.; Braaten, B.D.; Ewert, D.L.; Maile, K. A Wide-Band Tissue Numerical Model for Deeply Implantable Antennas for RF-Powered Leadless Pacemakers. IEEE Access 2019, 7, 1. [Google Scholar]
- Poon, A.S.Y.; O’Driscoll, S.; Meng, T.H. Optimal Frequency for Wireless Power Transmission Into Dispersive Tissue. IEEE T. Antenn. Propag. 2010, 58, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Patlolla, B.; Yeh, A.J.; Beygui, R.E.; Poon, A.S.Y.; Tanabe, Y.; Neofytou, E.; Kim, S.; Ho, J.S. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [Green Version]
- Lin, D.B.; Wang, T.H.; Chen, F.J. Wireless power transfer via RFID technology for wearable device applications. In Proceedings of the 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, Taiwan, 21–23 September 2015; pp. 210–211. [Google Scholar]
- Lam, L.K.; Szypula, A.J. Wearable emotion sensor on flexible substrate for mobile health applications. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Haerinia, M.; Noghanian, S. Study of Bending Effects on a Dual-Band Implantable Antenna. In Proceedings of the USNC/URSI National Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019. accepted. [Google Scholar]
- Ahmed, S.; Tahir, F.A.; Shamim, A.; Cheema, H.M. A Compact Kapton-Based Inkjet-Printed Multiband Antenna for Flexible Wireless Devices. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1802–1805. [Google Scholar]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G. Compact polyimide-based antennas for flexible displays. IEEE/OSA J. Disp. Technol. 2012, 8, 91–96. [Google Scholar]
- Misran, M.H.; Rahim, S.K.A.; Eteng, A.A.; Vandenbosch, G.A.E. Assessment of Kapton-based flexible antenna for near field wireless energy transfer. Appl. Comput. Electromagn. Soc. J. 2017, 32, 31–36. [Google Scholar]
- Salonen, P.; Jaehoon, K.; Rahmat-Samii, Y. Dual-band E-shaped patch wearable textile antenna. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Washington, DC, USA, 3–8 July 2005; pp. 466–469. [Google Scholar]
- Anagnostou, D.E.; Gheethan, A.A.; Amert, A.K.; Whites, K.W. A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications. IEEE/OSA J. Disp. Technol. 2010, 6, 558–564. [Google Scholar] [CrossRef]
- So, J.H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 2009, 19, 3632–3637. [Google Scholar]
- Durgun, A.C.; Reese, M.S.; Balanis, C.A.; Birtcher, C.R.; Allee, D.R.; Venugopal, S. Flexible bow-tie antennas. In Proceedings of the 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting—Leading the Wave, AP-S/URSI 2010, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Voltera. Available online: http:// www.voltera.io (accessed on 28 August 2018).
- Basaran, S.C.; E Erdeml, Y. Dual-Band Split-Ring Antenna Design for WLAN Free-space Finite Elements. Turk. J. Electr. Eng. 2008, 16, 79–86. [Google Scholar]
- ANSYS, Inc. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 10 April 2019).
- Institute of Applied Physics (IFAC). Available online: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php (accessed on 10 December 2018).
- Antenna Patterns and Their Meaning. Available online: https://www.cisco.com (accessed on 15 December 2018).
- Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE: Piscataway, NJ, USA, 1999; ISBN 155937179X. [Google Scholar]
Antenna Parameter | Proposed Flexible Dual-Band Antenna | Poly-Imide Based Single Band Antenna [27] | Poly-Imide-Based Dual Band Antenna [27] | Textile Antenna [29] | Paper-Based Antenna [30] | Fluidic Antenna [31] | Flexible Bow-Tie Antenna [32] |
---|---|---|---|---|---|---|---|
Size () | 15 × 14 | 26.5 × 25 | 35 × 25 | 180 × 150 | 46 × 35 | 54 × 10 | 39 × 25 |
Thickness () | 0.17 | 0.05 | 0.05 | 4 | 0.25 | 1 | 0.13 |
Band | Dual | Single | Dual | Dual | Single | Single | Single |
Frequency () | 2.5/4.5 | 2.4 | 2.5/5.2 | 2.2/3 | 2.4 | 1.85 | 7.6 |
Substrate | Poly-imide | Poly-imide | Poly-imide | Felt fabric | Paper | PDMS | PEN film |
Relative Permittivity () | 3.4 | 3.4 | 3.4 | 1.5 | 3.4 | 2.67 | 3.2 |
Deformability | Low | Low | Low | High | High | High | Low |
Thermal Stability | High | High | High | Low | Low | Low | High |
Fabrication Complexity | Simple/Printed | Simple/Printed | Simple/Printed | Complex/Non-Printed | Simple/Printed | Complex/Non-Printed | Simple/Printed |
Air (First Resonance) | Air (Second Resonance) | Phantom (First Resonance) | Phantom (Second Resonance) | |||||
---|---|---|---|---|---|---|---|---|
Parameter | M | S | M | S | M | S | M | S |
2.50 | 2.32 | 4.53 | 4.39 | 2.50 | 2.31 | 4.65 | 4.44 | |
2.28 | 2.05 | 4.43 | 4.28 | 2.30 | 2.03 | 4.43 | 4.26 | |
2.48 | 2.32 | 4.45 | 4.28 | 2.51 | 2.31 | 4.68 | 4.26 |
First Resonance | Second Resonance | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | E-Plane M | E-Plane S | H-Plane M | H-Plane S | E-Plane M | E-Plane S | H-Plane M | H-Plane S |
Directivity (dBi) | 4.57 | 3.98 | 2.94 | 3.59 | 4.45 | 5.21 | 3.61 | 4.19 |
Gain (dBi) | −6.45 | −5.34 | −6.16 | −5.34 | −5.04 | −4.49 | −4.76 | −4.49 |
Beam Width (°) | 34 | 35 | 24 | 20 | 48 | 55 | 38 | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haerinia, M.; Noghanian, S. A Printed Wearable Dual-Band Antenna for Wireless Power Transfer. Sensors 2019, 19, 1732. https://doi.org/10.3390/s19071732
Haerinia M, Noghanian S. A Printed Wearable Dual-Band Antenna for Wireless Power Transfer. Sensors. 2019; 19(7):1732. https://doi.org/10.3390/s19071732
Chicago/Turabian StyleHaerinia, Mohammad, and Sima Noghanian. 2019. "A Printed Wearable Dual-Band Antenna for Wireless Power Transfer" Sensors 19, no. 7: 1732. https://doi.org/10.3390/s19071732
APA StyleHaerinia, M., & Noghanian, S. (2019). A Printed Wearable Dual-Band Antenna for Wireless Power Transfer. Sensors, 19(7), 1732. https://doi.org/10.3390/s19071732