High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. In Situ Observations
2.1.2. Remote Sensing and Other Supplementary Data
2.2. Methods
2.2.1. Sunshine Percentage (SSP) Estimation Model
2.2.2. The SD Model
2.2.3. Spatial Interpolation Methods
2.2.4. Evaluating Model Results
3. Results and Discussion
3.1. Variations of SSP
3.2. Estimation and Variation SD
3.3. Comparison of Simulated SD, IDW and Kriging Results
3.4. Influence of Terrain on SD
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shuvankar, P.; Islam, M.M. Solar radiation estimation from the measurement of sunshine hours over southern coastal region, bangladesh. Int. J. Sustain. Green Energy 2015, 4, 47–53. [Google Scholar]
- Poudyal, K.N.; Bhattarai, B.K.; Sapkota, B.; Kjeldstad, B. Estimation of global solar radiation using sunshine duration in himalaya region. Res. J. Chem. Sci. 2012, 2, 20–25. [Google Scholar]
- Tang, W.J.; Yang, K.; Qin, J.; Cheng, C.C.K.; He, J. Solar radiation trend across china in recent decades: A revisit with quality-controlled data. Atmos. Chem. Phys. 2011, 11, 393–406. [Google Scholar] [CrossRef]
- Gana, N.N.; Akpootu, D.O. Angstrom type empirical correlation for estimating global solar radiation in north-eastern nigeria. Int. J. Eng. Sci. 2013, 2, 58–78. [Google Scholar]
- Schillaci, C.; Braun, A.; Kropáček, J. Terrain analysis and landform recognition. Geomorphol. Tech. 2015, 2, 1–18. [Google Scholar]
- Raichijk, C. Observed trends in sunshine duration over South America. Int. J. Climatol. 2012, 32, 669–680. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Calbó, J.; Martin-Vide, J. Spatial and temporal trends in sunshine duration over Western Europe (1938–2004). J. Clim. 2008, 21, 6089–6098. [Google Scholar] [CrossRef]
- Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L.P.H.; Uhlenbrook, S. Comparison of different evaporation estimates over the african continent. Hydrol. Earth Syst. Sci. 2014, 18, 193–212. [Google Scholar] [CrossRef]
- Arku, F.S. The modelled solar radiation pattern of ghana: Its prospects for alternative energy source. J. Afr. Stud. Dev. 2011, 3, 45–64. [Google Scholar]
- Quansah, E.; Amekudzi, L.K.; Preko, K.; Aryee, J.; Boakye, O.R.; Boli, D.; Salifu, M.R. Empirical models for estimating global solar radiation over the ashanti region of ghana. J. Sol. Energy 2014, 2014, 6. [Google Scholar] [CrossRef]
- Kandirmaz, H.M.; Kaba, K. Estimation of daily sunshine duration from terra and aqua modis data. Adv. Meteorol. 2014, 2014, 9. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. A review of ghana’s energy sector national energy statistics and policy framework. Cogent Eng. 2016, 3, 115–274. [Google Scholar] [CrossRef]
- Schillings, C.; Mannstein, H.; Meyer, R. Operational method for deriving high resolution direct normal irradiance from satellite data. Sol. Energy 2004, 76, 475–484. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ye, B. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteorol. 2006, 137, 43–55. [Google Scholar] [CrossRef]
- Aladenola, O.O.; Madramootoo, C.A. Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in canada. Theor. Appl. Climatol. 2014, 118, 377–385. [Google Scholar] [CrossRef]
- Quej, V.H.; Almorox, J.; Ibrakhimov, M.; Saito, L. Empirical models for estimating daily global solar radiation in yucatán peninsula, mexico. Energy Convers. Manag. 2016, 110, 448–456. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Recent improvements of the meteorological radiation model for solar irradiance estimates under all-sky conditions. Renew. Energy 2016, 93, 142–158. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Meteorological radiation model (mrm v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renew. Sustain. Energy Rev. 2017, 74, 616–637. [Google Scholar] [CrossRef]
- Kambezidis, H. Solar radiation modelling: The latest version and capabilities of MRM. Editor. J. Fundam. Renew. Energy Appl. 2017, 7, e114. [Google Scholar] [CrossRef]
- Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Comparison of regression and artificial neural network models for estimation of global solar radiations. Renew. Sustain. Energy Rev. 2015, 52, 1294–1299. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Anisi, M.H.; Alam, K.A.; Petković, D. Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers. Manag. 2015, 91, 433–441. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Danesh, A.S.; Abdullah, M.S.; Zamani, M. Temperature-based estimation of global solar radiation using soft computing methodologies. Theor. Appl. Climatol. 2016, 125, 101–112. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. Sebal-based sensible and latent heat fluxes in the irrigated gediz basin, turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in china. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Almorox, J.; Hontoria, C.; Benito, M. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Appl. Energy 2011, 88, 1703–1709. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Al-Mostafa, Z.A.; Maghrabi, A.H.; Al-Shehri, S.M. Sunshine-based global radiation models: A review and case study. Energy Convers. Manag. 2014, 84, 209–216. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Review and statistical analysis of different global solar radiation sunshine models. Renew. Sustain. Energy Rev. 2015, 52, 1869–1880. [Google Scholar] [CrossRef]
- Dos Santos, C.M.; De Souza, J.L.; Ferreira Junior, R.A.; Tiba, C.; de Melo, R.O.; Lyra, G.B.; Teodoro, I.; Lyra, G.B.; Lemes, M.A.M. On modeling global solar irradiation using air temperature for Alagoas state, northeastern Brazil. Energy 2014, 71, 388–398. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Mohamed, Z.E.; Ali, M.A.; Hanafy, A.A. New temperature-based models for predicting global solar radiation. Appl. Energy 2016, 179, 437–450. [Google Scholar] [CrossRef]
- Akinoǧlu, B.G. A review of sunshine-based models used to estimate monthly average global solar radiation. Renew. Energy 1991, 1, 479–497. [Google Scholar] [CrossRef]
- Bakirci, K. Models of solar radiation with hours of bright sunshine: A review. Renew. Sustain. Energy Rev. 2009, 13, 2580–2588. [Google Scholar] [CrossRef]
- Teke, A.; Yıldırım, H.B.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 2015, 50, 1097–1107. [Google Scholar] [CrossRef]
- Zhu, X.; Qiu, X.; Zeng, Y.; Gao, J.; He, Y. A remote sensing model to estimate sunshine duration in the Ningxia Hui Autonomous region, China. J. Meteorol. Res. 2015, 29, 144–154. [Google Scholar] [CrossRef]
- Pons, X.; Ninyerola, M. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. Int. J. Climatol. 2008, 28, 1821–1834. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.P.; Katsoulis, V.D. Sunshine duration hours over the Greek region. Theor. Appl. Climatol. 2006, 83, 107–120. [Google Scholar] [CrossRef]
- Baboo, C.S.S.; Thirunavukkarasu, S. Geometric correction in high resolution satellite imagery using mathematical methods: A case study in Kiliyar sub basin. Glob. J. Comput. Sci. Technol. F Graph Vis. 2014, 14, 35–40. [Google Scholar]
- Sertel, E.; Kutoglu, S.H.; Kaya, S. Geometric correction accuracy of different satellite sensor images: Application of figure condition. Int. J. Remote Sens. 2007, 28, 4685–4692. [Google Scholar] [CrossRef]
- Dowling, T.I.; Brooks, M.; Read, A.M. Continental hydrologic assessment using the 1 second (30m) resolution shuttle radar topographic mission dem of Australia. In Proceedings of the MODSIM 2011 19th International Congress on Modelling and Simulation—Sustaining Our Future: Understanding and Living with Uncertainty, Perth, Australia, 12–16 December 2011; pp. 2395–2401. [Google Scholar]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. Nasadem global elevation model: Methods and progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. Isprs Arch. 2016, 41, 125–128. [Google Scholar] [CrossRef]
- Nooni, I.K.; Duker, A.A.; Van Duren, I.; Addae-Wireko, L.; Osei Jnr, E.M. Support vector machine to map oil palm in a heterogeneous environment. Int. J. Remote Sens. 2014, 35, 4778–4794. [Google Scholar] [CrossRef]
- Shouguo, D.; Guangyu, S.; Chunsheng, Z. Analyzing global trends of different cloud types and their potential impacts on climate by using the isccp d2 dataset. Chin. Sci. Bull. 2004, 49, 1301–1306. [Google Scholar]
- Zeng, Y.; Qiu, X.; Miao, Q.; Liu, C. Distribution of possible sunshine durations over rugged terrains of china. Prog. Nat. Sci. 2003, 13, 761–764. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar]
- Armstlong, M.P.; Marciano, R. Inverse-distance-wei$hted spatial interpolation using parallel supercomputers. Photogramm. Eng. Remote Sens. 1994, 60, 1097–1103. [Google Scholar]
- Mulholland, J.A.; Butler, A.J.; Wilkinson, J.G.; Russell, A.G.; Tolbert, P.E. Temporal and spatial distributions of ozone in Atlanta: Regulatory and epidemiologic implications. J. Air Waste Manag. Assoc. 1998, 48, 418–426. [Google Scholar] [CrossRef]
- Sen, Z.; Sahin, A.D. Spatial interpolation and estimation of solar irradiation by cumulative semivariograms. Sol. Energy 2001, 71, 11–21. [Google Scholar] [CrossRef]
- Ambreen, R.; Ahmad, I.; Qiu, X.; Li, M. Regional and monthly assessment of possible sunshine duration in pakistan: A geographical approach. J. Geogr. Inf. Syst. 2015, 7, 65–70. [Google Scholar] [CrossRef]
World Meteorological Organisation (WMO) ID (Prefix-654) | Station Name | Latitude | Longitude | Altitude (m) | Region |
---|---|---|---|---|---|
50 | Abetifi | 06°40′N | 00°45′W | 594.7 | Eastern |
72 | Accra | 05°36′N | 00°10′W | 67.7 | Greater |
75 | Ada | 05°47′N | 00°38′W | 5.2 | Greater |
62 | Akatsi | 06°07′N | 00°48′W | 53.6 | Volta |
57 | Akim Oda | 05°56′N | 00°59′W | 139.4 | Eastern |
60 | Akuse | 06°06′N | 00°07′W | 17.4 | Eastern |
65 | Axim | 04°52′N | 02°14′W | 37.8 | Western |
16 | Bole | 09°02′N | 02°29′W | 299.5 | Northern |
53 | Ho | 06°36′N | 00°28′W | 157.6 | Volta |
37 | K’ Krachi | 07°49′N | 00°02′W | 122.0 | Volta |
59 | Koforidua | 06°05′N | 00°15′W | 166.5 | Eastern |
42 | Kumasi | 06°43′N | 01°36′W | 286.3 | Ashanti |
01 | Navrongo | 10°54′N | 01°06′W | 213.4 | Upper East |
69 | Saltpond | 05°12′N | 01°04′W | 43.9 | Central |
45 | S’ Bekwai | 06°12′N | 02°20′W | 170.8 | Western |
39 | Sunyani | 07°20′N | 02°20′W | 308.8 | Brong Ahafo |
67 | Takoradi | 04°53′N | 01°46′W | 4.6 | Western |
18 | Tamale | 09°33′N | 00°51′W | 168.8 | Northern |
73 | Tema | 05°37′N | 00°00′W | 14.0 | Greater |
04 | Wa | 10°03′N | 02°30′W | 322.7 | Upper West |
32 | Wenchi | 07°45′N | 02°06′W | 338.9 | Brong Ahafo |
20 | Yendi | 09°27′N | 00°01′W | 195.2 | Northern |
Month | 1 | 4 | 7 | 10 | Average |
---|---|---|---|---|---|
Mean absolute error (MAE) (h) | 0.36 | 0.91 | 0.72 | 0.48 | 0.61 |
Mean relative error (MRE) (%) | 9.46 | 20.47 | 14.66 | 14.08 | 13.14 |
Attributes | Root-Mean-Square Error (RMSE) (h) | MAE (h) | MRE (%) |
---|---|---|---|
Proposed | 1.18 | 1.07 | 0.19 |
IDW | 1.78 | 1.72 | 0.28 |
Kriging | 2.25 | 2.21 | 0.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamu, M.; Qiu, X.; Shi, G.; Nooni, I.K.; Wang, D.; Zhu, X.; Hagan, D.F.T.; Lim Kam Sian, K.T.C. High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana. Sensors 2019, 19, 1743. https://doi.org/10.3390/s19071743
Adamu M, Qiu X, Shi G, Nooni IK, Wang D, Zhu X, Hagan DFT, Lim Kam Sian KTC. High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana. Sensors. 2019; 19(7):1743. https://doi.org/10.3390/s19071743
Chicago/Turabian StyleAdamu, Mustapha, Xinfa Qiu, Guoping Shi, Isaac Kwesi Nooni, Dandan Wang, Xiaochen Zhu, Daniel Fiifi T. Hagan, and Kenny T.C. Lim Kam Sian. 2019. "High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana" Sensors 19, no. 7: 1743. https://doi.org/10.3390/s19071743
APA StyleAdamu, M., Qiu, X., Shi, G., Nooni, I. K., Wang, D., Zhu, X., Hagan, D. F. T., & Lim Kam Sian, K. T. C. (2019). High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana. Sensors, 19(7), 1743. https://doi.org/10.3390/s19071743