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Abstract: This work presents a non-invasive, reusable and submersible permittivity sensor that uses
a microwave technique for the dielectric characterization of liquid materials. The proposed device
consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing
principle is based on the notch introduced by the resonators in the transmission coefficient, which is
affected due to the introduction of the sensor in a new liquid material. Then, a frequency shift of
the notch and the Q-factor of the proposed sensor are related with the changes in the surrounding
medium. By means of a particular experimental procedure, commercial liquids are employed to
obtain the calibration curve. Thus, a mathematical equation is obtained to extract the dielectric
permittivity of liquid materials with unknown dielectric properties. A good match between simulated
and experimental results is obtained, as well as a high Q-factor, compact size, good sensitivity and
high repeatability for use in sensing applications. Sensors like the one here presented could lead to
promising solutions for characterizing materials, particularly in determining material properties and
quality in the food industry, bio-sensing and other applications.

Keywords: microwave sensor; split ring resonator; permittivity measurements; material
characterization; metamaterial

1. Introduction

Permittivity is an important parameter used to describe the electromagnetic properties of dielectric
materials [1,2]. In many areas of science and engineering, the ability to monitor and quantify the
dielectric permittivity of materials using non-destructive methods with high sensitivity and precision
is required. The measurement of permittivity is related to other characteristics of the material and can
be used to determine changes in its density, concentration, composition, temperature, stress-strain
tensor, among others [3–8]. For this reason, the measurement of this parameter is very important
in many fields, some of which are agriculture [9,10], security [5], food quality [4], biology [11,12],
among others. For example, the permittivity of vegetable oils is measured and evaluated according to
the variation of the temperature and it has been established in [13], that an increasing temperature
increases the permittivity of vegetable oil. Loss of meat moisture during the aging period is a critical
issue for the meat industry, which is why in [4], a non-invasive microwave ring resonator sensor to
evaluate the water holding capacity (WHC) of broiler meat was presented. Also, in the agricultural
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industry, measurement of permittivity is necessary to check the level of soil moisture, which has an
important impact on food crops [9].

Several experimental methods have been employed to carry out dielectric permittivity property
measurements for liquid, solid and gaseous materials. The main techniques include the free space
technique, and the use of resonators, parallel plate capacitors, optical techniques and microwave
circuit technology [2,14–17]. As a brief classification in the radio-frequency and microwave bands,
methods can be split into non-resonance and resonance methods. The non-resonance methods include
mainly the RF circuit method, the open ended coaxial probe and the free space method [2,6]. These
are all non-destructive methods. Another non-resonance but destructive method is the transmission
and reflection method, because a portion of the material under test (MUT) has to be situated inside
the transmission line, so particular dimensions are required to ensure a correct fit [2,5]. Due to the
low cost of development, real-time monitoring, easy integration and easy miniaturization, resonance
methods have generated great interest in recent years. Resonance methods primarily include two
types: resonant perturbation methods [7,18,19], and resonator methods [11,20–23]. In the resonant
perturbation methods, a cavity resonator is filled with the sample under test (SUT), and the shift in
the resonance frequency and the change in the quality factor are measured. With a precise sample
preparation, this method becomes the most precise one, but is just applicable over a narrow band,
and besides, this method is considered destructive if the material must be damaged to perform the
test [5,14,19]. On the other side, the resonator methods are non-destructive since the SUT can be
considered as part of the resonator and the permittivity can be deduced from the displacement of the
relative frequency of resonance, which has a relatively high precision and sensitivity [2,21,24–27].

In the resonator methods, split ring resonators (SRR) have become common devices to obtain
permittivity measurements. An SRR is an small electrical resonator that can be considered a
metamaterial particle with simultaneous negative permeability and permittivity [28,29]. Some
authors have reported good results with sensors based on metamaterial structures and split ring
resonators (SRR) combined with microwave techniques. Due to their extraordinary electromagnetic
properties, metamaterial particles have been proposed in energy harvesting applications, filters, high
gain or miniaturized antennas and sensors [29–34]. In [35] the design and development of a planar
aligned gap and centered gap rectangular multiple split ring resonator to measure dielectric permittivity
from 1 to 10 with a maximum sensitivity of 0.032/∆ε is presented. A different alternative has been
explored in [36] with the use of wireless sensing system based on the implementation of two types
of substrate-integrated-waveguide (SIW) for dielectric permittivity measurement in liquids, which
operates up to 4 GHz and reported a sensitivity of 1.26 MHz/∆ε. Metamaterial resonators have also
been used in biosensing applications, where single rectangular or circular resonators in combination
with transmission lines [11,37] or an array of resonator [38] are used for DNA sensing or label-free
stress biomarkers. Some interesting works have been reported recently, for example a non-invasive
microwave method based in squared-shaped complementary split-ring resonator (CSRR) is presented
in [39]. This CSRR is used to measure the thickness and permittivity of multilayer electrical structures.
Changes in resonance frequency depend on the thickness and permittivity of the multilayer dielectric
sample below the ground plane (CSRR had been etched on the ground plane of a microstrip line).
The analysis of sensor’s size optimization improved the resolution in permittivity and thickness
measurement. On the other hand, a novel structure with two- and three-layer magnetic coupled SRRs
small resonators, have been proposed in [24] to measure the permittivity of SUTs. Compared with
the two-layer resonator, the proposed three-layer resonator has higher sensitivity, better stability and
stronger anti-jamming ability from the external interference. The obtained resonance frequency shift
was used to feed an algorithm in the post-processing stage, and based on the results, a formula that
relates the dielectric constants to the resonant frequencies was proposed. The use of an algorithm gives
an advantage in the measurement, especially when dealing with noise and unavoidable test errors.
In other work, a promising alternative for analyzing biological samples based on the combination
of SRRs and microfluidic channels filled with smaller volumes has been employed [40–44]. A clear
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example of this methodology was proposed in [38], where a compact microwave resonator capable of
performing characterization of the complex permittivity of fluids was proposed. The developed sensor
is based on a quarter-wavelength resonator designed on coplanar waveguide. It employs a change in
the resonance frequency for dielectric characterization. The sensor presents a high sensitivity, but the
measurement accuracy for small changes in permittivity is affected. In a similar way, a sensor based on
CSRR is presented in [39]. In this case, the sensor is used to provide a larger area of fringing electric
field that increases the effective interaction area with the sample. One microfluidic channel attached
to the CSRR delivers the fluidic sample to the sensing area to determine the complex permittivity
of liquids based on changes in the resonance frequency. Likewise, a different approach proposed a
CSRR-loaded patch sensor as a microfluidic ethanol chemical sensor. It has a microfluidic channel
integrated on the most sensitive area of the CSRR slot [40].

An important achievement in relation to the robustness of microwave sensors against
environmental factors is presented in [43], where a microfluidic sensor for dielectric characterization of
liquids in real time is presented. The sensor is composed of a microstrip SRR-loaded splitter/combiner
configuration etched on a substrate, and two microfluidic channels placed on top of the gap region of
the SRRs. The sensor works in differential mode, and the sensing mechanism is based on frequency
splitting. If the axial symmetry is disrupted, two transmission zeros arise, and the difference in
magnitude (notch depth) and frequency between such transmission zeros is indicative of the difference
in the dielectric properties (complex dielectric constant). The advantages of differential mode are
also presented in [45], where a microwave sensor based on a pair of symmetric uncoupled lines,
each one loaded with an open complementary split ring resonator (OCSRR), has been proposed.
The sensing principle is based on the measurement of the cross-mode insertion loss, very sensitive
to small perturbations between the reference liquid and the liquid under test (each in a different
channel). Similar to [43], in [46] the authors also show a differential microwave sensor based on a pair
of uncoupled microstrip lines, each one loaded with a split ring resonator (SRR). The sensor is applied
to the measurement of electrolyte concentration in deionized (DI) water. Compared to [43,45], this
sensor uses a different principle, besides, a novel via-less SRR-based sensor with improved sensitivity
is presented. Finally, an interesting alternative for developing sensors for industrial applications was
introduced for first time in [20]. In that work the authors proposed a split-ring resonator (SRR)-based
sensor for the detection of solid thickness and relative permittivity characterization of solid and liquid
materials. The structure was composed of two SRRs hosted in a microstrip transmission line. A shift
in frequency of the notch introduced by the resonators in the transmission coefficient is related to a
change in the effective permittivity of the structure when the sensor is covered with any solid or liquid
material. This work is very interesting because the proposed sensor is fully submersible and reusable.
Submersible sensors offer a great alternative in industrial applications such as the measurement of
some solvents and oils, because the amount of sample is large enough so a sensor can be directly
submerged like a probe. It would help to implement this kind of sensor in an easier and more cost
effective way than microfluidic based-sensors.

In this work, a microwave sensor based on an antenna-coupled split ring resonator with monopole
insertions to measure the dielectric permittivity of liquid substances is presented. The sensor was
designed to identify unknown dielectric permittivity of liquids in a wide range. This proposed sensor
reaches a great sensibility, high Q-Factor and presents a good repeatability, which was predicted
by simulation results and experimentally validated. The proposed alternative has some important
advantages compared with previous works due to the fact that the sensor can be reusable, the measuring
technique is not destructive, the sensor is submersible, and it allows real-time measurements of the
variation of permittivity. To analyze the behavior of the sensor structure, finite element method
(FEM) was used. In addition, the device was fabricated and its performance corroborated at detecting
changes in dielectric permittivity of different liquid samples. The organization of the manuscript is as
follows: the working principle, sensor design and characterization process are presented in Section 2;
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Section 3 shows experimental measurements and presents a discussion of the obtained results; finally,
conclusions are presented in Section 4.

2. Materials and Methods

2.1. Theoretical Model

In this work, a rectangular split ring resonator (SRR) is placed between a group of printed
monopole antennas on the same plane, as show in the Figure 1a. The SRR structure is based on
a metal loop with a square shape and it is used as a transducer to detect dielectric permittivity
changes in the surrounding medium. The monopole excitation is employed to send a magnetic
field perpendicular to the ring surface, which induces a current through the rectangular SRR. In the
past, similar configurations have explored this kind of excitation [47,48], however in those cases the
monopoles are located externally, whereas in our case the monopoles are integrated in the same PCB in
order to increase the stability, alignment, compactness and performance. The SRR can be modeled
using an equivalent resonant LC circuit as previously demonstrated by Baena et al. [49]. The equivalent
LC circuit is shown in Figure 1c and its resonant frequency can be obtained using Equation (1):

fr =
1

2π
√

LsCs
, (1)

where Ls and Cs represent the self-inductance and the distributed capacitance due to the gap of the
SRR respectively. However, it is important to keep in mind that the capacitance can be decompose into
two capacitance terms as indicated in the equation (2) [42,50]. The first one is the capacitance without
the sample which includes the capacitive effect due to the channel walls, the dielectric properties of the
substrate, the surrounding space, etc. The second term, describes the contribution due to the variation
of the dielectric permittivity of the surrounding medium [42], where the dielectric permittivity of the
sample (εsample) could be a complex parameter and its depends of the used sample:

Cs = C0 + εsampleCc (2)
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Figure 1. (a) Schematic of the proposed sensor device. (b) Picture of the sensor device immersed in the
material under test (MUT). (c) Equivalent electrical circuit of the proposed SRR. (d) Sensor’s dipoles
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From the above, a change in the relative permittivity of the surrounding medium results in a shift
of the resonant frequency. Therefore, this principle can be exploited to measure variations in liquids,
such as alcohols, oils and biological samples.

2.2. Sensor Design

Figure 1a shows a 2D schematic of the proposed sensor device, which consists of a rectangular
SRR placed between a pair of monopole antennas used for exciting the resonator, of 28 mm of height
(MH) and 1.5 mm of width (MW). In addition, a pair of parasitic elements with rectangular shape
whose height (R) is 16 mm and width (WR) is 1 mm, are inserted to improve the signal transmission.
Each one of these rectangular elements are positioned at 1.25 mm from the resonator. The backside of
the board is completely covered with copper (ground), and the overall area of the proposed sensor is
1750 mm mm2 (35 × 50 mm) which makes it look as a compact device compared to previous dielectric
sensors [24–26,51]. Other important parameters related with the proposed structure are summarized
in Table 1. To manufacture the prototype of the proposed sensor, a CNC machine for printed circuit
boards (LPKF ProtoMat D104, LPKF Laser & Electronics AG, Hanover, Germany) was used. The
sensor is built on commercial dielectric substrate FR4, which have a relative permittivity (εr) of 4.4, loss
tangent (tan δ) of 0.019, a thickness of 1.6 mm and a copper layer of 35 µm. The ends of each monopole
are soldered to 50-Ω SMA male connectors (SOUTHWEST 292-07A-5, Southwest Microwave, Tempe,
AZ, USA) for testing purposes, as illustrated in Figure 1c.

Table 1. Dimensions of the proposed sensor based on a monopole-coupled SRR.

Variable Dimension (mm)

Substrate width (W) 40.0
Substrate height (H) 35.0

Monopole width (Mw) 1.5
Monopole height (MH) 28.0

Rectangle height (R) 16.0
Resonator width (RW) 10.5
Rectangle width (WR) 1.0
Resonator height (RH) 7.0

Resonator separation (Rs) 1.0
Gap (G) 1.5

Monopoles separation (SM) 24.5
Separation between resonator and monopole (∆) 1.25

Monopole distance (MD) 8
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2.3. Characterization of Sensor

A FSH8 vector network analyzer (VNA, Rhode & Schwartz, Munich, Germany) with two ports
is used in order to validate the performance of the proposed sensor. The procedure used to perform
the measurements, as shown in Figure 1d, consisted of submerging the whole sensor in 100 ml of
the material under test (MUT), to guarantee total interaction between the sensor and the MUT (as
seen before, this is a non-destructive procedure). During the test, the response of the S21 parameter
is monitored in real time with the VNA from 4 GHz to 5.4 GHz in order to detect variations in the
surrounding medium caused by alterations in the resonant frequency of the proposed sensor. This
procedure is repeated N times for each material, using M materials as MUT.

In order to obtain the actual dielectric permittivity of every sample measured in this work, the
85070E Dielectric Probe Kit (Agilent, Santa Clara, CA, USA) is used at room temperature and at
a humidity level within the 65 RH% ± 5 range. From this experiment, the determined dielectric
permittivity of the employed samples are 20.7, 21.8, 33.1 and 37 for acetone at 96% purity, propyl alcohol
at 92% purity, methanol at 92% purity, and ethylene glycol at 93% purity, respectively (Figure S1).

3. Results and Discussion

The proposed sensor is designed and optimized using the full wave electromagnetic solver
ANSYS HFSS. Figure 2 shows the analysis of the S21 parameter when the dielectric permittivity of
the surrounding medium is changed from 20 to 40. This plot shows that transmitted electromagnetic
energy becomes minimum at the resonance frequency of the designed structure, as the maximum
energy couples to the resonator at the resonance frequency. Similarly, the resonance frequency of the
resonator shifts towards lower frequencies as the permittivity of the surrounding dielectric medium of
the MUT increases.
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changed from 20 to 40.

The previous model, presented in the Section 2.1, predicted this result. When the dielectric
permittivity of the surrounding medium in which the sensor is immersed increases, the second term
of Equation (2) increases too, and the frequency decreases in Equation (1). In this work, the changes
in the resonance frequency of the sensor are exclusively due to changes in the surrounding medium,
since it does not present changes in the geometrical parameters due to temperature or strain variations.
Thus, when the dielectric permittivity changes from 20 to 40, the resonance frequency is lowered from
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5.198 GHz to 3.955 GHz. In addition, the quality factor of the proposed structure decreases for higher
values of dielectric permittivity. For example, when the sensor device is submerged in a sample whose
dielectric permittivity is 20, a quality factor close to 206.83 is obtained, while this parameter decreases
to a relatively high value of 86.28 when the dielectric permittivity of the surrounding medium is equal
to 40. Further, the behavior of the designed sensor is validated. For this step, four different samples
of liquids with dielectric permittivity from 20 to 40 are employed. Figure 3 shows a comparison of
the simulated (black line) and the experimental (red line) results in a wideband frequency response
from 4 GHz to 5.4 GHz. As mentioned in Section 2.3, two port measurements are taken with the
Rhode & Schwartz FSH8 VNA with the sensor submerged into the MUT as is depicted in Figure 1d.
To carry out these measurements, acetone, propyl alcohol, methanol and ethylene glycol are used due
to the fact that their dielectric permittivity values are into the selected operating range. As seen, the
experimental results have a great agreement with the simulated ones observed, which validates the
design of the fabricated prototype. The small differences between them can be due to small fabrication
tolerances in the engraved process with the CNC machine. However, the slight frequency shifts
between the simulated and measured results does not affect the characterization of materials with the
proposed sensor.
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(ε = 21.8), (c) methanol (ε = 33.1) and (d) ethylene glycol (ε = 37).

In order to evaluate the repeatability of the sensor, each experimental measurement was repeated
10 times inside a temperature-controlled room at 22 ± 2 ◦C and humidity within the 65 RH% ± 5
range. Next, the data of each measurement was processed to obtain the resonance frequency and its
mean value with the respective standard deviation. Results are illustrated in Figure 4a. The obtained
standard deviation values are 0.102, 0.065, 0.081 and 0.090 GHz for the tested materials acetone, propyl
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alcohol, methanol, and ethylene glycol, respectively. These results indicate that the sensor shows high
repeatability due to a very small value of standard deviation for the measured results. Besides, the
behavior of this sensor shows clearly that, the resonance frequency shifted down according to the
increasing value of relative dielectric permittivity of the liquid and this presents a trend with decreasing
exponential fitting, which is expressed as follows:

fr(GHz) = 5.0855e(−
ε

22.30237 ) + 3.1488 (3)
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(b) Quality factor analysis of the proposed sensor within the operating range. The point in the plot are
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Now, from the above curve it is possible to characterize any material with relative dielectric
permittivity within the range from 20 to 40.
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Therefore, this device can be employed to determine the dielectric constant of unknown MUTs
through the retrieve method. For example, the proposed sensor can be employed to measure the
variations of the alcohol concentration when it is mixed with water or other solvent. As demonstrated in
this work, the proposed sensor could be used in industrial applications where the alcohol concentration
is an important parameter. In the same way, the proposed structure presents good performance
when it is compared with other works [20,24,36,50,52] because, as it is clear from the Equation (3),
a displacement of 1.2282 GHz when the dielectric permittivity of the sample is varied from 20 to
40 (i.e., 23.52% relative frequency shift) is easily obtained. It is comparable, for example, with the
results reported by Xu et al. [24] with a relative frequency shift of 24.24% for a microwave sensor that
allows to characterize samples with dielectric permittivity values ranging from 1 to 10. Moreover, the
submersible printed sensor proposed by Galindo-Romera et al. [20] reported a relative frequency shift
of 22.04% for a configuration that it is implemented in the characterization of liquid with dielectric
permittivity between 2.45 and 22.52.

Finally, the quality factor of the proposed structured was evaluated in each case. Figure 4b shows
a comparison between the obtained theoretical and experimental results. The theoretical model shows
that a maximum quality factor of 252 is obtained when the dielectric permittivity of the surrounding
medium is close to 24 and it decreases strongly to 84 by samples whose is near to 38 as was predicted
by the theoretical model. The experimental results show the same trend observed in the theoretical
model. The experimental results show a same trend that the theoretical model, which validate the
response of this sensor. However, as it is evident from the results illustrated in Figure 3, the Full Width
at Half Maximum (FHWM) in experimental results is lower than theoretical results, for this reason, we
obtain a higher quality factor with the experimental data. A mean quality factor of 347.677, 370.834,
259.967 and 125.438 were obtain experimentally for acetone, propyl alcohol, methanol and ethylene
glycol respectively. Thus, the equation that describe the behavior of the Q-factor of the proposed sensor
is can be expressed as:

Q = −2565.78299 + 295.39906εr − 9.94942ε2
r + 0.10555ε3

r (4)

From the obtained results, a completely passive, integrated, simple design, low cost and compact
sensor device has been proposed and demonstrated. Likewise, the proposed sensor shows a high
sensitivity and good quality factor when it is employed in the dielectric characterization of liquid
samples like alcohols, which is desirable in industrial environments. The proposed structure presents
several advantages in comparison with other previous alternatives. For example, it is a non-destructive
technique because the sensor can be used like a submersible probe. On the other hand, this device
allows obtaining high repeatability in the measurements in order to give reliable data to the users, and
finally this one can be implemented in a wide range of applications because it is demonstrated it can
be used to characterize dielectric materials with relative dielectric permittivity from 20 to 40.

4. Conclusions

A non-invasive, submersible and reusable material permittivity sensor device, based on monopole
excited split ring resonator is proposed, validated and analyzed in this work. The operating principle
of the sensor is based on the measurement of the resonance frequency shift as a function of the relative
permittivity, which is used to detect changes in a wide range. Thus, the proposed sensor could be
employed to obtain the permittivity of unknown liquids. The sensor’s structure was simulated at
introducing it in several samples with different dielectric properties each one. After adjusting the
sensor’s design, a prototype was obtained, and its performance was experimentally validated using
several types of liquid samples as a material under test (MUT). The simulated and measured results
evidently shown that the proposed sensor provide competitive sensibility, great repeatability, compact
size and high Q-factor when it is employed to characterize unknown dielectric materials whose
dielectric permittivity is within the range from 20 to 40. As a matter of fact, it was experimentally
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obtained a good matching between simulations results and measurements. In addition, the device has
demonstrated an excellent performance, simple design and economic manufacturing process, which
becomes this sensor device an attractive candidate for a fully integrated platform dedicated to many
industrial applications, mainly liquid samples characterization in a wide range.

As a future improvement, it would be interesting to develop a version of the proposed sensor
that allows characterizing the dielectric permittivity in multiple-bands simultaneously. It could be
interesting because—in general—the dielectric permittivity of materials has a strong dependence with
the frequency.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/8/1936/s1,
Figure S1: Experimental results obtained with the Agilent 85070E Dielectric Probe Kit for (a) acetone at 96% purity.
(b) Propyl alcohol at 92% purity. (c) Methanol at 92% purity. (d) Ethylene glycol at 93% purity.
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