An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Sentinel-2 Image Data
2.2.2. Digital Elevation Model (DEM) Data
2.2.3. Ground Survey Data and Sample Datasets
2.3. Methods
2.3.1. Feature Analysis and Selection
2.3.2. Classification Method
2.3.3. Determination of Random Forest Parameter
2.3.4. Accuracy Analysis of Multi-temporal and Multi-feature Tea Plantation Identification Method
2.3.5. Optimum Recognition Features for Tea Plantations
3. Results and Discussion
3.1. Classification Results and Accuracy Assessment
3.2. Comparison and Analysis Classification Method Accuracy
4. Conclusions
- (1)
- The combination of multi-temporal and multi-feature classification methods improved the overall accuracy and tea plantation classification producer’s and user’s accuracies compared with using single-temporal spectral features.
- (2)
- Selecting features using RF importance classification reduced the dimension of input features and the computational complexity, resulting in improved classification efficiency and accuracy. 28 features with average importance >0.80 were selected as optimal features, resulting in an overall classification accuracy of 97.92%, and the producer’s and user’s accuracy for tea plantations of 96.57% and 96.02%, respectively. The classification accuracy was similar to that achieved using 325 initial features before feature selection.
- (3)
- Comparing the classification accuracy of the RF and SVM methods for tea plantation identification, the former’s overall accuracy was 1.49% higher and the producer’s and user’s accuracies were 4.12% and 3.57% higher, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dutta, R.; Stein, A.; Smaling, E.M.A.; Bhagat, R.M.; Hazarika, M. Effects of plant age and environmental and management factors on tea yield in northeast India. Agron. J. 2010, 102, 1290–1301. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhi, Y.; Zhang, B.; Jin, H.; Zhang, Y.; Fang, F.; Li, C.; Zhu, H.; Chen, Y. Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves. Sci. Hortic. 2015, 184, 78–84. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Z.-X. Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm tea repository. Plant Foods Hum. Nutr. 2005, 60, 31–35. [Google Scholar] [CrossRef]
- Xu, W.; Sun, R.; Jin, Z. Extracting tea plantations based on ZY-3 satellite data. Trans. Chin. Soc. Agric. Eng. 2016, 32, 161–168. [Google Scholar]
- Jiang, Y.; Cheng, Q. Chinese Tea Industry Yearbook (2013–2016); China Agriculture Press: Beijing, China, 2016. [Google Scholar]
- Li, M.; Feng, T. World Tea Industry Development Report (2017); Social Sciences Academic Press: Beijing, China, 2017. [Google Scholar]
- Sharma, R.; Jayaraman, M.; Oza, S.R.; Ravindran, A.; Maruthachalam, M.; Parihar, J.S. Tea acreage estimation and condition assessment using satellite data in Nilgiri District, Tamilnadu. J. Indian Soc. Remote Sens. 1993, 21, 199–207. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Dihkan, M.; Guneroglu, N.; Karsli, F.; Guneroglu, A. Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique. Int. J. Remote Sens. 2013, 34, 8549–8565. [Google Scholar] [CrossRef]
- Ghosh, J.K.; Lamar, H.; Roel, N. Forest cover and land use mapping of a region of Barak Valley of Assam, India using IRS LISS-II imagery. Int. Arch. Photogramm. Remote Sens. 1992, 29, 435. [Google Scholar]
- Ghosh, J.K.; Godbole, P.N.; Ghosh, S.K. Mapping of tea gardens from satellite images-a fuzzy knowledge-based image interpetation system. Int. Arch. Photogramm. Remote Sens. 2000, 33, 460–468. [Google Scholar]
- He, L.; Kong, F.; Shen, Z. Artificial Neural Network Ensemble for Land Cover Classification. In Proceedings of the 2006 Sixth World Congress on Intelligent Control and Automation, WCICA 2006, Dalian, China, 21–23 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 10054–10057. [Google Scholar]
- Fauziana, F.; Danoedoro, P.; Murti, S.H. Linear Spectral Mixture Analysis of SPOT-7 for tea yield estimation in Pagilaran Estate, Batang Central Java. IOP Conf. Ser. Earth Environ. Sci. 2016, 47, 012034. [Google Scholar] [CrossRef]
- Xu, G. Research on Tea Garden Remote Sensing Extraction Based on Object-Oriented and Multi-Metadata Fusion. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2016. [Google Scholar]
- Chuang, Y.-C.M.; Shiu, Y.-S. A comparative analysis of machine learning with WorldView-2 pan-sharpened imagery for tea crop mapping. Sensors 2016, 16, 594. [Google Scholar] [CrossRef]
- Yang, P. Object-Oriented Vegetation Classification Based on Texture Features of High-Resolution Remote Sensing Images. Master’s Thesis, Yunnan Normal University, Kunming, China, 2017. [Google Scholar]
- Bureau, X.S. Xinyang Statistical Yearbook (2017); China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Chen, Z. Chinese Tea Dictionary; China Light Industry Press: Beijing, China, 2008. [Google Scholar]
- Yang, W. Pruning technology of tea in southwest Henan tea district. Mod. Agric. 2013, 7. [Google Scholar] [CrossRef]
- Du, R. Pruning technology of tea in Jiangbei tea district. Henan Agric. 2016, 9. [Google Scholar] [CrossRef]
- Johnson, L.F.; Billow, C.R. Spectrometry estimation of total nitrogen concentration in Douglas-fir foliage. Int. J. Remote Sens. 1996, 17, 489–500. [Google Scholar] [CrossRef]
- Philpot, W.D. The derivative ratio algorithm: Avoiding atmospheric effects in remote sensing. IEEE Trans. Geosci. Remote Sens. 1991, 29, 350–357. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 2005, 67, 786–804. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Jiang, L. Application of decision tree classification to rubber plantations extraction with remote sensing. Trans. Chin. Soc. Agric. Eng. 2013, 29, 163–172. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. Mach. Learn. 2004, 45, 157–176. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Lin, H.Y.; Yue, C.R.; Wu, X.-H.; Hui, X.U.; Zheng, X. Remote sensing image classification by enmap-box model. J. Southwest For. Univ. 2014, 34, 67–71. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A toolbox and application programming interface for EnMAP data processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Elhadi, A.; Ismail, R. Intra-and-inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral rapideye sensor and advanced machine learning algorithms. Sensors 2014, 14, 15348–15370. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q.; Du, X.; Zhang, Y.; Zhao, L.; Wang, H. Identification of main crops based on the univariate feature selection in Subei. J. Remote Sens. 2017, 21, 519–530. [Google Scholar]
Feature Type | Feature Phase | Feature Name | Feature Variable | Feature Number |
---|---|---|---|---|
Spectral feature | 2018-4-18, 2018-6-12, 2017-9-15, 2017-12-19 | Reflectance | B2, B3, B4, B5, B6, B7, B8, B8A | 32 |
First derivative spectral | Der1_B2, Der1_B3, Der1_B4, Der1_B5, Der1_B6, Der1_B7, Der1_B8, Der1_B8A | 32 | ||
Vegetation index | 2018-6-12, 2017-12-19 | NDVI | Ndvi_12-19, Ndvi_12-19- Ndvi_6-12 | 2 |
Texture feature (GLCM) | 2018-4-18, 2018-6-12, 2017-9-15, 2017-12-19 | Mean | Mea_B2, Mea_B3, Mea_B4, Mea_B5, Mea_B6, Mea_B7, Mea_B8, Mea_B8A | 32 |
Variance | Var_B2, Var_B3, Var_B4, Var_B5, Var_B6, Var_B7, Var_B8, Var_B8A | 32 | ||
Contrast | Con_B2, Con_B3, Con_B4, Con_B5, Con_B6, Con_B7, Con_B8, Con_B8A | 32 | ||
Homogeneity | Hom_B2, Hom_B3, Hom_B4, Hom_B5, Hom_B6, Hom_B7, Hom_B8, Hom_B8A | 32 | ||
Dissimilarity | Dis_B2, Dis_B3, Dis_B4, Dis_B5, Dis_B6, Dis_B7, Dis_B8, Dis_B8A | 32 | ||
Correlation | Cor_B2, Cor_B3, Cor_B4, Cor_B5, Cor_B6, Cor_B7, Cor_B8, Cor_B8A | 32 | ||
Entropy | Ent_B2, Ent_B3, Ent_B4, Ent_B5, Ent_B6, Ent_B7, Ent_B8, Ent_B8A | 32 | ||
Angular second moment | Asm_B2, Asm_B3, Asm_B4, Asm_B5, Asm_B6, Asm_B7, Asm_B8, Asm_B8A | 32 | ||
Topographic feature | - | Elevation | Ele | 1 |
Slope | Slo | 1 | ||
Aspect | Asp | 1 | ||
Sum | 325 |
Feature Model | Feature Dimension | Description |
---|---|---|
S1 | 16 | 8-band spectral features on 2018-4-18 |
S2 | 16 | 8-band spectral features on 2018-6-12 |
S3 | 16 | 8-band spectral features on 2017-9-15 |
S4 | 16 | 8-band spectral features on 2017-12-19 |
S | 64 | 8-band spectral features of all four images |
GLCM | 256 | 8-band texture features of all four images |
S+NDVI+DEM | 69 | 8-band spectral features of all four images + Vegetation index features + Topographic features |
S+NDVI+DEM+GLCM | 325 | 8-band spectral features of all four images + Vegetation index features + Topographic features + 8-band texture features of 4 phases |
Feature Model | Monoculture Tea Plantation | Polyculture Tea Plantation | OA/% | Kappa | ||
---|---|---|---|---|---|---|
PA /% | UA /% | PA /% | UA /% | |||
S1 | 75.46 | 71.76 | 59.11 | 61.71 | 86.28 | 0.6890 |
S2 | 87.13 | 83.92 | 69.28 | 58.83 | 89.06 | 0.7585 |
S3 | 80.92 | 83.00 | 74.77 | 63.24 | 88.88 | 0.7512 |
S4 | 85.56 | 77.71 | 73.60 | 70.63 | 89.60 | 0.7693 |
S | 93.47 | 92.71 | 81.19 | 84.45 | 95.89 | 0.9059 |
GLCM | 89.14 | 91.55 | 76.64 | 74.97 | 93.38 | 0.8485 |
S+NDVI+DEM | 93.91 | 92.92 | 82.01 | 83.08 | 96.05 | 0.9099 |
S+NDVI+DEM+GLCM | 94.85 | 93.56 | 82.24 | 85.02 | 96.33 | 0.9163 |
Mean Value of Feature Importance | Feature Dimension | Monoculture Tea Plantation | Polyculture Tea Plantation | OA/% | Kappa | ||
---|---|---|---|---|---|---|---|
PA /% | UA /% | PA /% | UA /% | ||||
≥1.00 | 10 | 93.28 | 90.28 | 78.39 | 78.76 | 95.01 | 0.8870 |
≥0.90 | 17 | 94.10 | 91.46 | 80.37 | 81.71 | 95.68 | 0.9020 |
≥0.80 | 28 | 94.29 | 91.75 | 81.66 | 84.62 | 96.05 | 0.9100 |
≥0.75 | 39 | 93.28 | 91.81 | 81.19 | 82.94 | 95.91 | 0.9068 |
Classes | RF | SVM | ||
---|---|---|---|---|
PA /% | UA /% | PA /% | UA /% | |
Tea plantation | 96.57 | 96.02 | 92.45 | 92.45 |
Others | 98.45 | 98.67 | 97.97 | 97.09 |
OA/% | 97.92 | 96.43 | ||
Kappa | 0.9485 | 0.9107 | ||
Feature dimension | 28 | 28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Pan, Z.; Wang, H.; Huang, P.; Sun, J.; Qin, F.; Liu, Z. An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery. Sensors 2019, 19, 2087. https://doi.org/10.3390/s19092087
Zhu J, Pan Z, Wang H, Huang P, Sun J, Qin F, Liu Z. An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery. Sensors. 2019; 19(9):2087. https://doi.org/10.3390/s19092087
Chicago/Turabian StyleZhu, Jun, Ziwu Pan, Hang Wang, Peijie Huang, Jiulin Sun, Fen Qin, and Zhenzhen Liu. 2019. "An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery" Sensors 19, no. 9: 2087. https://doi.org/10.3390/s19092087
APA StyleZhu, J., Pan, Z., Wang, H., Huang, P., Sun, J., Qin, F., & Liu, Z. (2019). An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery. Sensors, 19(9), 2087. https://doi.org/10.3390/s19092087