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Abstract: Aiming at the problems of low data fusion precision and poor stability in greenhouse
wireless sensor networks (WSNs), a multi-sensor data fusion algorithm based on trust degree and
improved genetics is proposed. The original data collected by the sensor nodes are sent to the
gateway through the sink node, and data preprocessing based on cubic exponential smoothing is
performed at the gateway to eliminate abnormal data and noise data. In fuzzy theory, the range of
membership functions is determined, according to this feature, the data fusion algorithm based on
exponential trust degree is used to fuse the smooth data to avoid the absolute degree of mutual trust
between data. In this paper, we have improved the crossover and mutation operations in the standard
genetic algorithm, the variation is separated from the intersection, the chaotic sequence is used to
determine the intersection, and the weakest single-point intersection is implemented to improve the
convergence accuracy of the algorithm, weaken and avoid jitter problems during optimization. The
chaotic sequence is used to mutate multiple genes in the chromosome to avoid premature algorithm
maturity. Finally, the improved genetic algorithm is used to optimize the fusion estimation value.
The experimental results show that the cubic exponential smoothing can significantly reduce the
data fluctuation and improve the stability of the system. Compared with the commonly used data
fusion algorithms such as arithmetic average method and adaptive weighting method, the data fusion
algorithm based on trust degree and improved genetics has higher fusion precision. At the same
time, the execution time of the algorithm is greatly reduced.

Keywords: greenhouse; WSNs; data fusion; improved genetic algorithm; trust degree; cubic
exponential smoothing

1. Introduction

Wireless Sensor Networks (WSNs) is a multi-hop network that combine sensor technology,
information processing technology, embedded technology, and wireless communication technology.
It consists of a large number of wireless sensor nodes that are deployed, monitored, processed, and
transmitted in the monitoring area, with characteristics of small size, low cost, self-organizing networks,
and massive scale of coverage [1–3]. WSNs can effectively monitor environmental information, and
has been widely used in smart agriculture, autonomous driving, and military defense, and plays an
increasingly important role [4–6]. In a WSN-based greenhouse environmental monitoring system, a
large number of homogeneous sensor nodes are usually deployed in the sensing area [7], to perform
periodic environmental data collection and transmission. On the one hand, WSNs generates a large
amount of redundant data while monitoring information; on the other hand, various environmental
parameters in the greenhouse are unevenly distributed, which are easily affected by factors such as
sensor accuracy, transmission error, environmental noise, and human interference. The measurement
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results are low in efficiency, and the system is unstable. Therefore, greenhouse data collected by
multiple sensors must be fused.

Data fusion, also known as information fusion or multi-sensor data fusion [8], refers to multi-sensor
data resources that make full use of different time and space, multi-sensor data obtained through by
time series, using computer technology to analyze, synthesize, dominate, and apply under specific
criteria, and where a consistent interpretation and description of the measured object is obtained [9],
so as to realize the corresponding decision and estimation. The system is able to get more accurate
information to achieve the purpose of improving system stability. According to the level of information
representation, data fusion can be divided into datalevel fusion, featurelevel fusion, and decisionlevel
fusion [10]. Among them, datalevel fusion is also called pixel-level fusion [11]. As the lowest level of
fusion, the datalevel fusion directly fuses the collected raw data, then the feature vector is extracted
from the merged data and before being judged and recognized. There is no data loss problem, and the
obtained result is also the most accurate.

Data fusion is a crucial technology for solving low-precision and poor stability in greenhouse
WSNs. From different time and space multi-source data, it eliminates redundant information and
reduces data transmission, thus achieving the purpose of improving information collection accuracy
and enhancing system stability.

The fuzzy theory was developed on the basis of the fuzzy set theory founded by Prof. LA zadeh
of the Department of Electrical Engineering of the University of California, Berkeley in 1965. It mainly
includes fuzzy set theory, fuzzy logic, fuzzy reasoning, and fuzzy control.

As early as the 1920s, the famous philosopher and mathematician B. wrote a paper on ambiguity.
He believed that all natural languages were vague, such as red and old. The concept has no clear
connotation and extension, so it is ambiguous and vague. However, in a specific environment, when
people use these concepts to describe a specific object, they can understand the truth and rarely cause
misunderstanding and ambiguity.

Prof. LA zadeh of the University of California published a famous paper in 1965. For the first
time, he proposed an important concept of expressing the ambiguity of things: membership function,
which broke through the classical collection theory of Rene. Descartes in the late 19th century. Laid the
foundation of fuzzy theory. In 1966, P.N. Marinos published a research report on fuzzy logic. In 1974,
L.A. zadeh published a research report on fuzzy reasoning. Since then, fuzzy theory has become a hot
topic. In 1974, the British E.H. Mamdani realized the world’s first experimental steam engine control
with fuzzy logic and fuzzy reasoning for the first time, and achieved better results than the traditional
direct digital control algorithm, thus proclaiming the birth of fuzzy control. In 1980, Denmark’s L.P.
Holmblad and Ostergard used fuzzy control in the cement kiln and achieved success. This is the first
commercialized and practical fuzzy controller.

Fuzzy theory refers to the theory that uses the basic concept of fuzzy sets or continuous membership
degree functions. There are five main branches of fuzzy theory:

• Fuzzy mathematics, which replaces classical sets with fuzzy sets, thus extending the concepts in
classical mathematics;

• Fuzzy logic and artificial intelligence, which introduces approximate reasoning in classical logic,
and develops expert systems based on fuzzy information and approximate reasoning;

• Fuzzy system, which contains fuzzy control and fuzzy methods in signal processing
and communication;

• Uncertainty and information, which is used to analyze various uncertainties;
• Fuzzy decision, which uses soft constraints to consider optimization problems.

The development of fuzzy theory has been close to more than 50 years, and the scope of application
is very wide. From the practical application point of view, the application of fuzzy theory is mostly
concentrated on fuzzy systems, especially focusing on fuzzy control. There are also some fuzzy expert
systems for medical diagnosis and decision support. Since fuzzy theory is still a new thing from the
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perspective of theory and practice, we expect that, as the fuzzy field matures, more reliable practical
applications will emerge.

In this paper, we propose a data fusion method based an improved genetic algorithm in the
data layer, aiming at reducing a large amount of redundant information generated in wireless sensor
networks, improving the accuracy of information collection, and enhancing the stability of the system.
In the greenhouse environment based on wireless sensor networks, the main contributions of our
proposed data fusion scheme are as follows:

• Using the cubic exponential smoothing method, data preprocessing is performed on the raw data
collected by the sensor nodes, and the abnormal data generated by various factors are eliminated,
and the authenticity and reliability of the data are improved;

• For the processed data, the data fusion algorithm proposed in this paper is used for data-level
fusion. On the one hand, setting the trust function to exponential form avoids the absolute
degree of mutual trust between data and makes the fusion result more accurate. On the other
hand, the crossover and mutation operations in the traditional genetic algorithm are improved,
the implementation efficiency of the algorithm is improved, and the data fusion accuracy is
further improved, and can meet the requirements of high precision, low power consumption, and
real-time performance of information collection in a greenhouse environment based on wireless
sensor networks.

In the next section, we will present the research status of data fusion in wireless sensor networks.
The third part describes the multi-sensor data fusion structure model. The fourth part introduces the
data preprocessing method based on the cubic exponential smoothing method. The fifth part proposes
a multi-sensor data fusion algorithm based on trust and improved genetics. The sixth part verifies
the quasi-determination and stability of the algorithm through simulation. The seventh part is the
conclusion of this paper.

2. Related Work

Zhang Yulin et al. [12] adopted an improved BP weight balance algorithm, based on wavelet
neural networks to fuse measurement data based on feature level [13], and provided data fusion
results to decision and judgment, which improved learning speed and calculation accuracy. However,
the structure is complicated, the operation is cumbersome, and the dimensionality disaster is easily
generated. Wang Haitao et al. [14] proposed a quadratic data fusion algorithm based on trust degree,
which shows certain advantages in the case of extreme data fusion. In the literature [15], the author
proposed a data fusion algorithm based on arithmetic means weighting, which has a fast calculation
speed but has poor anti-interference ability and low fusion precision. Yager [16] proposed a data
fusion algorithm based on support degree function, which does not require prior probability statistical
knowledge [17]. Only the sensor data at the current time is needed to calculate the optimal fusion value.
The disadvantage is that historical data cannot be used, and low fusion accuracy. Zhang et al. [18]
used adaptive weighting method, and Cai Zhenjiang et al. [19] use to the mean-based batch estimation
method for data fusion, without any prior knowledge of sensor measurement data, objectively reflecting
the reliability of each sensor, fusion accuracy higher. However, the observation error required for
sensor variance estimation by adaptive weighting method must be zeromean stationary noise.[20], and
improper selection of sensor grouping based on batch estimation will affect the final fusion effect [21].
Kalman filtering has also been widely used in data fusion, but there are many serious problems. On
the one hand, the increase in the number of sensor nodes increases the number of faults, and, when a
sensor node fails, it will contaminate the final fusion result: in terms of its requirements, the state space
model of the system is strict, and the accuracy of the model directly affects the data fusion effect [22,23].
Collotta et al. [24] adopted a data fusion scheme based on fuzzy aggregation theory. Although fusion
precision is improved, the method can only aggregate accurate data and cannot process complete
data. Ziteng Wen et al. [25] proposed a robust data fusion algorithm for data distortion, data loss,



Sensors 2019, 19, 2139 4 of 15

and signal saturation during infrared flame detection. The algorithm combines Radial Basis Function
(RBF) neural network and Takagi Sugeno (TS) fuzzy model, and the experimental data collected by
the three-channel infrared flame detector is used to verify the robustness of the proposed method.
The experiment results show that the convergence rate, accuracy, and generalization ability of the
proposed method improved are compared with the traditional RBF neural network with TS fuzzy
model in [26] and the GA-BP (Genetic Algorithm BackPropagation model in [27]. D. Xu et al. [28] used
genetic algorithms and partial least squares regression (GA-PLSR) to select feature bands to reduce
data redundancy and achieve rapid measurement of soil properties. Juan Wu et al. [29] proposed a
hybrid data fusion scheme based on a least squares support vector machine (LS-SVM) regression model
and an adaptive neural fuzzy inference system (ANFIS) decision model. The experimental results
show that the high-precision prediction results make the hybrid fusion scheme a reliable and effective
method for intelligent control of tobacco. Aiello et al. [30] used decision-level data fusion algorithms
to gather information from wireless sensor networks, and aggregated information from all sensors
using most rules to make decisions about the possible risks of pest disease. The experimental results
show that, by monitoring climatic conditions, the potential risks of pests can be discovered and how
decisions can be made to prevent the spread of pest diseases. Kostas et al. [31] proposed a real-time
data fusion mechanism based on multivariate sensor data streams, which are used to aggregate context
data streams in context theory while detecting and eliminating outliers. In addition, the time series is
used to predict the future aggregated value, and finally the context fusion value and the predicted value
are input to the type-2 fuzzy inference system to obtain high-accuracy event recognition. Liu et al. [32]
applied a data fusion method to health monitoring systems and developed a new data-level fusion
model. The model fuses the information of multiple degraded signals to construct a comprehensive
health index, which solves the problem of predicting when multiple sensors simultaneously monitor
the health status of degraded units.

Regarding the issue above, this paper firstly uses the cubic smoothing method to preprocess
the raw data collected by the sensor nodes. According to the fuzzy set theory, a multi-sensor data
fusion algorithm based on exponential trust degree is proposed, combined with the improved genetic
algorithm, the fusion model is optimized. By adjusting the weight to reduce the error between the
measured value and the real value, the fusion precision is improved, and the multi-sensor data fusion
of the greenhouse WSNs environmental monitoring system is realized.

3. Multi-Sensor Data Fusion Structure Model

The greenhouse WSNs system consists of the terminal node, sink node, and regional gateway, the
networking is completed using a star structure. The terminal node is responsible for collecting sensor
measurement information, the sink node mainly undertakes data receiving and forwarding tasks, and
the regional gateway implements data exchange with the background server and management of the
wireless networks.

The data fusion structure model based on the greenhouse WSNs system is shown in Figure 1.
Firstly, the data collected by the sensor nodes is sent to the regional gateway through the sink node,
and the original data is smoothed by the cubic exponential smoothing method at the gateway, and
the abnormal data and the noise data are eliminated, thereby improving the anti-interference of the
system. Datalevel fusion using a trust degree-based data fusion algorithm. According to the defined
exponential trust function, the degree of trust between the smoothed data is quantified, and the degree
of trust of each smoothed data is measured by the trust matrix to allocate reasonably. The optimal
weight ωi of each sensor node in the fusion process is obtained by the expression of data fusion
estimation. If the degree to which a sensor is trusted by other sensors is greater, the the impact of the
data collected by this sensor on the fusion results greater. Finally, the improved genetic algorithm is
used to optimize the fusion result to further improve the fusion precision, thus achieving multi-sensor
data fusion.
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Figure 1. Greenhouse WSNs system data fusion structure model diagram.

4. Data Preprocessing Based on Cubic Exponential Smoothing

The greenhouse environment parameters generally change slowly, and the real value of the sensor
can be considered to remain unchanged for a short period of time. Data acquisition is subject to sensor
accuracy, complex environmental factors, and random faults (such as sensor node damage, energy
exhaustion), so the raw data collected is preprocessed.

The traditional data smoothing method mainly adopts a moving average. It is considered that the
latest N-phase data has the same influence on the future value, and is weighted by 1/N. The data before
the N-phase has no effect on the future value, and the weight is 0. However, the weights of the second
and higher moving averages are not 1/N, and the higher the number of times, the more complex the
structure of the weights, but the symmetric weights are always maintained, that is, the weights of the
two ends are small, and the middle term the weight is large and does not conform to the dynamics of
the general system. However, the impact of historical data on the future of the greenhouse environment
on future values is decreasing over time. Therefore, the exponential smoothing method is used to
process the measured values of each period, and the weighted average is used as the predicted value
in chronological order. This data processing method is more practical and has a simple recursive form.

Since the variation of the greenhouse environmental parameters (temperature, humidity,
illumination, conductivity, etc.) shows a quadratic curve trend, it is more appropriate to use the cubic
exponential smoothing method. The recursive calculation formula is

S(1)
t = αxi(t) + (1− α)S(1)

t−1
S(2)

t = αS(1)
t + (1− α)S(2)

t−1
S(3)

t = αS(2)
t + (1− α)S(3)

t−1

, (1)

In Formula (1), where α is the weighting coefficient, 0 < α < 1, xi(t) is the data collected by
sensor node i at time t, S(1)

t , S(2)
t , S(3)

t is first smoothing value, a secondary smoothing value, and a
cubic smoothing value of the data collected by the sensor i at time t, respectively. When exponential
smoothing is performed, the choice of weighting coefficients is very important. The size of α is
proportional to the correction range, and the number of historical data participating in the average is
controlled. Considering that the greenhouse environmental data sequence is not very volatile and is
relatively stable, the value of α should be set in the range of 0.1 to 0.3 to reduce the correction range, so
that the smoothed value contains historical data for a long time. With regard to the determination of
the initial value S(1)

0 , S(2)
0 , S(3)

0 of the Formula (1), when the historical data is large (more than 20), the
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initial value has little influence on the future predicted values. Therefore, this paper takes the average
of the five historical data before the time series as the initial value.

5. Greenhouse WSNs Data Fusion Algorithm Based on Trust Degree and Improved Genetics

5.1. Trust Degree Function

For the data uncertainty problem in the multi-sensor environmental monitoring system, the
degree of credibility of the fused data must be determined first in the data fusion process. It is assumed
that a plurality of sensors measures the same parameter, and xi and x j respectively represent the cubic
exponentially smoothed data measured by the i-th sensor and the j-th sensor at the same time. If
the authenticity of xi is higher, the degree to which xi is trusted by the rest of the data is higher. The
so-called xi being trusted by x j, that is, from the perspective of x j, xi is the possible degree of real data,
and the degree of trust between multi-sensor measured data is called trust degree [33].

We further quantify and process the trust degree between smoothed data, a trust degree function
bi j is defined to indicate the extent to which xi is trusted by x j. According to the definition of trust
degree, we get bi j = f

(∣∣∣xi − x j
∣∣∣) i, j = 1, 2, . . . , n, f () is a continuous descending function, 0 ≤ f () ≤ 1.

This paper defines the trust degree function bi j as the form of an exponential function. We define

bi j =

{
e−|xi−x j |

∣∣∣xi − x j
∣∣∣ ≤M

0
∣∣∣xi − x j

∣∣∣ > M
. (2)

It can be seen from the definition form of the Formula (2) that the smaller the value of
∣∣∣xi − x j

∣∣∣ is,
the larger the bi j the greater the mutual trust between the data xi and x j. Since the exponential function
bi j monotonically decreases from 0 to 1 on

∣∣∣xi − x j
∣∣∣ ∈ [0,+∞], the property that the trust function

should have is satisfied. In practical applications, when the value of
∣∣∣xi − x j

∣∣∣ exceeds the set upper
limit value M (M > 0), it can be considered that the two data no longer trust each other, and, at this
time, bi j = 0.

In Formula (2), bi j is defined as an exponential function form that satisfies the fuzzy property,
which not only makes full use of the advantages of the range of membership function in fuzzy theory,
but also avoids the absolute degree of mutual trust between data [34]. It is more in line with the
authenticity of the actual problem, making the fusion result more accurate and stable [35].

In this paper, we set n sensors to measure the same parameter at the same time, and the trust
matrix B is established according to the trust function bi j between the data.

B =


b11 b12

b21 b22

· · · b1n
· · · b2n

...
...

bn1 bn2

...
...

· · · bnn

 (3)

For the i-th row element in B, if the value of
∑n

j=1 bi j is large, it indicates that the i-th smooth data
is trusted by most sensors; conversely, the i-th smooth data is less likely to be real data.

5.2. Trust Degree based Data Fusion Model

The weight of the i-th smoothed data xi in the fusion process is represented by wi. Since the size
of wi reflects the comprehensive trust degree of other smooth data pairs xi, the weighted sum of xi can
be weighted by wi to obtain the expression of data fusion.

Ŷ =
n∑

i=1

wixi i = 1, 2, . . . , n, (4)

In Formula (4), where the weight coefficient wi of xi satisfies
∑n

i=1 wi = 1, 0 ≤ wi ≤ 1.
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In the trust degree matrix B, the trust degree function bi j only indicates the degree of trust of
xi to x j, and does not reflect the degree of trust of all smooth data in the system to xi, and the true
degree of xi is actually synthesized by bi1, bi2, . . . , bin to reflect. Therefore, wi should synthesize all the
information about each subsystem bi1, bi2, . . . , bin in the trust degree system of xi, and needs to find a
set of non-negative numbers a1, a2, . . . , an, so that

wi = a1bi1 + a2bi2 + anbin i = 1, 2, . . . , n. (5)

According to the Formula (3), the Formula (5) is rewritten into a matrix form of W = BA. Where
W = [w1,w2, . . . , wn]

T, A = [a1, a2, . . . an]
T. Since bi j ≥ 0, the trust matrix B is a non-negative matrix,

and there is a maximum eigenvalue λ (λ > 0), which make it satisfy

λA = BA. (6)

Calculate λ and the corresponding feature vector A, and satisfy the condition of component
ai > 0(i = 1, 2, . . . , n) in A, and bring λA = BA into W = BA. We get

W = λA. (7)

Formula (7) can be used as a measure of the degree of integrated trust between smoothed data,
that is wi

w j
= ai

a j
, i, j = 1, 2, . . . n. Considering that wi should satisfy the condition that the weighted sum

is 1, normalize the wi to obtain

wi =
ai

a1 + a2 + · · ·+ an
. (8)

Bring Formula (8) into Formula (4), and get the final result of all smooth data fusion estimates:

Ŷ =

∑n
i=1 aixi

a1 + a2 + · · ·+ an
. (9)

5.3. Optimize Fusion Results with Improved Genetic Algorithms

Genetic algorithm (GA) is a global optimal algorithm based on the principle of natural selection and
genetic evolution. Use operating such as selection, crossover, and mutation to combine chromosomes
to achieve continuous update of chromosomes, follow the principle of, survival of the fittest and evolve
from generation to generation, and finally get the optimal solution. The standard genetic algorithm
has the following operations: the generation of the initial population, calculate of the fitness of each
individual, the selection of right individuals according to the principle of survival of the fittest, the
selection of excellent individuals, pairwise matching, through random crossover of their chromosome
genes, and random matching after mutating the genes of certain chromosomes, is generated of the next
generation population, and, in this way, is evolved of the population from generation to generation
until the evolution termination condition is satisfied.

As one of the modern optimization algorithms, a genetic algorithm is characterized by the
ability to jump out the optimal local solution with probability 1 for the nonlinear extremum problem,
and then find the globally optimal solution, which is based on the intersection and variation in the
algorithm. In the structure of traditional genetic algorithms, mutations are carried out on the basis of
crossover, emphasizing the cross-action, and thinking that variation is only a biological background
mechanism. Crossovers are usually divided into breakpoint intersections, multipoint intersections,
and uniform intersections. Interruption point intersections randomly select a breakpoint in the
gene sequence and then exchange all chromosomes at the right end of the parental breakpoint. In
mutation operations, mutation operators are generally implemented using random variations of the
Gaussian distribution [36,37]. In recent years, some scholars have tried to use the random sequence
of Cauchy distribution to achieve variation [38], and hope to achieve a broader range of variation
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through the broad two-wing characteristics of Cauchy distribution, in order to find the optimal global
solution [39]. Chellapilla [40] theoretically analyzed the local convergence of the Cauchy distributed
random mutation evolution algorithm, and further combined the two, using the linear superposition
of the two distributions, but the simulation results show that the algorithm improvement effect is not
apparent. Wu Xiangxing et al. [41] regarded biological evolution as randomness plus feedback and
pointed out that the randomness is mainly caused by the internal factors of the system, rather than by
the random disturbance of the external environment. The chaotic system appears as random in its
chaotic domain, which is a reflection of the internal randomness of the system, which is different from
the external random characteristics.

Based on the above problems, this paper improves the standard genetic algorithm. The steps of
the improved genetic algorithm are as follows:

Step 1: Encoding
Using decimal coding, the weights wi in Formula (8) are composed into random numbers

w1, w2, . . . , wn, and the random number column is taken as a chromosome, where 0 < wi <
1, (i = 1, 2, . . . , n), w1 = 0, wn = 1; each random number column corresponds to an individual in
the population.

Step 2: Set the initial population
This paper uses the improved circle algorithm to set a better initial population, i.e., for the

initial circle,

C = π1 · · ·πu−1πuπu+1 · · ·πv−1πvπv+1 · · ·πn, 1 ≤ u ≤ v ≤ n, 1 ≤ πu ≤ πv ≤ n.

Exchange the order of u and v. The new path at this time is:

π1 · · ·πu−1πvπv−1 · · ·πu+1πuπv+1 · · ·πn,

Recorded as
∆ f =

(
dπu−1πv + dπuπv+1

)
−

(
dπu−1πu + dπvπv+1

)
(10)

Step 3: Fitness assessment
The absolute value of the error between the fusion value Ŷand the real value Y is defined as the

objective function, that is,

ρ =
∣∣∣Y − Ŷ

∣∣∣ = ∣∣∣∣∣∣
∑n

i=1 x̂i

n
−

∑n
i=1 aixi

a1 + a20 + · · ·+ an

∣∣∣∣∣∣. (11)

The objective function in Formula (11) is taken as the fitness function. Therefore, it is transformed
into the minimum problem of finding ρ.

Step 4: Cross operation
In this paper, we adopt an improved crossover. The specific design is as follows: first of all, the

parental individual is paired according to the principle of “door-to-door” that is parent sort by the fitness
function value. Usually, the objective function is used as the fitness function, and the objective function
value is small. An individual with a little objective function value is paired with a small individual,
and an individual with a large objective function value is paired with a large individual. The chaotic
sequence is then used to determine the location of the intersections, and finally cross the identified
cross terms. For example, (x1, x2) pairing, their chromosomes are x1 = ω1

1ω
1
2 · · ·ω

1
n, x2 = ω2

1ω
2
2 · · ·ω

2
n,

using Logistic chaotic sequence x(n + 1) = 4x(n)(1− x(n)) produces a positive integer between 1 and
n. Specific steps are as follows:

Take a random initial value of (0,1) and use x(n + 1) = 4x(n)(1− x(n)) to iterate once to generate
a chaotic value on (0,1), and save the above chaos value. The value is used as the initial value of the
chaotic iteration to generate the next-generation cross term, and then the initial value is multiplied by
the number n of sensor nodes, and finally rounded to obtain the crossover operator pc. Obviously, this
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single-point crossover has little change to the original solution, which can weaken the jitter problem in
the optimization process generated by the standard genetic algorithm in practical applications, and
further improve the convergence accuracy of the algorithm.

Step 5: Variation
Mutation is also a means to achieve group diversity, and it is an essential guarantee for jumping

out of local optimum and making global optimization. The mutation operator pm used in this paper is
designed as follows: First, according to the given mutation rate (generally, the probability of variation
is small, this paper chooses 0.01), randomly select the integer between 1 and n, mutating genes at the
corresponding positions of these two numbers. Perform mutations with the current gene value as the
initial value, and iterating using the chaotic sequence x(n + 1) = 4x(n)(1− x(n)) to get the new gene
value after the mutation, thereby obtaining a new chromosome.

Step 6: Choose
The purpose of the selection is to select the right individuals from the current group and make

them as the parent generation and breed descendants for the next generation. The genetic algorithm
reflects Darwin’s survival of the fittest principle through the selection process. This paper sets the
number of individuals in each generation group to be equal, and arranges the individuals in the
population according to the degree of fitness, and use the roulette Wheel Selection to select. The
probability that each individual is selected is proportional to the value of its fitness function value.

After the selection is completed, the above steps 4~6 are repeated, and when the number of
iterations is reached, the evolution is terminated, and the optimal estimation value of the objective
function is obtained.

The whole process of Algorithm 1 about improving the genetic algorithm following is the:

Algorithm 1 Improved genetic algorithm.

1. Initialization: using a decimal coding strategy, using the random number sequence w1, w2, . . . , wn

composed of weights wi as the chromosome, the number of iterations G = 500;
2. Set the initial population size using the improved circle algorithm;
3. Initial circle C = π1 · · ·πu−1πuπu+1 · · ·πv−1πvπv+1 · · ·πn;

while ∆ f < 0 do
if New path,Old path do

Exchange the order between u and v to get a new path:
π1 · · ·πu−1πvπv−1 · · ·πu+1πuπv+1 · · ·πn

else
Original path

end if
end while;

4. The objective function ρ is used as a fitness function;
5. for G ≤ 500 do;
6. Adopt improved crossover:

sort Objective function ρ;
The crossover operator pc is determined by using Logistic chaotic sequence

x(n + 1) = 4x(n)(1− x(n))
According to the set mutation rate, the chaotic sequence x(n + 1) = 4x(n)(1− x(n)) is used to obtain the

new gene value after mutation, thereby obtaining a new chromosome.
7. Use the "Roulette Wheel Selection" to choose;
8. end for.

This paper mainly improves the crossover and mutation operations in the standard genetic
algorithm. Firstly, the variation is separated from the intersection, making it an independent and
cross-parallel optimization operation, so that the genetic algorithm can also be realized by parallel
computing, Algorithm implementation efficiency. Secondly, crossover and mutation operations with
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different intensity of change are used. In the process of genetics, respectively chaos link to genetics; in
the cross-operation, the individual is paired by the principle of “door-to-door”, the chaotic sequence
is used to determine the intersection, and the weakest single-point intersection is implemented to
ensure the convergence accuracy of the algorithm, weaken and avoid the chattering problem in the
optimization process caused by excessive cross strength; in the mutation operation, chaotic sequences
are used to mutate multiple genes in the chromosome to avoid algorithm premature maturity.

6. Tentative and Analysis

6.1. Tentative Method

The tentative was carried out on a modern farm where the crops were lettuce. The topological
structure of the greenhouse WSN system is shown in Figure 2. The farmland test base is 40 m long and
40 m wide. The clustering method is adopted. 16 temperature and humidity acquisition modules are
evenly deployed in the monitoring area as terminal nodes, and one sink node is placed in the center of
every four terminal nodes. The regional gateway is arranged at the center of the area, and the height
from the ground is 1 m. Considering that the area is relatively small, the star network structure is
used for networking. The temperature and humidity acquisition module consists of temperature and
humidity composite sensor DHT11 and ZigBee-based wireless transmission module CC2530. CC2530
is also used as the sink node. The gateway use Samsung’s S5P4418 chip as the core processor.

Figure 2. Greenhouse WSNs system topology diagram.

Considering that the environmental data in the greenhouse is changing relatively slow, 16
temperature and humidity nodes collect data every hour. The collection period is from 6:00 to 22:00 on
15 January 2019, and 16 data sets are collected for each node. Through the gateway, the actual data
collected by the sensor node, the data after three exponential smoothing processing, and the data after
fusion optimization are sent to the background server for storage. Data analysis is performed using
MATLAB (R2018a). The configuration of the server is as follows: CPU is Intel(R) Core(TM) i5-7300HQ
(2.5 GHz), RAM size is 8 G, and the operating system is Windows10 Professional.
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6.2. Data Preprocessing Effect

Taking the temperature data collected by a certain temperature and humidity sensor node as an
example, Figure 3 is the raw data and the effect after the cubic exponential smoothing (smoothing
coefficient α is taken as 0.1, 0.2 and 0.3 respectively), and the error bar of the alpha value. It can be
seen that the original data fluctuates greatly, and the temperature curve after three times of cubic
smoothing is smoother, and the data fluctuation is small. Within the allowable range of error, the data
after the cubic exponential smoothing processes can better represent the original data. When α is 0.2,
the smoothing effect is best, but there is an apparent hysteresis deviation; when α is 0.3, the smoothed
data better track the trend of data, but the volatility is larger; when α is 0.1, the smoothing effect is
better, and the hysteresis is not large, so it is more appropriate to take α 0.1 from.

Figure 3. Effect of raw data and three exponential smoothing.

6.3. Data Fusion and Optimization Results

After data preprocessing, 16 sets of smooth temperature data sequences are obtained. Firstly, the
degree of trust between the smoothed data xi and x j is calculated by the set upper limit value M, taking
M = 0.5. When

∣∣∣xi − x j
∣∣∣ ≥ 0.5, it is considered that the two data no longer trust each other, at this time

bi j = 0. Thus, a 16 × 16 trust degree matrix B is obtained, and 16 sets of smoothed data at the same
time (Here, we take 6:00) are calculated according to Formula (6), thus the maximum eigenvalues of
the trust degree matrix of 16 sets of smoothed data and the corresponding feature vector are obtained.

λ = 13.2342
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The comprehensive support degree of the first set of data is obtained by Formula (8).
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In the same way, the comprehensive support degree of the remaining 15 sets of smoothed data is
calculated, and all of them are verified to satisfy the condition of

∑n
i=1 wi = 1.

Finally, the genetic algorithm improved by this paper is used to optimize the fusion result, reduce
the error between the fusion estimation value and the real value, and bring the obtained weight W into
Formula (11) to get the fitness function, that is, the objective function.

ρ =
∣∣∣Y − Ŷ

∣∣∣ = ∣∣∣∣∣∣
∑n

i=1 x̂i

n
−

∑n
i=1 aixi

0.0651 + 0.0717 + · · ·+ 0.0583

∣∣∣∣∣∣. (12)
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Firstly, the initial population size is set to 50, and the number of iterations is 500. The crossover
operator and mutation operator are determined by the improved method in this paper. We use MATLAB
to calculates the optimized fusion estimation value. To avoid contingency, this paper conducted 100
experiments, taking an average of 100 sets of operation results, and plotting the improved fitness
(objective function) curve after optimization. The results are shown in Figure 4.

Figure 4. Optimized fitness curve.

The optimal estimate after 500 iterations Ŷ= 0.8172 and the error between the real value and the
optimal estimate can be obtained by using Formula (12) the ρ = 0.0043. It can also be seen from Figure 4
that, after number is 50 times iterative evolutions, the average fitness and the maximum fitness of the
population have mutually similar patterns, indicating that the convergence of the algorithm proceeds
smoothly and there is no oscillation. Under the premise, individuals with the greatest fitness have not
evolved for several consecutive generations, indicating that the population has matured and reached
the evolutionary requirements.

6.4. Performance Comparison

In order to analyze and compare the performance of different fusion algorithms, this paper
examines and analyzes the fusion error and execution time. The genetic algorithm improved by this
paper is used to optimize the fusion results of two commonly used fusion algorithms, arithmetic
average method, and adaptive weighting method. The initial population size and the number of
iterations are the same as those set previously. One hundred trials as before, taking the average and
the fusion errors of the three algorithms are calculated, and the curve is drawn, as shown in Figure 5.

Figure 5. Fusion error curve obtained by three algorithms.
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After 500 iterations, the fusion errors based on Trust degree Improved Genetic Algorithm (F-IGA),
Arithmetic Mean Improved Genetic Algorithm (AA-IGA), and Adaptive Weighting Improved Genetic
Algorithm (AW-IGA) are available. See Table 1.

Table 1. Fusion error of three algorithms.

Algorithm F-IGA AA-IGA AW-IGA

Fusion error (◦C) 0.0043 0.0107 0.0076

From Table 1, we can see that the fusion errors of the three algorithms F-IGA, AA-IGA, and
AW-IGA are 0.0043, 0.0107, and 0.0076, respectively. The fusion accuracy based on the F-IGA algorithm
is 2.49 times that of the AA-IGA algorithm and 1.78 times that of the AW-IGA algorithm. It can be
seen that, with the data fusion algorithm based on trust degree-improved genetics proposed in this
paper, the fusion error is significantly reduced, which effectively improves the fusion precision and
system stability.

MATLAB’s profiler using to calculate the average running time of each of the three algorithms
running 100 times, the results are shown in Table 2.

Table 2. The average running time of the three algorithms.

Algorithm F-IGA AA-IGA AW-IGA

Average running time (s) 21.274 60.155 46.491

It can be seen from Table 2 that the average running time of the F-IGA algorithm is 64.63% shorter
than that of the AA-IGA algorithm, which is 54.24% shorter than the AW-IGA algorithm, which greatly
improved the performance of the algorithm and effectively reduces the energy consumption of the
sensor node, extends sensor life.

7. Conclusions

Aiming at the problem of low precision and poor stability of multi-sensor data fusion, this paper
proposes a data fusion algorithm based on trust degree and improved genetics, and deploys WSN
system in a modern greenhouse environment for field test. The most apparent findings to emerge from
this study is that: (1) Three-index smoothing can effectively reduce data fluctuations and improve the
stability of the greenhouse WSNs system. (2) Compared with the arithmetic average and adaptive
weighted data fusion algorithms, the data fusion algorithm based on trust degree and improved
genetics has a significantly shorter average running time and higher data fusion precision. In summary,
the data fusion algorithm proposed in this paper has good applicability and can meet the requirements
of data fusion of greenhouse WSNs system.
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