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Abstract: Noise pollution is a problem that affects millions of people worldwide. Over the last
few years, many researchers have devoted their attention to the design of wireless acoustic sensor
networks (WASNs) to monitor the real data of continuous and precise noise levels and to create
noise maps in real time and space. Although WASNs are becoming a reality in smart cities, some
research studies argue that very few projects have been deployed around the world, with most of
them deployed as pilots for only days or weeks, with a small number of nodes. In this paper, we
describe the design and implementation of a complete system for a WASN deployed in the city of
Linares (Jaén), Spain, which has been running continuously for ten months. The complete system
covers the network topology design, hardware and software of the sensor nodes, protocols, and a
private cloud web server platform. As a result, the information provided by the system for each
location where the sensor nodes are deployed is as follows: LAeq for a given period of time; noise
indicators Lden, Lday, Levening, and Lnight; percentile noise levels (LA01T, LA10T, LA50T, LA90T, and
LA99T); a temporal evolution representation of noise levels; and the predominant frequency of the
noise. Some comparisons have been made between the noise indicators calculated by the sensor
nodes and those from a commercial sound level meter. The results suggest that the proposed system is
perfectly suitable for use as a starting point to obtain accurate maps of the noise levels in smart cities.

Keywords: noise monitoring; real-time noise mapping; wireless sensor networks

1. Introduction

Noise pollution is a problem that affects millions of people worldwide. Different studies have
shown that it is currently one of the greatest environmental threats to people’s health, leading
to increased risk of cardiovascular disorders, hypertension, sleep disturbance, stress, etc., and it is
negatively influencing productivity and social behavior [1]. According to the World Health Organization
(WHO), noise pollution is responsible for 50,000 heart attacks each year in Europe. Moreover, 1.8% of
total heart attacks can be attributed to traffic noise levels greater than 60 dBA. In the particular case
of Andalusia (Spain), in the studies carried out for the last Ecobarometer of Andalusia [2], citizens
considered noise pollution as one of the main environmental problems in cities and towns that has
caused a considerable degradation in the quality of life.

Nevertheless, until the 1990s, policies to reduce environmental noise always had a lower priority
than policies regarding the pollution of water or air. In 1993, The Fifth European Commission (EC)
Environmental Action Program [3] marked the beginning of attention being paid to the problem of noise
pollution, and noise reduction programs began to be developed. The first step in the development of this
program was in 1996, when the EC published the first policy to reduce environmental noise—“Future
noise policy: European commission green paper” [4].
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The Environmental Noise Directive 2002/49/EC (END) [5] required European member states to
provide and publish accurate mappings of noise levels and action plans every five years throughout
large agglomerations, all major roads, railways, and major airports.

Currently, noise maps can be generated with the help of noise mapping software [6,7], based
on numerical simulations that take into account estimated parameters (such as traffic flow, the type
of road, rail, or vehicle data), emission models of transportation and industrial noise sources, noise
propagation patterns, and the urban topology.

However, the END required that noise maps be based on empirical measures. Moreover, in 2006,
the EC working group “Assessment of Exposure to Noise” (WG-AEN) published a document called
“Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise
Exposure” [8], which strongly recommended obtaining accurate and real data on noise levels.

For this task, professionals have traditionally carried out measurements using instruments for
noise collection and processing, called sound level meters, placed in a mesh pattern in the area to be
mapped. They measure the noise using the A-weighting equivalent continuous sound pressure level,
the LAeqT indicator [9].

However, this procedure has a series of disadvantages inherent to the technology used, such as
the impossibility of making continuous measurements for long periods of time (weeks/months), the
lack of knowledge of the situation in real time, and the inability to take preventive or corrective actions
in real time. This traditional method also presents many technical difficulties for complying with some
regional legislations [10].

To solve, in part, these problems and inconveniences, in recent years, different studies have
proposed the use of Internet of Things (IoT)-based technologies [11].

The potential applications of IoT are numerous and diverse. In the EC documents relating to
IoT [12–14], 65 IoT scenarios were identified and presented, grouped into 14 domains. One of these
domains is the so-called smart city, defined as “a place where traditional networks and services are
made more efficient with the use of digital and telecommunication technologies for the benefit of its
inhabitants and business” [14]. One of the trendiest scenarios in smart cities is identified as noise urban
maps—sound monitoring in bar areas and centric zones in real time.

Wireless acoustic sensor networks (WASNs) [15] play a key role in this scenario of a smart city.
Over the last few years, many researchers have devoted their attention to the design of these types of
networks to monitor the real data of continuous and precise noise levels, and create noise maps in
real time and space. Many research works and patents have been published [16–31], but very few real
projects have been developed based on WASN approaches [32–37].

In the literature [37,38], the authors present two reviews of the most relevant WASN-based
approaches developed to date focused on environmental noise monitoring in smart cities. In the
literature [37], WASNs have been classified according their data quality, scale, longevity, affordability,
and accessibility. On the other hand, in the literature [38], another classification is presented, where the
sensor nodes are divided into three main categories, according to their measurement accuracy, cost,
and computational capacity.

Although WASNs are becoming a reality in smart cities, in the literature [38], the authors argue
that very few projects have been deployed around the world, and they conclude that further research
should be conducted to improve the performance of WASNs in real-life operation conditions. They
highlight the project DYNAMAP, the objective of which is the deployment of a low-cost WASN in two
different cities, Milan and Rome [36], to monitor road traffic noise.

In this work, we present the design and implementation of a complete low-cost system for a
WASN deployed in the city of Linares (Jaén), Spain, which has been running continuously for ten
months. The complete system covers the hardware of the sensor nodes, signal processing for noise
monitoring in the sensor nodes, network topology design, protocols, and the design of a private cloud
platform with an intuitive graphical user interface to show clear and comprehensible information to
the general public.
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As a result, a complete system has been obtained to provide the information, shown in Table 1, for
each of the locations where the nodes are deployed.

Table 1. Information provided by the system.

Parameter Description

LAeqT A-weighting equivalent continuous sound pressure level
Lden Day–evening–night level
Lday A-weighted average sound level over the daytime period 07:00–19:00

Levening A-weighted average sound level over the evening period 19:00–23:00
Lnight A-weighted average sound level over the night period 23:00–07:00
LAmax Maximum A-weighted noise level during the measurement period
Feqmax Predominant frequency (Hz) of the noise

LA01T, LA10T, LA50T,
LA90T, and LA99T

Percentile noise levels, LAnT, which are defined as the A-weighted sound level that is
exceeded n% of the measurement time interval

In addition, along with this information, a map using the Google Maps platform Application
Programming Interface (API) is also displayed, representing the LAeq in each location.

Based on the two classifications presented in the literature [37,38], the system is characterized
by the following: (a) high data quality; (b) easily scalable to a large number of nodes; (c) can work
continuously for long periods of time; (d) affordability due to its low-cost equipment; (e) data
accessibility through a cloud web server; (f) the capacity to perform spectral analysis calculations,
compute LAeqT, and conduct real-time signal processing; and (g) high computational capacity and
low-cost equipment.

The remainder of the paper is structured as follows. Section 2 describes the complete system for
the WASN deployed in the city of Linares. The experimental results are provided in Section 3. Some
conclusions and future works are presented in Section 4.

2. The Design and Implementation of the Deployed WASN

This section describes all of the elements that make up the complete system for noise monitoring
in the city of Linares (Jaén)—the network topology design, the hardware and software of the sensor
nodes, protocols, and a cloud web server platform.

2.1. Design Considerations

The City Council of Linares, through the area of urban planning, established those locations of the
city that were considered the most critical from the point of view of noise pollution. Specifically, eight
locations were established, which mostly covered the entire downtown area. To these locations, we
decided to add one more, considered as noncritical. Therefore, in total, nine low-cost nodes have been
installed as measuring points. Table 2 and Figure 1 show the exact locations of these points.

Table 2. The critical places to be monitored.

Id Location Id Location

1 Andalucia Avenue 6 Cervantes Street
2 Ayuntamiento Square 7 Julio Burell Street
3 Isaac Peral Street 8 Ubeda Street
4 Santa Margarita Square 9 Noruega Street
5 San Francisco Square
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Figure 1. The critical locations identified for the measurement of acoustic noise in the city of Linares
(Jaén).

The City Council of Linares specified the existence of a corporate Wi-Fi network deployed in the
center area of the city, so that it was possible for the sensor nodes to transmit data. In addition, there
was the possibility of using a power supply permanently at all of the measuring points.

2.2. Distribution of the Sensor Nodes

The topology design of a data network determines the connections between the nodes or between
a node and a server. Because of the design considerations, we designed a network topology where
each sensor node can send the measurements directly to a central server, which is a cloud web server
in our case.

Because of the existence of the corporate Wi-Fi network that the City Council of Linares deployed
in the city, as well as the absence of power supply restrictions, we proposed using this Wi-Fi network
in all of the locations where this was possible. After analyzing the coverage, it was detected that, in
seven of the nine locations, it was possible to use said Wi-Fi network. However, in two locations
(nodes two and nine), there was no coverage. For these two locations, we decided to use 3G and
Sigfox technologies, respectively. The network topology for the proposed complete system is shown in
Figure 2.Sensors 2020, 20, x FOR PEER REVIEW 5 of 23 
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Sigfox [39] is a reliable, low-power solution based on a dedicated radio-based network to connect
sensors and devices, and it needs to continuously be on and emitting small amounts of data.

2.3. Hardware IoT Sensor Nodes

Typical IoT devices have constrained sensor resources, an actuator capacity, and local information
processing, and they are able to communicate data with servers on the Internet cloud platform.

With the design considerations indicated above, when it is possible to have a continuous power
supply, the chosen device is a standard hardware model (i.e., commercial sensor node) of the Arduino
platform. Specifically, it is the Arduino Due device [40], which is based on a 32-bit ARM core
microcontroller, and is an open-source platform designed for the development of solutions related to
sensor networks. The choice of this device is mainly due to its technical specifications, in terms of the
processor and the memory, which allow for the execution of a frequency domain-based algorithm to
calculate LAeqT in real time. This is not possible on other devices of the Arduino platform. However,
any other device with similar or better characteristics to the Arduino Due could be used, such as
Raspberry Pi.

The Arduino Due has the following technical specifications: Atmel SAM3X8E ARM Cortex-M3
processor (32-bit, clock speed of 82 MHz, 96 Kb of SRAM, and 512 Kb of flash memory), 54 I/O digital
ports, 12 input analog ports with a 12-bit resolution, and two output analog ports. Arduino Due
hardware uses standard components, and its software is based on C/C++.

Related to the communication hardware of the sensor nodes, we used the following:

• For sensor nodes one and three through seven: Arduino Ethernet Shield [41] and an antenna
MikroTiK SXT 2 [42]. We used this external antenna to ensure the existence of wireless coverage
for the sensor nodes, which were connected through a UTP cable to a RJ45 female connector
installed in the enclosure box. The power consumption was approximately 180 mA.

• For sensor node two: Arduino Ethernet Shield, a 3G router (model TL-MR3020 [43]), and a 3G
USB modem with an outdoor antenna. In this case, the power consumption was approximately
900 mA.

• For sensor node nine: an 868-MHz Sigfox module for Arduino [44], a communication shield, and
a 4.5-dBi antenna. The power consumption was approximately 125 mA.

All of the nodes were powered through passive Power over Ethernet (PoE), using 12-V 1-A power
adapters and PoE injectors. The electrical plugs were at a maximum distance of 20 m, and for that
distance, the voltage drop in the UTP cable was 0.9 V, so there was 11.1 V to power the Arduino,
enough for its operation.

The microphone used is based on a commercial design [45]. Each sensor node is equipped with
an electret microphone, 20–20 kHz (Figure 3). It is much more than just a microphone, because it
is integrated with an operational Maxim MAX4466 specifically designed for acoustic solutions (it
amplifies and filters the noise). The gain is adjustable via an integrated potentiometer. Moreover, the
microphones have a miniature foam windshield ball [46]. For the outdoor enclosure for the nodes,
we used IP66-rated outdoor aluminum enclosures for wireless platforms, such as StationBox ALU RF
elements [47]. Figure 3 shows some sensor nodes.

To the best of our knowledge, this system has one of the lowest economic costs per node, and this
aspect is very important when implementing WASNs with a large number of nodes. Table 3 shows the
costs of each node (tax not included). Costs can be more reduced by using compatible materials.
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Table 3. The cost of the sensor nodes.

Description Original Material Cost (€) Compatible Material Cost (€)

Wi-Fi Sensor Node 45 23
Wi-Fi Sensor Node + Antenna

MikroTiK SXT2 99 47

Sigfox Sensor Node 109 49
3G Sensor Node 90 48

2.4. Software Implemented in the Sensor Nodes for Noise Monitoring

For the measurement of acoustic noise and to integrate the calculated LAeqT into the sensor nodes,
it is necessary to design and implement an algorithm that runs on these nodes. In the previous
work [48], we presented a frequency domain-based algorithm to calculate LAeqT in real time adapted
to resource-constrained devices, such as wireless acoustic sensor nodes.

In this work, we improved the algorithm by introducing a new module to determine the frequencies
with a higher energy and their degree of importance with respect to background noise or less significant
frequencies. In this manner, we obtained the information from the predominant frequency of the
noise. The optimized architecture used by the algorithm consists of four functional blocks, as shown in
Figure 4.
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The sampling block is responsible for sampling the acoustic signal x(t). The IEC 60651 Type-2 SLM
acoustic standard [49], superseded by IEC 61672 [50], established the measurement of environmental
noise between 0–8 kHz, and the SLMs specified in the literature [50] are intended to measure sounds
generally in the range of human hearing. As is well known, in urban areas, the acoustic signal energy
is concentrated in a low-frequency region (<10 kHz). Based on this, we configured the Arduino Due
with a frequency-sampling rate, fs, of 33 kHz, by a software function with a resolution of 12 bits. Thus,
it is not possible to measure frequencies higher than 16.5 kHz. Related to the time-constant of the
integration or time capture, there are two time-weightings that have been internationally standardized,
namely: (a) slow response (S) of one second; and (b) fast response (F) of 125 ms.

The second block receives the audio samples from the first block. The algorithm is based on
a frequency analysis, which uses the discrete Fourier transform (DFT) to determine the frequency
spectrum of a segment of audio samples. Let us denote X[k] as the DFT of a windowed signal x[n], at
the digital frequencies 2πk/N radians, where N denotes the number of samples and k = 0, . . . , N − 1.
To determine the samples of the DFT, we use the following equation:

f (k) =
fs·k
N

. (1)

The difference between two consecutive samples is given by the following expression:

∆ f =
fs
N

. (2)

Regarding the CPU and memory requirements, this block is the most demanding. For a
computationally efficient implementation, we used the fast Fourier transform (FFT) to evaluate the
DFT. Some analyzers have been designed to determine the optimal FFT length and thus achieve
efficient implementation. Additionally, an exhaustive analysis has been performed using software
functions to the reduce memory requirements and the execution time. The FFT length depends on the
frequency-sampling rate chosen and the time capture (Tw), as follows:

N = fs·Tw (3)

Table 4 shows the FFT length for the two time-weightings that have been standardized and for the
frequency-sampling rate of 33 kHz.

Table 4. The sample length for a frequency-sampling rate of 33 kHz.

Frequency Sampling Rate Type of Response Time Capture Sample Length

33 kHz Fast 125 ms 4125
33 kHz Slow 1 s 33,000

Taking into account that the FFT is more runtime efficient if a base-two sample length is selected,
to reduce the execution time, we propose a length of 4096 samples (instead of 4125) for the fast response
and 32,768 samples (instead of 33,000) for the slow response. This means a slight decrease in the
time window at 124.1 ms for the fast response, and at 0.993 s for the slow response. Our proposal
is to perform an FFT calculation for the fast response only, which uses a time window of 124.1 ms.
This approximation of the time window produces an error of 0.7% (29 samples less than using a time
window of 125 ms), which could be considered as negligible. Larger FFT sizes provide a higher spectral
resolution, but take more resources to compute. A smaller window size means a shorter runtime, and,
therefore less resource consumption.

Once the frequency components of the acoustic signal are available, an A-weighted filtering is
implemented. This filtering stage allows for weighting of the different frequency components of the
acoustic signal, consistent with a typical human ear response. The mathematical function used to
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obtain the value of the attenuation depends on the frequency, and is given by the normative IEC
61672 [50], as follows:

( f ) = 10 log10

[
1.5623392

· f 4

( f 2+107.652652)( f 2+737.862232)

]
+

+ 10 log10

[
2.242881·1016

· f 4

( f 2+20.5989972)( f 2+12194.222)

] (4)

In the above equation, f is the frequency and A(f ) is the associated attenuation. However, some
resource-constrained devices have an anomalous behavior for math operations with large numbers.
Therefore, we propose the use of an equivalent expression to reduce the complexity of the mathematical
operations [51].

A( f ) = 2 + 20 log10(RA( f )) (5)

RA( f ) =
122002

· f 4

( f 2 + 20.62)
√
( f 2 + 107.72)( f 2 + 737.92)( f 2 + 122002)

Using Equations (1) and (2), we can determine the frequency for each sample of the FFT. After
applying the filter, the obtained signal is as follows:

XA[k] = A(∆ f ·k)·X[k] (6)

Finally, the last block computes the total energy of the weighted frequency components to obtain
the sound pressure levels (SPLs) in dBA. Using the Parseval’s relation [52], the total energy of the
waveform can be summed across all of its frequency components, as follows:

εx =
1
N

N−1∑
k=0

∣∣∣X[k]
∣∣∣2 (7)

Regarding the properties of the FFT, the samples have symmetry because they are complex
conjugates, as follows:

X
[N

2
+ k

]
= X∗

[N
2
− k

]
1 ≤ k ≤

(N
2

)
− 1 (8)

The input samples in the time domain are real values. In the frequency domain, they are
symmetrical from the sample N/2 (N is even). Therefore, we can calculate the energy of the signal
using only the first N/2 + 1 samples (filtered spectrum with A-weighting filter). The expression is
the following:

εx ≈
2
N

(N
2 )−1∑
k=1

∣∣∣XA[k]
∣∣∣2 + ∣∣∣XA[0]

∣∣∣2 + ∣∣∣XA[N/2]
∣∣∣2 (9)

Equation (9) is used to determine the total energy of the signal in the time capture. Taking Tw

seconds, the instantaneous average power of the signal is given by the following:

Px ≈
εx

Tw
(10)

To obtain the SPL in dBA, we applied the following expression:

SPL (dBA) = 10·log10(Px) + C (11)

where C is the calibration constant, which will be calculated in the calibration process.
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Calibration and Test Results

Before deploying the sensor nodes in the urban area, some tests were carried out in the lab and in
a street to verify the quality of the noise measurements. Figure 5 presents the lab scenario where we
used an Arduino Due with the microphone, a commercial Sound Level Meter PCE-353 (SLM) [53], and
one laptop with speakers. The SLM and the sensor node were connected to the laptop using a USB
connection. The sensor node and the SLM were deployed closely; the distance from the speakers to the
devices was 0.5 m.
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Figure 5. The scenario for indoor measurement tests.

First, the commercial SLM was calibrated using the Class-2 Sound Level Meter Calibrator PCE-SC
42, at one kHz and for an SPL of 94 dB. Later, to calibrate the sensor node, an acoustic signal of a 1-kHz
tone was created using math software. The volume of the speakers was raised until the SLM measured
94 dB, and the microphone gain was adjusted to give that measurement. Once both devices were
calibrated, an acoustic signal composed of white noise (30 Hz–20 kHz) was generated with three noise
levels of acoustic intensity: 60, 70, and 85 dBA. For each level, the LAeq indicator was calculated after
repeating the experiment 30 times. The duration of the acoustic signal was five seconds for each test.
Figure 6 shows the results for this experiment.
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Table 5 shows the average value of the 30 measurements of the LAeq indicator for each level
of acoustic intensity, and the absolute error (Diff) between the Arduino Due and the commercial
SLM measurements.
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Table 5. The Arduino Due measurements in the lab.

Intensity LAeq SLM (dBA) Diff Arduino Due (dBA)

Intensity 1 60.5 0.13
Intensity 2 70.3 0.14
Intensity 3 86.8 0.16

As can be observed, the differences between the Arduino Due and the SLM were lower than
0.2 dBA. For another test, we deployed the SLM and Arduino Due devices in an urban street. The
distance between the devices and street was approximately eight meters. The measurements were
made during one hour in daytime. Both devices calculated the SPLs each second, for four intervals of
15 min each. Table 6 shows the LAeq and the absolute error (Diff) between the SLM and Arduino Due
measurements. Figure 7 shows the location where the sensor and the SLM were located.

Table 6. The SLM and Arduino Due measurements in an urban street.

Interval LAeq SLM (dBA) LAeq Arduino (dBA) Diff (dBA)

Interval 1 60.59 60.71 0.12
Interval 2 60.01 60.90 0.89
Interval 3 60.85 61.44 0.59
Interval 4 61.15 61.70 0.55
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In this case, the differences between the Arduino Due and the SLM were lower than 0.9 dBA,
which represents a very good agreement.

Finally, we deployed the SLM and Arduino Due devices in the same urban street, but this time for
a full day. The results are shown in Table 7.

Table 7. The SLM and Arduino Due measurements in an urban street for a full day.

Device LAeq (dBA) Lday (07:00–19:00) Levening (19:00–23:00) Lnight (23:00–07:00)

SLM 56.90 57.60 58.90 53.10
Arduino Due 57.96 57.83 61.31 53.83

The differences between the Arduino Due and the SLM were approximately 1 dBA in the LAeq

measured. The maximum difference was in the period Levening, being 2.41 dBA. This is because the
dynamic range of the sensor is 44–105 dBA, and therefore, it cannot measure noise levels below 44 dBA.
Alternately, the LAmax measured with the SLM was 88.1 dBA, while that with the Arduino Due was
90.5 dBA. The results of the previous tests indicate that the software designed for the Arduino Due has
a good performance when we compare the differences between the acoustic measurements calculated
by the Arduino and those of the commercial SLM.
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2.5. Protocols and Platform Cloud Web Server

Many protocols have been specifically designed for communication between IoT devices, namely:
Message Queue Telemetry Transport (MQTT) [54], Constrained Application Protocol (CoAP) [55],
Advanced Message Queuing Protocol (AMQP) [56], Data Distribution Service (DDS) [57], etc. However,
the commonly used protocol for the Internet, Hyper Text Transfer Protocol (HTTP), is used in most
cases for IoT devices when they need to publish a considerable amount of data.

In fact, most of the commercial platforms that currently exist in the cloud and intend to provide
services to IoT devices allow for communication from these devices through HTTP. Some examples
are the Amazon AWS IoT Core platform, Microsoft Azure, Google Cloud IoT Core, and Thingworx.
Each platform offers developers a series of application programming interfaces (APIs) and software
development kits (SDKs) that make it possible to establish communication between the IoT devices
and the cloud platform.

The use of the services of these platforms has advantages and disadvantages. Among the
drawbacks of Azure, in addition to the cost involved in its use, are that the implementation of real-time
data visualization systems is sometimes complex, and there is incompatibility with the Safari web
browser. Google IoT Core Cloud does not support the MQTT protocol. In the AWS IoT Core, the use of
services and functions is complex in some cases, and it is the most expensive option for many services.

Therefore, in our case, we decided to design and implement our own platform cloud web
server using the infrastructure of the University of Jaén. The cloud web server is based on a
model–view–controller (MVC) software architecture, which separates the application data, the user
interface, and the control logic into three distinct components. For frontend technologies, we used
HTML5, CSS3, Bootstrap, and JavaScript, and for the backend technology, we used PHP. For the
database, a MySQL relational database was designed. In addition, for the representation of the LAeq

values of the locations on a map with different colors, the Google Maps platform API was used.
In all of the sensor nodes, in addition to the acoustic noise monitoring software, the communication

software was implemented to send data to the Platform Cloud Web Server. To send the data, we
decided to use the HTTP protocol. Therefore, a web client was implemented on each sensor, except
for on sensor node nine. Node nine was programmed using the Sigfox API for sending data, and a
callback was configured in the Sigfox backend, so that an HTTP request with the GET method was
made to our cloud web server.

As shown in Figures 8 and 9, all of the sensor nodes calculate the SPL every second. Every 30 s,
sensor nodes one–eight send the following data to the Platform Cloud Web Server:

1. Id sensor node
2. LAeq calculated for these 30 s
3. LAmax in the period of 30 s
4. Average predominant frequency of the noise during 30 s (Feq)
5. Higher predominant frequency of the noise during 30 s (Feqmax)
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Figure 9. The Sigfox message. HTTP request—GET method.

In the case of sensor node nine, Sigfox messages can carry a payload (user data) of 12 bytes, and
140 messages are permitted per day, at most (although we have verified that this limit can actually be
exceeded a bit). Therefore, as shown in Figure 9, sensor node nine sends a message every 10 min with
the following parameters:

1. LAeq (four bytes) calculated for these 10 min
2. LAmax (four bytes) in the period of 10 min
3. Average predominant frequency (four bytes) of the noise during 10 min (Feq)

3. Results

As a main result, we can say that an experimental wireless acoustic sensor network for real-time
noise monitoring has been installed in the city of Linares (Jaén), Spain, and it has been running
continuously for 10 months.

3.1. Sensor Nodes Deployed around the City

Figure 10 shows some locations where the sensor nodes were installed. From the data sent to the
cloud web server by the sensor nodes, a huge amount of information has been obtained, with which it
would be possible to characterize the city in terms of its activity. In this section, we will show some of
the results obtained, but it is impossible to show all of the cases and events that have occurred in all of
the locations.

3.2. The Information Offered by the Cloud Web Server

The cloud web server offers the possibility of selecting a date to display a map using Google Maps,
where LAeq is represented by a color in each location measured during the 24 h of the previous day.
Figure 11 shows an example of city noise for the day of 26 November 2016.

For each one of the locations, the temporal evolution of the noise during the selected time interval
can be visualized, as well as the noise indicators. Figures 12 and 13 show an example of how this
information is displayed. Figure 12 shows the acoustic noise measured by the sensor of San Francisco
Square from 00:00 to 23:59 on 30 June 2017. Figure 13 shows the temporal evolution of acoustic noise
for a full week at the Andalucia Avenue location. It can be seen that the acoustic noise has a similar
pattern every day.
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It is possible to set the query for a certain period of time. For example, if LAmax is 92.48 dBA,
a query can be made to visualize the LAmax that occurred in each one of the 30-s intervals, as shown in
Figure 14.
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Figure 14. The LAmax measured at each 30-s interval from 00:00 to 23:59 on 30 June 2017 in San
Francisco Square.

It can be observed that the LAmax of that day was produced in the strip from 17:30 to 19:30, so
if we only consult that period, we can know exactly when the LAmax occurred, which was at 18:44,
as seen in Figure 15.
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A query can also be established for the predetermined day–evening–night periods, as shown in
Figure 16.
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Appendix A contains different events that show examples of the activity of the city, namely: the
garbage collection truck, the noise from construction work in a street, and the noise derived from a
leisure activity—a bar.

4. Conclusions and Future Work

We have presented the design and implementation of a complete low-cost system, composed of
nine sensors nodes, for a WASN deployed in the city of Linares (Jaén), Spain, which has been working
continuously for ten months. The complete system has covered the network topology design, hardware
and software of the sensor nodes, protocols, and a cloud web server platform. The information
provided for the system for each location where the nodes have been deployed is as follows: LAeq for a
given period of time; some noise indicators indicated in the END (Lden, Lday, Levening, and Lnight), the
percentile noise levels (LA01T, LA10T, LA50T, LA90T, and LA99T); a temporal evolution representation of
the noise levels; and the predominant frequency of the noise. Moreover, a map using the Google Maps
platform API has been displayed, representing the LAeq in each location.

Before deploying the sensor nodes in the city, different experiments were conducted to verify the
performance of the Arduino Due hardware, together with the software implemented for the acoustic
noise monitoring. The results were compared to the measurements acquired using a commercial SLM,
which proved that the sensor nodes have a very good performance. However, the dynamic range of
the sensor nodes was 44–105 dBA, and therefore, they cannot measure noise levels below 44 dBA. This
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can distort the results for measurements in non-noisy environments and especially during the night
measurement period, from 23:00–07:00.

The performance of the Arduino Due is very good; the sensor nodes have been running
continuously for 10 months, monitoring noise every second and sending the parameters to the
cloud web server every 30 s. Some sensor nodes have presented problems derived from power outages
and the subsequent restart of the devices (i.e., they did not restart properly). To solve this issue, it
was necessary to mobilize technicians for a manual restart. This is a clear inconvenience if frequent
power outages occur. There have also been problems with sending the data to the private cloud web
server when the corporate Wi-Fi network of the city council did not work. In addition, there have
been multiple hacker attacks on the cloud web server, with attempts to make insertions to the MySQL
database, which succeeded in some cases. Therefore, we must increase the level of security in the
cloud server.

Alternately, the amount of data received and stored has been enormous, given that every 30 s,
each node sends the measured parameters. This approach is fine for analyzing acoustic noise over a
considerable period of time, but it is not feasible to maintain it sustainably for many months or years.

An analysis of the results obtained from the acoustic noise in the city indicates that the variability
of the acoustic noise in a specific location is very low, and therefore, a continuous measurement for one
month is more than enough to characterize the noise in that location.

Although much work remains in order obtain accurate maps of noise levels in smart cities using
WASN, the proposed system presented in this work can serve as an excellent starting point for this task.

Future research should aim to improve the dynamic range of the sensor nodes to be able to
monitor acoustic noise below 44 dBA, and design and incorporate a fog computing platform between
the sensor nodes and the cloud so as to avoid data loss due to the lack of a connection to the cloud.
Security should be included in the protocols for sending the data, for example, HTTP. In addition,
because the noise perception is affected by subjective factors, and there is not a direct correlation
between the indicators and the subjective perception of the noise, the implementation of a module that
is capable of evaluating the subjective impact of the noise annoyance is also proposed as a future work.
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Appendix A

Appendix A.1 Event 1—The Garbage Collection Truck

During the night period of the Figure 16, we appreciated an event of greater acoustic noise at
approximately 01:30. As shown in Figure A1, if we visualize the period from 01:15–02:30 during some
days of the week, we observed that the noise occurred periodically on all of the days, and lasted
approximately five minutes. When we moved to the location to find the source of this noise, we could
see that it was the garbage collection truck.
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Appendix A.2 Event 2—The Noise in the Works under Construction in a Street

Another event that we would like to highlight is how the sensor node, located in Julio Burell
Street, detected the acoustic noise due to some works under construction, which were carried out for
several days. Figure A2 shows the temporal evolution of noise on that street during two days, in the
absence of works under construction and days where such works were carried out.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 23 

 

days of the week, we observed that the noise occurred periodically on all of the days, and lasted 
approximately five minutes. When we moved to the location to find the source of this noise, we could 
see that it was the garbage collection truck. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure A1. The temporal evolution of the noise in San Francisco Square for the period of 01:15–02:30 
on the following days: (a) Monday 26 June 2017; (b) Tuesday 27 June 2017; (c) Wednesday 28 June 
2017; (d) Thursday 29 June 2017. 

Appendix A.2. Event 2—The Noise in the Works under Construction in a Street 

Another event that we would like to highlight is how the sensor node, located in Julio Burell 
Street, detected the acoustic noise due to some works under construction, which were carried out for 
several days. Figure A2 shows the temporal evolution of noise on that street during two days, in the 
absence of works under construction and days where such works were carried out. 

 
(a) 

 
(b) 

 
(c) 

Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

 
(d) 

Figure A2. The temporal evolution of the noise at the Julio Burell St. location: (a) 15 November 2016, 
day without works under construction; (b) Friday 18 November 2016, starting the works under 
construction; (c) Sunday 20 November 2016, stopping the works (no labor on this day); (d) Monday 
21 November 2016, restarting the works. 

Figure A3 shows the maximum noise during 22 November 2016, for the daytime period (07:00–
19:00) at Julio Burell Street. It can be seen that there is a permanent noise of approximately 92 dB from 
13:00 to 15:00. At that time, the noise subsided, probably due to the break for the workers’ lunch, and 
the activity restarted at 16:00. We could say that the workers had an hour’s break and finished their 
workday at 17:30. 

 
(a) 

 
(b) 

Figure A3. (a) The temporal evolution of the maximum noise at the Julio Burell St. location for the 
daytime period on 22 November 2016; (b) instant where the work resumes at 16:01. 

If we analyze the predominant frequency of noise during a full day without construction work, 
we can see that the frequency is lower than 100 Hz for most of the day, as shown in Figure A4. 

 
Figure A4. The predominant frequency during 15 November 2016, at Julio Burell Street. 

However, if we now show the frequency on a day where construction work is being performed, 
we can see that when there is an increase in noise due to construction work, the predominant 
frequency increases, which could be due to some hammering. Figure A5 shows the predominant 
frequency against the maximum noise during 22 November 2016, during a daytime period (07:00–
19:00) on Julio Burell Street. 

Figure A2. The temporal evolution of the noise at the Julio Burell St. location: (a) 15 November
2016, day without works under construction; (b) Friday 18 November 2016, starting the works under
construction; (c) Sunday 20 November 2016, stopping the works (no labor on this day); (d) Monday 21
November 2016, restarting the works.
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Figure A3 shows the maximum noise during 22 November 2016, for the daytime period
(07:00–19:00) at Julio Burell Street. It can be seen that there is a permanent noise of approximately 92 dB
from 13:00 to 15:00. At that time, the noise subsided, probably due to the break for the workers’ lunch,
and the activity restarted at 16:00. We could say that the workers had an hour’s break and finished
their workday at 17:30.
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If we analyze the predominant frequency of noise during a full day without construction work,
we can see that the frequency is lower than 100 Hz for most of the day, as shown in Figure A4.
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Figure A4. The predominant frequency during 15 November 2016, at Julio Burell Street.

However, if we now show the frequency on a day where construction work is being performed,
we can see that when there is an increase in noise due to construction work, the predominant frequency
increases, which could be due to some hammering. Figure A5 shows the predominant frequency
against the maximum noise during 22 November 2016, during a daytime period (07:00–19:00) on Julio
Burell Street.
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Appendix A.3 Event 3—The Noise Derived from a Leisure Activity (A Bar)

Finally, we show the measurements made by the sensor with Id eight located on Ubeda Street. As
seen in Figure 10b, the sensor was located just above a terrace of a bar where people usually go to eat
and drink outdoors in good weather. Figure A6 shows the temporal evolution of acoustic noise during
a weekday (Wednesday, 9 November 2016) and during a weekend day (Sunday, 13 November 2016).
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Figure A6. The temporal evolution of the noise in Ubeda Street during: (a) a weekday, 9 November
2016; (b) a weekend day, 13 November 2016.

We can appreciate how the noise on a weekday began to increase at approximately 07:30, and
remained at almost 63 dB until 21:00, at which point it began to decrease. However, on the weekend,
it can be seen that the noise began to increase at approximately 12:45, and remained here until
approximately 16:15, because it was a sunny day, and many people probably went to eat at that
bar terrace.

This noise pattern is always repeated for weekdays and weekend days. Figure A7a,b shows the
temporal evolution of several weekdays in different months (Thursday, 18 May 2017 and Tuesday,
11 April 2017), while Figure A7c,d shows the temporal evolution of the noise on two weekend days
(Sunday 3 May 2017 and Sunday 16 April 2017). It should also be noted that during many Saturday
nights, there was also noise from people, which can be inconvenient for neighbors, as shown in
Figure A7d. The noise did not begin to decrease until 01:00 on Sunday 16 May 2017.
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