
sensors

Article

F-DCS: FMI-Based Distributed CPS Simulation
Framework with a Redundancy Reduction Algorithm

Seokjoon Hong 1,† , Ducsun Lim 1,† , Inwhee Joe 1 and WonTae Kim 2,*
1 The Department of Computer and Software, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Korea;

daniel379@hanyang.ac.kr (S.H.); imcoms@hanyang.ac.kr (D.L.); iwjoe@hanyang.ac.kr (I.J.)
2 The Department of Computer Science and Engineering, Korea University of Technology and Education,

Cheonan-si 31253, Korea
* Correspondence: wtkim@koreatech.ac.kr; Tel.: +82-41-560-1485
† These authors contributed equally to this work.

Received: 30 October 2019; Accepted: 29 November 2019; Published: 1 January 2020
����������
�������

Abstract: A cyber physical system (CPS) is a distributed control system in which the cyber part and
physical part are tightly interconnected. A representative CPS is an electric vehicle (EV) composed
of a complex system and information and communication technology (ICT), preliminary verified
through simulations for performance prediction and a quantitative analysis is essential because
an EV comprises a complex CPS. This paper proposes an FMI-based distributed CPS simulation
framework (F-DCS) adopting a redundancy reduction algorithm (RRA) for the validation of EV
simulation. Furthermore, the proposed algorithm was enhanced to ensure an efficient simulation
time and accuracy by predicting and reducing repetition patterns involved during the simulation
progress through advances in the distributed CPS simulation. The proposed RRA improves the
simulation speed and efficiency by avoiding the repeated portions of a given driving cycle while
still maintaining accuracy. To evaluate the performance of the proposed F-DCS, an EV model was
simulated by adopting the RRA. The results confirm that the F-DCS with RRA efficiently reduced the
simulation time (over 30%) while maintaining a conventional accuracy. Furthermore, the proposed
F-DCS was applied to the RRA, which provided results reflecting real-time sensor information.

Keywords: cyber-physical system; electric vehicle; distributed co-simulation; functional mock-up
interface; zero crossing; driving cycle

1. Introduction

Along with the progress and innovations in information and communication technology (ICT) in
recent years, its application range has been gradually expanding. A cyber physical system (CPS) is a
distributed control system in which the cyber part and physical part are tightly interconnected and
it is defined as a next-generation paradigm that has real-time and intelligent characteristics as well
as predictability and advanced adaptability [1–4]. A CPS can realize seemingly impossible tasks by
tightly combining physical objects, including machines, automobiles, factory facilities, and humans,
with technologies defined as the cyber part. It can acquire various types of information through
monitoring by using sensors in heterogeneous devices and facilitate interaction and collaboration,
by which information is shared with other sensors and actuators through a network. Based on such
shared information, it facilitates accurate analysis for the physical part and appropriate operation
of desired functions in order to use them efficiently. Accordingly, cyber-physical systems (CPS) are
being applied to a broad range of research areas, such as intelligent transport systems, smart grids,
medical equipment, smart manufacturing systems, nuclear power plants, aviation, and the automobile
industry [5–9]. In the automobile industry, a CPS is usually applied as a system that monitors and

Sensors 2020, 20, 252; doi:10.3390/s20010252 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1428-3171
https://orcid.org/0000-0002-4361-653X
https://orcid.org/0000-0003-3426-3792
http://dx.doi.org/10.3390/s20010252
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/1/252?type=check_update&version=2

Sensors 2020, 20, 252 2 of 27

controls a combination of sensors, actuators, and physical components through a network. In the rapidly
growing present society, academics and industries are adopting plans of using green energy, such as
hydrogen, as solutions to reduce environmental problems, transportation problems, and dependency
on conventional fossil fuels [10,11].

In this regard, cyber physical energy systems (CPESs), an extension of CPSs, are applied to the
energy domain [12,13]. A CPES consists of an energy resource, network, application, and consumers,
and based thereupon, the requirements for next-generation energy are satisfied. The goal of CPES is
to further enhance real-time sensing and dynamic monitoring in a distributed system and wide area
network (WAN) environment with respect to the use of an energy resource [14]. New CPES-related
information technologies have been applied to electric vehicles (EVs), smart grids, home automation
systems, etc., with the aim of achieving efficient energy usage and environmental protection. Tehrani
and Maurice [13] presented a design for a cyber energy system to enhance the autonomy of EVs.
Kim and Mosse [15] provided a general framework for the design, modeling, and simulation of a CPS.

A conventional vehicle system consists of mechanical elements such as an engine and transmission.
In an electric vehicle (EV), however, ICT is applied in the form of software and communication
technologies, which are combined with electrical parts such as battery management systems (BMS) and
electric machine; they are monitored and controlled through feedback loops of sensing and actuation.
Therefore, the best approach towards improving the efficiency performance prediction of EVs would
be to optimize the system and reduce the development time through CPS modeling based on combined
ICTs. This can be accomplished by selecting each component of EVs based on CPS characteristics and by
collecting and applying the information. Preliminary verification through simulations for performance
prediction and quantitative analysis are essential before application to a real model because a complex
system comprises various highly coupled components [16–19]. Such simulations are considered very
important because they can continually improve the model throughout the development process of the
system model to facilitate the efficient operation of the system.

Co-simulation [20] is a simulation technique that facilitates the execution of global simulation by
combining an existing simulation tool and a simulator generated from different simulation tools in a
whole system. Instead of using only one type of tool and language when performing a simulation,
a specialized tool called a solver (a software component that includes event processing and integration
algorithm to solve a given problem in a model) is used to perform the modeling separately for
independent parts of the system; then, these models are linked via integration and modification,
and co-simulation is performed. In comparison with various conventional monolithic simulations,
co-simulation can facilitate the independent modeling of subsystems and then integrate and modify
the whole system. Therefore, co-simulation is more effective in the aspect of merging domains and
reusing and sharing the model. Furthermore, co-simulation offers advantages for the verification of
CPS and multi-domain systems as it provides a method of considering multiple domains with mutually
different time steps.

Research on co-simulation has been conducted in various areas such as automobiles [21–24],
electric power systems [25], and aviation [26]. When simulating a complex CPS model in the EV and
various other areas, a user can perform the simulation by additionally using a model developed with a
different simulation tool.

The functional mock-up interface (FMI) standard [27], which is an international standard for
methods of interfaces in simulation models, supports co-simulation to facilitate easy integration of
models developed through various simulation tools. The FMI defines a standardized application
programming interface (API) such that simulators can operate together and a model that implements
it is defined as a functional mock-up unit (FMU). The FMU is a “black box” that is equipped with
input port, output port, and status variables set, and uses an API to implement the initialization of
status variables, setting of the input port value and searching for the output port value. Continuously
developing and managing this standard has many potential benefits. First, in general, the details
included in the “black box” are not available to users. This can significantly reduce the time required

Sensors 2020, 20, 252 3 of 27

for gaining knowledge on operation details and the amount of relevant knowledge required. It is
thus a potentially excellent method for preserving the intellectual property (IP) of manufacturers.
Therefore, a dynamic model developed in a different simulation tool needs not be converted into a
model directly suitable for the host simulation tool. Secondly, it features simulator independence with
respect to compiling, linking, and distributing FMU. Thus, application is possible even without the
information of the target simulator. Thirdly, there is a clear possibility that a technology exclusive to
a certain area can be widely applied to other areas as well by properly using the advantages of the
FMI standard. In the Figure 1, the respective components were developed through EV research [28],
and we implemented as virtual prototypes.

Sensors 2019, 19, x 3 of 26

for gaining knowledge on operation details and the amount of relevant knowledge required. It is thus
a potentially excellent method for preserving the intellectual property (IP) of manufacturers.
Therefore, a dynamic model developed in a different simulation tool needs not be converted into a
model directly suitable for the host simulation tool. Secondly, it features simulator independence
with respect to compiling, linking, and distributing FMU. Thus, application is possible even without
the information of the target simulator. Thirdly, there is a clear possibility that a technology exclusive
to a certain area can be widely applied to other areas as well by properly using the advantages of the
FMI standard. In the Figure 1, the respective components were developed through EV research [28],
and we implemented as virtual prototypes.

Figure 1. FMI-based simulation in the electric vehicle (EV) domain

The FMI [27] standard specifies an API for interconnected FMUs and defines a master algorithm
(MA) in terms of calling the API and orchestrating the co-simulation, but it does not designate any
specific MA. The design and use of an appropriate MA are important because the requirements of
simulation differ depending on the situation. If a simulation is performed without a necessary MA,
functions for basic modeling, including simple discrete-event simulation and variable step-size
numerical integration algorithm, cannot be used. The MA controls data exchange and
synchronization between FMUs. The most important requirements for the implementation of the MA
are accuracy and efficiency. Usually, these two requirements are contradictory. In a simulation, the
MA can reduce the allowable error by improving the accuracy through repeated steps, which
significantly increases the runtime. If a step is not repeatedly performed, the efficiency can be
improved by increasing the step size according to the step performed. This will, however, decrease
the accuracy. Therefore, despite its important role, it is difficult to devise an MA.

Accordingly, attempts have been made to design MAs having the characteristics of accuracy and
efficiency [29,30]. In Lee [29], step determination was considered a major characteristic of the MA. In
their simulation, the largest step size that can be accommodated before performing the step was
determined for every FMU, and among them, the minimum value was selected to determine the step
size. However, even after finishing the simulation step, the step size was still found to be large. On
the other hand, [30] presented a step revision that enhances the step determination, and it included
rolling back to a previous timepoint before moving the step forward in the whole simulation. Based
on these studies, this paper proposes an FMI-based distributed CPS simulation framework (F-DCS)
adopting a redundancy reduction algorithm (RRA) for the validation of EV simulation.

The remainder of this paper is organized as follows. Section 2 describes the FMI, MA that
performs the rollback and data distribution service (DDS) framework. Section 3 explains the
Distributed CPS simulation framework with RRA in detail. Section 4 presents a Distributed CPS
model based on hybrid modeling and Section 5 describes the validation of EV simulation of the

Figure 1. FMI-based simulation in the electric vehicle (EV) domain.

The FMI [27] standard specifies an API for interconnected FMUs and defines a master algorithm
(MA) in terms of calling the API and orchestrating the co-simulation, but it does not designate any
specific MA. The design and use of an appropriate MA are important because the requirements
of simulation differ depending on the situation. If a simulation is performed without a necessary
MA, functions for basic modeling, including simple discrete-event simulation and variable step-size
numerical integration algorithm, cannot be used. The MA controls data exchange and synchronization
between FMUs. The most important requirements for the implementation of the MA are accuracy and
efficiency. Usually, these two requirements are contradictory. In a simulation, the MA can reduce the
allowable error by improving the accuracy through repeated steps, which significantly increases the
runtime. If a step is not repeatedly performed, the efficiency can be improved by increasing the step
size according to the step performed. This will, however, decrease the accuracy. Therefore, despite its
important role, it is difficult to devise an MA.

Accordingly, attempts have been made to design MAs having the characteristics of accuracy and
efficiency [29,30]. In Lee [29], step determination was considered a major characteristic of the MA.
In their simulation, the largest step size that can be accommodated before performing the step was
determined for every FMU, and among them, the minimum value was selected to determine the step
size. However, even after finishing the simulation step, the step size was still found to be large. On the
other hand, [30] presented a step revision that enhances the step determination, and it included rolling
back to a previous timepoint before moving the step forward in the whole simulation. Based on these
studies, this paper proposes an FMI-based distributed CPS simulation framework (F-DCS) adopting a
redundancy reduction algorithm (RRA) for the validation of EV simulation.

The remainder of this paper is organized as follows. Section 2 describes the FMI, MA that performs
the rollback and data distribution service (DDS) framework. Section 3 explains the Distributed CPS
simulation framework with RRA in detail. Section 4 presents a Distributed CPS model based on

Sensors 2020, 20, 252 4 of 27

hybrid modeling and Section 5 describes the validation of EV simulation of the proposed FMI-based
Distributed CPS simulation framework, and lastly, Section 6 concludes the paper.

2. Related Work

2.1. Function Mock-Up Interface

The FMI standard is an independent interface tool standard developed through MODELISAR
project research managed by the Modelica Association. It supports standardized data exchange
between dynamic models designed in mutually different simulation environments by using C codes
and xml files [27]. The main goal of FMI is to make improvements such that models designed with
different modeling tools can exchange data and components or sub-systems that can interoperate.
The models are packaged in the form of a black box called the FMU, which can be connected to a larger
upper-level model owing to the standard interface that can access the state and derivatives included in
the equations. In the abstract aspect, the FMU can be viewed as a timed Mealy machine, a finite-state
machine in which the output value is determined by the status of the input value only, and an access
from an outside part can interact with the FMU through the API only. The FMI standard has adopted
an API that the FMU should comply with.

We introduce some essential functions of FMI that allow communications between a master and a
slave when running a simulation.

• fmiDoStep: This function is provided by the FMI for a method of advancing time in co-simulation.
There are three arguments in a call: currentCommunicaiton, which shows the current click
time of the master; communicationStepSize, the step size that the solver has to calculate;
and noSetFMUStatePriorToCurrentPoint, which shows whether the master will call/not call
fmiSetFMUState for the previous communication point. If the fmiOK call is returned, the step has
been successfully executed, and if it cannot be executed, fmiError is returned. If the slave returns
FMIDiscard, only some parts of the communication step have been calculated, and here, the MA
should be re-executed with a smaller communication step size.

• fmiSetXXX and fmiGetXXX: The MA provides input data to the FMU by calling a procedure called
fmiSetXXX provided by the FMU. It calls fmiGetXXX to retrieve an output value from the FMU
and provides an argument for the ID of the output and a pointer to a storage location (“XXX” is
defined with the data type of the input and output).

• fmiSetFMUState and fmiGetFMUState: These functions allow the master to store and restore the
whole state of the slave. fmi2SetFMUstate restores the internal state of the FMU. This requires the
input pointer previously copied for the FMU state and the current state of the FMU is replaced
with the copied one. fmi2GetFMUstate stores the internal state of the FMU. It receives the pointer
related to the FMU state as an input and copies the current FMU state.

These functions allow the master to roll back the communication step. The implementation of
these functions is optional. They deal with a legacy system. The FMU can wrap the legacy simulator
that does not allow storing and restoring.

As the FMI includes various APIs which allow reading and writing of the FMU’s state, large support
can be provided to the MA, but several factors need to be reinforced. First, because overhead can
occur if a state is stored and restored, the design should consider a method for reducing the overhead.
Secondly, because the implementation of the rollback procedure by the FMU is optional, it may be
quite difficult to implement it according to the characteristics of each model. Thirdly, as shown in
our research, although the APIs supported in the FMI are quite helpful, the supported APIs are not
sufficient in terms of designing to prevent the occurrence of rollback in a section where it should not
occur. Therefore, this study implemented the rollback function by complying with the API supported
in the FMI standard, such that it will be supported in the FMU. Determining the sequence of calling
these procedures is an essential factor in the design of the MA.

Sensors 2020, 20, 252 5 of 27

2.2. Master Algorithm for Rollback

Many MAs for orchestrating FMI-based co-simulation have been proposed. In [29], the simulation
was performed through doStep with a basic step size first for several FMUs. If an FMU has not found
the ZCP, a rollback to a previous time instance is performed. Afterwards, the maximum step size that
can be proceeded with by each FMU is checked, and among them, the minimum value is selected to
proceed with the simulation. In contrast, [30] proposes the following method. The procedure of step
revision algorithm is illustrated by the sequence in Figure 2. When co-simulation is performed using
several FMUs, the simulation is carried out with the basic step size (h) first (T2 = T0 + h). Among them,
if an invalid state or error flag occurs in any of the FMUs, the whole simulation is rolled back to the
previous simulation time T0. Then, after adjusting the step size of all the FMUs to a smaller step size
(h’), the simulation is repeated until the ZCP is reached.

Sensors 2019, 19, x 5 of 26

2.2. Master Algorithm for Rollback

Many MAs for orchestrating FMI-based co-simulation have been proposed. In [29], the
simulation was performed through doStep with a basic step size first for several FMUs. If an FMU
has not found the ZCP, a rollback to a previous time instance is performed. Afterwards, the maximum
step size that can be proceeded with by each FMU is checked, and among them, the minimum value
is selected to proceed with the simulation. In contrast, [30] proposes the following method. The
procedure of step revision algorithm is illustrated by the sequence in Figure 2. When co-simulation
is performed using several FMUs, the simulation is carried out with the basic step size (h) first (𝑇ଶ =𝑇 + ℎ). Among them, if an invalid state or error flag occurs in any of the FMUs, the whole simulation
is rolled back to the previous simulation time 𝑇. Then, after adjusting the step size of all the FMUs
to a smaller step size (h’), the simulation is repeated until the ZCP is reached.

Figure 2. Step revision algorithm with rollback.

2.3. Middleware for Distributed Co-Simulation

The concept of distributed co-simulation is based on the idea that simulations are performed on
multiple computers and can be distributed not only logically but also physically through a network.
If distributed co-simulation is performed using more than one remote simulator, the simulation
execution time can be reduced by balancing the workloads at multiple nodes through parallel tasks.
Subsequently, the results of executing at distributed domains should be integrated with the
framework. A middleware is used to perform the co-simulation, in which a multi-agent architecture
facilitates the execution of parallel and distributed tasks.

Many open-source tools have been developed and researched for FMU simulations. Among
them are tools that support distributed co-simulation of FMU, such as DACCOSIM [31] and FMI Go!
[32]. DACCOSIM is an FMI-based co-simulation tool implemented in Java. A user can design and
execute multi-simulation based on cooperation between multiple FMUs in multi-core or cluster
environments. The technology used for exchanging data between FMUWrappers varies depending
on the corresponding location. In FMUWrapper, a shared queue is used for communication to a local
master, and messages are sent through the ZeroMQ middleware for communication between a local
master and a global master. FMI Go! is an open-source software with permissive license, and it was
designed for using components compatible with the FMI standard in the distributed simulation
environment and platform. FMI-Go! uses a server-client architecture in which servers host FMU
individually, and uses the ZeroMQ middleware to send messages for mapping of various FMI
functions.

This paper suggests an alternative or replacement of conventional solutions from the
middleware perspective, verifying the distributed co-simulation environment by using DACCOSIM,
FMIGO!. We applied the data distribution service (DDS), a data communication middleware, to
facilitate efficient and autonomous data exchange in various platforms and communication
environments demanded by users. The DDS is a publish/subscribe-based network communication
middleware and an Object Management Group (OMG) standard that supports real-time, scalable,
and dependable data exchanges [33].

An application used for communication in DDS is DomainParticipant. Multiple domains can
exist in a same network, but DomainParticipant can subscribe to only one of them and can be a

Figure 2. Step revision algorithm with rollback.

2.3. Middleware for Distributed Co-Simulation

The concept of distributed co-simulation is based on the idea that simulations are performed on
multiple computers and can be distributed not only logically but also physically through a network.
If distributed co-simulation is performed using more than one remote simulator, the simulation
execution time can be reduced by balancing the workloads at multiple nodes through parallel tasks.
Subsequently, the results of executing at distributed domains should be integrated with the framework.
A middleware is used to perform the co-simulation, in which a multi-agent architecture facilitates the
execution of parallel and distributed tasks.

Many open-source tools have been developed and researched for FMU simulations. Among them
are tools that support distributed co-simulation of FMU, such as DACCOSIM [31] and FMI Go! [32].
DACCOSIM is an FMI-based co-simulation tool implemented in Java. A user can design and
execute multi-simulation based on cooperation between multiple FMUs in multi-core or cluster
environments. The technology used for exchanging data between FMUWrappers varies depending
on the corresponding location. In FMUWrapper, a shared queue is used for communication to a
local master, and messages are sent through the ZeroMQ middleware for communication between
a local master and a global master. FMI Go! is an open-source software with permissive license,
and it was designed for using components compatible with the FMI standard in the distributed
simulation environment and platform. FMI-Go! uses a server-client architecture in which servers
host FMU individually, and uses the ZeroMQ middleware to send messages for mapping of various
FMI functions.

This paper suggests an alternative or replacement of conventional solutions from the middleware
perspective, verifying the distributed co-simulation environment by using DACCOSIM, FMIGO!.
We applied the data distribution service (DDS), a data communication middleware, to facilitate
efficient and autonomous data exchange in various platforms and communication environments
demanded by users. The DDS is a publish/subscribe-based network communication middleware and
an Object Management Group (OMG) standard that supports real-time, scalable, and dependable data
exchanges [33].

Sensors 2020, 20, 252 6 of 27

An application used for communication in DDS is DomainParticipant. Multiple domains can exist
in a same network, but DomainParticipant can subscribe to only one of them and can be a publisher,
subscriber, or both. A publisher includes one or more DataWriter, and a subscriber manages one
or more DataReader. DataWriter and DataReader are bound with a topic when generated from the
publisher and the subscriber, respectively. If bound with the same topic, they are interconnected
logically. However, the subscriber does not need to know the location of the publisher. Multiple
publishers can post for the same topic and multiple subscribers can subscribe to the same topic.

The pub/sub implemented in the DDS is a data distribution technology in which a user participating
in a domain becomes a publisher/subscriber to produce and consume the desired data only, unlike the
server-client system. If a large number of devices provide data frequently in a distributed manner in
the distributed co-simulation, it may not be efficient. As the pub/sub distribution technology facilitates
the free participation and withdrawal of domain and provides functions for producing and collecting
desired data only, it can provide a suitable environment. Furthermore, because it facilitates access to
data regardless of location, time, and synchronization with respect to the service, it provides a suitable
environment for real-time communication. This will increase the possibility of making progress when
activating connections and integration of the Internet of Things (IoT) for a digital twin.

3. Distributed CPS Simulation Framework with RRA

3.1. Distributed CPS Simulation Framework

We propose a framework consisting of DDS middleware and FMUWrapper for the FMI-based
distributed co-simulation. Here, FMUWrapper is an FMI interface for simulating the FMU at each
distributed node. Moreover, the DDS middleware not only sends the simulation data produced
between FMUs, but also sends control messages for simulation status information and synchronization
of rollback performed between one Global Master node and several Local Master nodes.

In the distributed CPS simulation framework proposed in Figure 3, the distributed nodes are the
Domain Participants. Moreover, a structure of Ctrl, Status, and Data types is used to transmit the
control data and simulation data between the nodes. First, the Ctrl type can be used when the global
node controls other local nodes. For example, the global node can use Ctrl type messages to request
the starting, stopping, and rolling back of simulation to the local nodes. The Status type allows each
local node to share its simulation performing status information to the global node. The Data type is
used when the simulation data are transmitted between the nodes.

Sensors 2019, 19, x 6 of 26

publisher, subscriber, or both. A publisher includes one or more DataWriter, and a subscriber
manages one or more DataReader. DataWriter and DataReader are bound with a topic when
generated from the publisher and the subscriber, respectively. If bound with the same topic, they are
interconnected logically. However, the subscriber does not need to know the location of the
publisher. Multiple publishers can post for the same topic and multiple subscribers can subscribe to
the same topic.

The pub/sub implemented in the DDS is a data distribution technology in which a user
participating in a domain becomes a publisher/subscriber to produce and consume the desired data
only, unlike the server-client system. If a large number of devices provide data frequently in a
distributed manner in the distributed co-simulation, it may not be efficient. As the pub/sub
distribution technology facilitates the free participation and withdrawal of domain and provides
functions for producing and collecting desired data only, it can provide a suitable environment.
Furthermore, because it facilitates access to data regardless of location, time, and synchronization
with respect to the service, it provides a suitable environment for real-time communication. This will
increase the possibility of making progress when activating connections and integration of the
Internet of Things (IoT) for a digital twin.

3. Distributed CPS Simulation Framework with RRA

3.1. Distributed CPS Simulation Framework

We propose a framework consisting of DDS middleware and FMUWrapper for the FMI-based
distributed co-simulation. Here, FMUWrapper is an FMI interface for simulating the FMU at each
distributed node. Moreover, the DDS middleware not only sends the simulation data produced
between FMUs, but also sends control messages for simulation status information and
synchronization of rollback performed between one Global Master node and several Local Master
nodes.

In the distributed CPS simulation framework proposed in Figure 3, the distributed nodes are the
Domain Participants. Moreover, a structure of Ctrl, Status, and Data types is used to transmit the
control data and simulation data between the nodes. First, the Ctrl type can be used when the global
node controls other local nodes. For example, the global node can use Ctrl type messages to request
the starting, stopping, and rolling back of simulation to the local nodes. The Status type allows each
local node to share its simulation performing status information to the global node. The Data type is
used when the simulation data are transmitted between the nodes.

Figure 3. FMI-based distributed cyber physical system (CPS)-simulation framework.

First, if the simulation is performed normally, the global node performs the simulation using the
initial step size value for the simulation time t through FMU Wrapper and sends the result to the

Figure 3. FMI-based distributed cyber physical system (CPS)-simulation framework.

Sensors 2020, 20, 252 7 of 27

First, if the simulation is performed normally, the global node performs the simulation using
the initial step size value for the simulation time t through FMU Wrapper and sends the result to the
connected nodes through Data-type messages. A node that has received the data sets the reference
value according to the data I/O connection setting between the FMUs of co-simulation; afterwards,
it sets the input value with the setReal function. Here, a data message sent from the global node
contains the current step size information as well and when each local node receives this message,
it changes the current simulation step size with the step size from the data message and performs the
simulation. Hence, the global node and local nodes are synchronized. If the simulation for each FMU is
performed without any problem at the current simulation time (t) of all the connected nodes, the global
node increases the next simulation time (t + hh) and performs the simulation again for the FMUs.

If a rollback occurs while performing the simulation from time t to t+hh at a certain node,
the rollback to time t is performed first. Subsequently, the global node is informed about the rollback
through a Status message. Then, the global node performs the rollback and sends a Rollback Ctrl
message to all connected local nodes such that all nodes can be synchronized by rolling back. Among
nodes that have received the Ctrl message, there may be nodes where the simulation time has not
proceeded to t+hh yet. In this case, the rollback is not performed.

Furthermore, some nodes have a sensing data management module and a sensor provides the
collected data from outside to the node through a cloud in real-time. FM Wrapper inputs the provided
sensing information in the FMU with the setReal function, and the simulation is performed by applying
the provided value. In this manner, the simulation can reflect real-time sensing information, such as
temperature and humidity.

Next, a method of predicting and applying the step size at each node is examined. At each
node, the step size can be determined by using the two proposed algorithms for each FMU. It is
important to determine the step size that can be commonly applied to every FMU in the co-simulation,
in which FMUs in multiple nodes interoperate. For this purpose, the next_hh value is used in DDS
Data messages and Status messages. At the current simulation time t, the step size determined using
the algorithm at each node, is stored as the next_hh value and delivered along with the simulation data
in a DDS Data message from the global node to immediately before the final local node. The receiving
node compares its determined step size with the next_hh value and continually updates it with the
smaller value. Then, the value is delivered to the final node. When the current location is the final
node, its determined step size is compared with the next_hh value and it is updated with the smaller
value. Next, this value is sent to the global node through a Status message. Finally, the global node
determines the step size with the minimum value among the next_hh values received from the final
nodes, and the simulation of t + next_hh is performed.

3.2. Redundancy Reduction Algorithm

Among the most widely used techniques for testing combinations of vehicle components, a typical
method applies a driving cycle to the simulation [34,35]. By applying a driving cycle to the simulation
of an EV model, it is possible to determine the vehicle’s driving distance by time and battery SOC
(state of charge) by power consumption based on the EV’s operation [36–38]. When several driving
cycles are examined, a repetition section can be observed in a cycle, as shown in Figure 4.

Sensors 2020, 20, 252 8 of 27

Sensors 2019, 19, x 7 of 26

connected nodes through Data-type messages. A node that has received the data sets the reference
value according to the data I/O connection setting between the FMUs of co-simulation; afterwards, it
sets the input value with the setReal function. Here, a data message sent from the global node
contains the current step size information as well and when each local node receives this message, it
changes the current simulation step size with the step size from the data message and performs the
simulation. Hence, the global node and local nodes are synchronized. If the simulation for each FMU
is performed without any problem at the current simulation time (t) of all the connected nodes, the
global node increases the next simulation time (t+hh) and performs the simulation again for the FMUs.

If a rollback occurs while performing the simulation from time t to t+hh at a certain node, the
rollback to time t is performed first. Subsequently, the global node is informed about the rollback
through a Status message. Then, the global node performs the rollback and sends a Rollback Ctrl
message to all connected local nodes such that all nodes can be synchronized by rolling back. Among
nodes that have received the Ctrl message, there may be nodes where the simulation time has not
proceeded to t+hh yet. In this case, the rollback is not performed.

Furthermore, some nodes have a sensing data management module and a sensor provides the
collected data from outside to the node through a cloud in real-time. FM Wrapper inputs the
provided sensing information in the FMU with the setReal function, and the simulation is performed
by applying the provided value. In this manner, the simulation can reflect real-time sensing
information, such as temperature and humidity.

Next, a method of predicting and applying the step size at each node is examined. At each node,
the step size can be determined by using the two proposed algorithms for each FMU. It is important
to determine the step size that can be commonly applied to every FMU in the co-simulation, in which
FMUs in multiple nodes interoperate. For this purpose, the next_hh value is used in DDS Data
messages and Status messages. At the current simulation time t, the step size determined using the
algorithm at each node, is stored as the next_hh value and delivered along with the simulation data
in a DDS Data message from the global node to immediately before the final local node. The receiving
node compares its determined step size with the next_hh value and continually updates it with the
smaller value. Then, the value is delivered to the final node. When the current location is the final
node, its determined step size is compared with the next_hh value and it is updated with the smaller
value. Next, this value is sent to the global node through a Status message. Finally, the global node
determines the step size with the minimum value among the next_hh values received from the final
nodes, and the simulation of t + next_hh is performed.

3.2. Redundancy Reduction Algorithm

Among the most widely used techniques for testing combinations of vehicle components, a typical
method applies a driving cycle to the simulation [34,35]. By applying a driving cycle to the simulation
of an EV model, it is possible to determine the vehicle’s driving distance by time and battery SOC (state
of charge) by power consumption based on the EV’s operation [36–38]. When several driving cycles are
examined, a repetition section can be observed in a cycle, as shown in Figure 4.

(a)

(b)

Figure 4. Driving cycles for EV simulation; (a) New European Driving Cycle (NEDC), (b) 10–15 mode
cycle.
Figure 4. Driving cycles for EV simulation; (a) New European Driving Cycle (NEDC), (b) 10–15
mode cycle.

If the model is simulated by accepting such a driving cycle as an input value and combining it with
other components in the EV, the simulation graph can have positive and negative values depending on
the time, and many zero-crossing points (ZCPs) [39] are produced. To find a section that has a value of
0 exactly, a bisection algorithm [40] can be used. When a ZCP occurs in the simulation of a certain
model, as shown in Figure 5, this algorithm checks the associated error. If the error is larger than the
signal threshold, the previous step is repeated with the step size reduced to half, as shown in Figure 5a.
Here, if the simulation data value is smaller than the signal threshold, the simulation of the next step is
performed; if not, the above process is repeated. Suppose the simulation is for Figure 5b, in which
the graph of the simulation model does not go through the point 0 directly and the value changes
from positive to negative or vice versa. Then, the time threshold can be assigned for the simulation
interval (Tn+1 − Tn) and the exact time of changing the sign can be determined accurately by using the
bisection algorithm. On the other hand, if the bisection algorithm is used to find the ZCP, this method
will be considerably inefficient as the simulation time will increase in the simulation model with a
repeating pattern.

Sensors 2019, 19, x 8 of 26

Figure 4. Driving cycles for EV simulation; (a) New European Driving Cycle (NEDC), (b) 10–15 mode
cycle.

If the model is simulated by accepting such a driving cycle as an input value and combining it
with other components in the EV, the simulation graph can have positive and negative values
depending on the time, and many zero-crossing points (ZCPs) [39] are produced. To find a section
that has a value of 0 exactly, a bisection algorithm [40] can be used. When a ZCP occurs in the
simulation of a certain model, as shown in Figure 5, this algorithm checks the associated error. If the
error is larger than the signal threshold, the previous step is repeated with the step size reduced to
half, as shown in Figure 5a. Here, if the simulation data value is smaller than the signal threshold, the
simulation of the next step is performed; if not, the above process is repeated. Suppose the simulation
is for Figure 5b, in which the graph of the simulation model does not go through the point 0 directly
and the value changes from positive to negative or vice versa. Then, the time threshold can be
assigned for the simulation interval (𝑇ାଵ − 𝑇) and the exact time of changing the sign can be
determined accurately by using the bisection algorithm. On the other hand, if the bisection algorithm
is used to find the ZCP, this method will be considerably inefficient as the simulation time will
increase in the simulation model with a repeating pattern.

(a) (b)

Figure 5. Zero crossing point and bi-section search; (a) continuous model, (b) discontinuous model.

Considering these issues, this paper proposes a method that can reduce the simulation time more
efficiently while maintaining the conventional accuracy by using the repetitive pattern information
of driving cycles in an EV simulation. First, when performing a simulation, information for the
simulation values is obtained through the MA and the repetition section in the driving cycle is
predicted. Then, the step size is predicted using the obtained information and the simulation is
performed.

This paper proposes two algorithms for reducing the time of FMU-based EV simulation using a
repetitive and cyclic driving cycle.

First, for a case with a pattern from a cycle in a simulation graph, an adaptive step size algorithm
is proposed to reduce the simulation time using that pattern. If the simulation is performed multiple
times with a small step size as the simulation data value is repeated, it may be more efficient to
perform the simulation with a large step size instead of the small step size.

Secondly, for a case with ZCP occurring in a different simulation model in the first starting cycle
of the driving cycle, rollback pattern information is saved. Then, if the ZCP is predicted to occur in
the same graph cycle in the model, the simulation value in the saved rollback pattern information is
compared with the step size value, thereby finding a mapping step size for the current simulation
value. By applying it, the second proposed algorithm can minimize the frequency of rollbacks in the
simulation.

The sequence diagram describing this method is shown in Figure 6.

Figure 5. Zero crossing point and bi-section search; (a) continuous model, (b) discontinuous model.

Considering these issues, this paper proposes a method that can reduce the simulation time more
efficiently while maintaining the conventional accuracy by using the repetitive pattern information of
driving cycles in an EV simulation. First, when performing a simulation, information for the simulation
values is obtained through the MA and the repetition section in the driving cycle is predicted. Then,
the step size is predicted using the obtained information and the simulation is performed.

This paper proposes two algorithms for reducing the time of FMU-based EV simulation using a
repetitive and cyclic driving cycle.

First, for a case with a pattern from a cycle in a simulation graph, an adaptive step size algorithm
is proposed to reduce the simulation time using that pattern. If the simulation is performed multiple

Sensors 2020, 20, 252 9 of 27

times with a small step size as the simulation data value is repeated, it may be more efficient to perform
the simulation with a large step size instead of the small step size.

Secondly, for a case with ZCP occurring in a different simulation model in the first starting cycle
of the driving cycle, rollback pattern information is saved. Then, if the ZCP is predicted to occur in
the same graph cycle in the model, the simulation value in the saved rollback pattern information is
compared with the step size value, thereby finding a mapping step size for the current simulation
value. By applying it, the second proposed algorithm can minimize the frequency of rollbacks in
the simulation.

The sequence diagram describing this method is shown in Figure 6.Sensors 2019, 19, x 9 of 26

Figure 6. Sequence diagram of the redundancy reduction algorithm.

3.2.1. Adaptive Step Size Algorithm

Algorithm 1: adaptive step size algorithm (saving level patterns)
1 level array is initialized with zero values;
2 lvIdx = 0;
3 while time ≤ End do
4 fmiDoStep(c,time, hh);
5 fmiGetReal(c,&vr, 1, &currVal);
6 if prevVal == currVal then
7 zeroSlopeCnt ++;
8 else
9 if zeroSlopeCnt ≥ 2 AND time < 𝑇ଵ then

10 level[lvIdx].duration is calculated;
11 lvIdx is increased by one;
12 if lvIdx is zero then
13 level[lvIdx].order is set to zero;
14 else
15

Find index i of level array which has the same value as the last one. Then
level[i].order is increased;

16 end
17 end
18 end
19 prevVal = currVal;
20 end

Algorithm 1 shows the process of saving level patterns in the adaptive step size algorithm. First,
when the simulation begins, the step size is initialized as 1 and it checks changes by the time of
simulation to be measured during the first small repetitive cycle 𝑇ଵ while performing the
simulation Figure 7. Here, the step size was set to 1 initially because the data information of the
driving cycle was given in 1 s intervals. If the same simulation value is repeated in every step, the
length of the repeating section is checked when the repeating section is completed, and the value is
stored in a structure designed to store simulation pattern information. The structure for storing
pattern information has value, duration, and order information, representing the simulation value,
maintained duration and the order of appearing in the cycle, respectively. Here, the duration can be

Figure 6. Sequence diagram of the redundancy reduction algorithm.

3.2.1. Adaptive Step Size Algorithm

Algorithm 1 shows the process of saving level patterns in the adaptive step size algorithm. First,
when the simulation begins, the step size is initialized as 1 and it checks changes by the time of
simulation to be measured during the first small repetitive cycle Tp1 while performing the simulation
Figure 7. Here, the step size was set to 1 initially because the data information of the driving cycle was
given in 1 s intervals. If the same simulation value is repeated in every step, the length of the repeating
section is checked when the repeating section is completed, and the value is stored in a structure
designed to store simulation pattern information. The structure for storing pattern information has
value, duration, and order information, representing the simulation value, maintained duration and
the order of appearing in the cycle, respectively. Here, the duration can be obtained by subtracting the
first simulation time from the last simulation time. Furthermore, when the same value appears again
during the repetition cycle Tp1, the order is used to distinguish it. In other words, for a simulation
value appearing first when saving in the array, the order is 0, and if the same value appears repeatedly,
their orders are set to 1, 2, . . . , n, and stored.

Sensors 2020, 20, 252 10 of 27

Algorithm 1: adaptive step size algorithm (saving level patterns)

Sensors 2019, 19, x 9 of 26

Figure 6. Sequence diagram of the redundancy reduction algorithm.

3.2.1. Adaptive Step Size Algorithm

Algorithm 1: adaptive step size algorithm (saving level patterns)
1 level array is initialized with zero values;
2 lvIdx = 0;
3 while time ≤ End do
4 fmiDoStep(c,time, hh);
5 fmiGetReal(c,&vr, 1, &currVal);
6 if prevVal == currVal then
7 zeroSlopeCnt ++;
8 else
9 if zeroSlopeCnt ≥ 2 AND time < 𝑇ଵ then

10 level[lvIdx].duration is calculated;
11 lvIdx is increased by one;
12 if lvIdx is zero then
13 level[lvIdx].order is set to zero;
14 else
15

Find index i of level array which has the same value as the last one. Then
level[i].order is increased;

16 end
17 end
18 end
19 prevVal = currVal;
20 end

Algorithm 1 shows the process of saving level patterns in the adaptive step size algorithm. First,
when the simulation begins, the step size is initialized as 1 and it checks changes by the time of
simulation to be measured during the first small repetitive cycle 𝑇ଵ while performing the
simulation Figure 7. Here, the step size was set to 1 initially because the data information of the
driving cycle was given in 1 s intervals. If the same simulation value is repeated in every step, the
length of the repeating section is checked when the repeating section is completed, and the value is
stored in a structure designed to store simulation pattern information. The structure for storing
pattern information has value, duration, and order information, representing the simulation value,
maintained duration and the order of appearing in the cycle, respectively. Here, the duration can be

Sensors 2019, 19, x 11 of 26

Figure 7. New European Driving Cycle (typical repetition cycle).

3.2.2. Efficient Zero Crossing Detection Algorithm

The second algorithm can be used in the co-simulation using ZCD and repeating rollbacks can
be minimized. The ZCD technique is useful because zero crossing (ZC) can be determined. When the
bi-section algorithm is used for ZCD, rollback is performed by reducing the step size by half if ZCP
occurs and the error with 0 is large; rollback is stopped only if the result is below the threshold value.
However, in the case of many ZCPs occurring in a short time, as shown in Figure 8, the simulation
time will be lengthy due to frequent rollbacks if the bi-section algorithm is used.

(a)

(b)

Figure 8. Examples of simulation using the New European Driving Cycle; (a) tractive effort or force
Ft (N), (b) power consumption from the battery Pbc (W).

Therefore, the proposed algorithm saves the rollback pattern if ZCP occurs in the first repetition
cycle 𝑇ଵ. If ZCP occurs afterwards, a small step size is applied by using the saved rollback pattern
information in order to reduce unnecessary rollbacks. To accomplish this, the proposed algorithm
uses the following method. As shown in Figure 9, the cases of ZCP occurrence can be divided into
two cases: occurrence in a graph of increasing or decreasing shape, and continuously maintaining the
same value and then suddenly changing from a positive value to a negative value or vice versa in a
stepwise manner.

Figure 7. New European Driving Cycle (typical repetition cycle).

Algorithm 2 shows the process of the search for level patterns and step size application in the
adaptive step size algorithm.

Sensors 2020, 20, 252 11 of 27

Algorithm 2: adaptive step size algorithm (search of level patterns and step size application)

Sensors 2019, 19, x 10 of 26

obtained by subtracting the first simulation time from the last simulation time. Furthermore, when
the same value appears again during the repetition cycle 𝑇ଵ, the order is used to distinguish it. In
other words, for a simulation value appearing first when saving in the array, the order is 0, and if the
same value appears repeatedly, their orders are set to 1, 2, …, n, and stored.
Algorithm 2 shows the process of the search for level patterns and step size application in the
adaptive step size algorithm.

Algorithm 2: adaptive step size algorithm (search of level patterns and step size application)
1 if zeroSlopeCnt == 1 then
2 if time <= 𝑇ଵ then
3 level[lvIdx].val = currVal;
4 else
5

Find index i of tmplevel array which has the same value as the last one
(level[tmplvIdx].val). Then the level[tmplvIdx].order is increased;

6 for i=0 to lvIdx -1 do
7

if (level[i].val == tmplevel[templeIdx].val) && (level[i].order == tmplevel[templeIdx].order)
then

8 foundIdx = i;
9 end

10 end
11 if The value is found with index as foundIdx then
12 nexthh = level[foundIdx].duration;
13 nextTime = time + nexthh;
14 end
15 end
16 end
17 time = time + hh;
18 if nexthh is set by algorithm then
19 hh = nexthh;
20 end
21 if now time is nextTime then
22 hh=1;
23 end

Next, if the first repetition cycle 𝑇ଵ is completed, the current value is added to the simulation
pattern information using a new structure variable for pattern information comparison. If the current
order is the same as the previous order, the step size is as large as the duration in the previous pattern
structure information is applied. In this manner, repetitive simulation sections can be reduced. If the
value is not the same, the step is set to 1 by rolling back to the previous step again, and then the
simulation is performed. Usually, because the simulation values are repeated several times in 𝑇ଶ
inside the driving cycle, there is a high probability that the same value will appear even after passing
the step by as much as the duration. Furthermore, because the same pattern of the simulation value
can reappear in the repetition cycle, the existence of the same simulation value in the stored structure
is checked. If such a value exists, it is updated by adding 1 to the order in the structure. Thereafter,
the existence of the same value in the previously saved pattern information and the order is checked.
If there is any such value, the duration is applied as a new step size. In this manner, efficiency and
speed of the simulation can be improved because the simulation can be performed by maximally
expanding the step size for the same simulation value in the remaining cycles after excluding the first
cycle. Furthermore, because the EV simulation method usually measures the EV driving distance or
battery SOC by repeating the whole cycle 𝑇ଶ , the pattern information saved during 𝑇ଵ can be
continually used.

Next, if the first repetition cycle Tp1 is completed, the current value is added to the simulation
pattern information using a new structure variable for pattern information comparison. If the current
order is the same as the previous order, the step size is as large as the duration in the previous pattern
structure information is applied. In this manner, repetitive simulation sections can be reduced. If the
value is not the same, the step is set to 1 by rolling back to the previous step again, and then the
simulation is performed. Usually, because the simulation values are repeated several times in Tp2

inside the driving cycle, there is a high probability that the same value will appear even after passing
the step by as much as the duration. Furthermore, because the same pattern of the simulation value
can reappear in the repetition cycle, the existence of the same simulation value in the stored structure
is checked. If such a value exists, it is updated by adding 1 to the order in the structure. Thereafter,
the existence of the same value in the previously saved pattern information and the order is checked.
If there is any such value, the duration is applied as a new step size. In this manner, efficiency and
speed of the simulation can be improved because the simulation can be performed by maximally
expanding the step size for the same simulation value in the remaining cycles after excluding the first
cycle. Furthermore, because the EV simulation method usually measures the EV driving distance
or battery SOC by repeating the whole cycle Tp2, the pattern information saved during Tp1 can be
continually used.

3.2.2. Efficient Zero Crossing Detection Algorithm

The second algorithm can be used in the co-simulation using ZCD and repeating rollbacks can be
minimized. The ZCD technique is useful because zero crossing (ZC) can be determined. When the
bi-section algorithm is used for ZCD, rollback is performed by reducing the step size by half if ZCP
occurs and the error with 0 is large; rollback is stopped only if the result is below the threshold value.

Sensors 2020, 20, 252 12 of 27

However, in the case of many ZCPs occurring in a short time, as shown in Figure 8, the simulation
time will be lengthy due to frequent rollbacks if the bi-section algorithm is used.

Sensors 2019, 19, x 11 of 26

Figure 7. New European Driving Cycle (typical repetition cycle).

3.2.2. Efficient Zero Crossing Detection Algorithm

The second algorithm can be used in the co-simulation using ZCD and repeating rollbacks can
be minimized. The ZCD technique is useful because zero crossing (ZC) can be determined. When the
bi-section algorithm is used for ZCD, rollback is performed by reducing the step size by half if ZCP
occurs and the error with 0 is large; rollback is stopped only if the result is below the threshold value.
However, in the case of many ZCPs occurring in a short time, as shown in Figure 8, the simulation
time will be lengthy due to frequent rollbacks if the bi-section algorithm is used.

(a)

(b)

Figure 8. Examples of simulation using the New European Driving Cycle; (a) tractive effort or force
Ft (N), (b) power consumption from the battery Pbc (W).

Therefore, the proposed algorithm saves the rollback pattern if ZCP occurs in the first repetition
cycle 𝑇ଵ. If ZCP occurs afterwards, a small step size is applied by using the saved rollback pattern
information in order to reduce unnecessary rollbacks. To accomplish this, the proposed algorithm
uses the following method. As shown in Figure 9, the cases of ZCP occurrence can be divided into
two cases: occurrence in a graph of increasing or decreasing shape, and continuously maintaining the
same value and then suddenly changing from a positive value to a negative value or vice versa in a
stepwise manner.

Figure 8. Examples of simulation using the New European Driving Cycle; (a) tractive effort or force Ft

(N), (b) power consumption from the battery Pbc (W).

Therefore, the proposed algorithm saves the rollback pattern if ZCP occurs in the first repetition
cycle Tp1. If ZCP occurs afterwards, a small step size is applied by using the saved rollback pattern
information in order to reduce unnecessary rollbacks. To accomplish this, the proposed algorithm
uses the following method. As shown in Figure 9, the cases of ZCP occurrence can be divided into
two cases: occurrence in a graph of increasing or decreasing shape, and continuously maintaining the
same value and then suddenly changing from a positive value to a negative value or vice versa in a
stepwise manner.Sensors 2019, 19, x 12 of 26

Figure 9. Example of zero crossing.

First, in the case of a sequential graph shape with a slope, the simulation graph is continuous in
each section; however, the same value is not maintained and the value continuously changes, as
shown in Figure 7. Here, sections are divided into down crossing sections, for each of which the value
is changed from a positive value to a negative value, and up crossing sections, in which a negative
value is changed into a positive value.

In the case of ZC repeating with such a pattern, a “list” is created to store a certain number of
simulation values continuously every time the simulation is performed in order to apply the step size
by predicting the next ZC, as shown in Figure 10. During the first small repetition cycle 𝑇ଵ, the
simulation values before the occurrence of ZC are continuously stored in the “list”. Then, when down
crossing or up crossing occurs, they are stored in the front part of the array space designed to predict
each down/up crossing. The simulation values and step size (h) values from the start to the end of
rollback are stored next in continuation. Because this study assumed the use of the bisection
algorithm, the step size change while performing the rollback is always smaller than 1, i.e., 2ି୬(n >=
1).

Figure 10. Zero crossing prediction with up and down crossing array.

After ZC, the current simulation value is compared with the first value in the down/up crossing
array saved previously to check if they are the same. If they have the same value, the remaining part
of the array are all compared as well, and if all values are consistent, the step sizes saved in the
previously performed rollbacks are applied sequentially, thereby preventing unnecessary rollbacks.

Secondly, in the case of ZC occurring repeatedly, the simulation graph has a continuous constant
value in each section, but the value changes to a different value cyclically, as shown in Figure 9.

Figure 9. Example of zero crossing.

First, in the case of a sequential graph shape with a slope, the simulation graph is continuous in
each section; however, the same value is not maintained and the value continuously changes, as shown
in Figure 7. Here, sections are divided into down crossing sections, for each of which the value is
changed from a positive value to a negative value, and up crossing sections, in which a negative value
is changed into a positive value.

In the case of ZC repeating with such a pattern, a “list” is created to store a certain number of
simulation values continuously every time the simulation is performed in order to apply the step size by
predicting the next ZC, as shown in Figure 10. During the first small repetition cycle Tp1, the simulation
values before the occurrence of ZC are continuously stored in the “list”. Then, when down crossing
or up crossing occurs, they are stored in the front part of the array space designed to predict each
down/up crossing. The simulation values and step size (h) values from the start to the end of rollback

Sensors 2020, 20, 252 13 of 27

are stored next in continuation. Because this study assumed the use of the bisection algorithm, the step
size change while performing the rollback is always smaller than 1, i.e., 2−n(n >= 1).

Sensors 2019, 19, x 12 of 26

Figure 9. Example of zero crossing.

First, in the case of a sequential graph shape with a slope, the simulation graph is continuous in
each section; however, the same value is not maintained and the value continuously changes, as
shown in Figure 7. Here, sections are divided into down crossing sections, for each of which the value
is changed from a positive value to a negative value, and up crossing sections, in which a negative
value is changed into a positive value.

In the case of ZC repeating with such a pattern, a “list” is created to store a certain number of
simulation values continuously every time the simulation is performed in order to apply the step size
by predicting the next ZC, as shown in Figure 10. During the first small repetition cycle 𝑇ଵ, the
simulation values before the occurrence of ZC are continuously stored in the “list”. Then, when down
crossing or up crossing occurs, they are stored in the front part of the array space designed to predict
each down/up crossing. The simulation values and step size (h) values from the start to the end of
rollback are stored next in continuation. Because this study assumed the use of the bisection
algorithm, the step size change while performing the rollback is always smaller than 1, i.e., 2ି୬(n >=
1).

Figure 10. Zero crossing prediction with up and down crossing array.

After ZC, the current simulation value is compared with the first value in the down/up crossing
array saved previously to check if they are the same. If they have the same value, the remaining part
of the array are all compared as well, and if all values are consistent, the step sizes saved in the
previously performed rollbacks are applied sequentially, thereby preventing unnecessary rollbacks.

Secondly, in the case of ZC occurring repeatedly, the simulation graph has a continuous constant
value in each section, but the value changes to a different value cyclically, as shown in Figure 9.

Figure 10. Zero crossing prediction with up and down crossing array.

After ZC, the current simulation value is compared with the first value in the down/up crossing
array saved previously to check if they are the same. If they have the same value, the remaining part of
the array are all compared as well, and if all values are consistent, the step sizes saved in the previously
performed rollbacks are applied sequentially, thereby preventing unnecessary rollbacks.

Secondly, in the case of ZC occurring repeatedly, the simulation graph has a continuous constant
value in each section, but the value changes to a different value cyclically, as shown in Figure 9.

In the case of ZC repeating with such a pattern, the following processes (Algorithm 3) are
performed to predict the next ZC. First, the current simulation value is compared with the previous
value to check if they are the same. When the same value is maintained continuously, the current value
is saved in the array storing the “level history” and the array index is increased. Here, the starting time
of the level was saved, and afterwards, when the ZC reappeared and the simulation value changed,
the ending time of the level was saved as well. Furthermore, the duration from the starting time to the
ending time of the level was saved.

If the current simulation value is the same as the first value of the previous array, a search
is performed to check whether the previously saved level value is in the array. If the level value
exists, the saved duration time is added to the starting time of the current level in order to predict
the time when ZC will occur in the future. If the remaining predicted ZC time is smaller than the
current step size, the simulation is performed by changing the remaining time to the current step size,
thereby moving to the timepoint immediately before the occurrence of ZC. Next, the previously saved
step size value is applied to the next step size. If the step size is applied, the rollbacks can be reduced
in the case of ZC occurrence. However, if ZC does not occur, the simulation is performed by reverting
to the original step size.

Sensors 2020, 20, 252 14 of 27

Algorithm 3: level zero crossing algorithm
Sensors 2019, 19, x 13 of 26

Algorithm 3: level zero crossing algorithm
1 while time ≤ End do
2 if prevVal * currVal < 0 then // zero crossing
3 if hh > 𝑇௧௦ then
4 Rollback to previous simulation time.
5 else
6 if preVal == lastLevel then
7 This is end of Rollback;
8 Save last simulation time and step size, and duration to zcLevel array.
9 end

10 hh=1; // Recover to original time step size
11 end
12 end
13 if prevVal == currVal then
14 if lastLevel ≠ currVal then
15 This is first time when zclevel array for different level is saved;
16 Save start time and value of level;
17 else
18 if There is zclevel array saved. AND It is not searched then
19 Compare currVal to level values in zcLevel array.
20 end
21 if It is found then
22 Predict remained time when the step size will be reduced using zcLevel array.
23 if The predicted time is current time then
24 Apply hh with saved hh in zcLevel array.
25 end
26 end
27 end
28 end
29 end

In the case of ZC repeating with such a pattern, the following processes (Algorithm 3) are
performed to predict the next ZC. First, the current simulation value is compared with the previous
value to check if they are the same. When the same value is maintained continuously, the current
value is saved in the array storing the “level history” and the array index is increased. Here, the
starting time of the level was saved, and afterwards, when the ZC reappeared and the simulation
value changed, the ending time of the level was saved as well. Furthermore, the duration from the
starting time to the ending time of the level was saved.

If the current simulation value is the same as the first value of the previous array, a search is
performed to check whether the previously saved level value is in the array. If the level value exists,
the saved duration time is added to the starting time of the current level in order to predict the time
when ZC will occur in the future. If the remaining predicted ZC time is smaller than the current step
size, the simulation is performed by changing the remaining time to the current step size, thereby
moving to the timepoint immediately before the occurrence of ZC. Next, the previously saved step
size value is applied to the next step size. If the step size is applied, the rollbacks can be reduced in
the case of ZC occurrence. However, if ZC does not occur, the simulation is performed by reverting
to the original step size.

4. Distributed CPS Model Based on Hybrid Modeling

4.1. EV Co-Simulation Model

The EV co-simulation model was used to simulate the measurement of the SOC of batteries
according to the driving cycle. Figure 11 presents a block diagram of the co-simulation model,
showing the input and output of each FMU. As shown in the figure, each subsystem implements an
FMU of co-simulation type and performs the compiling using the FMU SDK tool and each FMU

4. Distributed CPS Model Based on Hybrid Modeling

4.1. EV Co-Simulation Model

The EV co-simulation model was used to simulate the measurement of the SOC of batteries
according to the driving cycle. Figure 11 presents a block diagram of the co-simulation model,
showing the input and output of each FMU. As shown in the figure, each subsystem implements
an FMU of co-simulation type and performs the compiling using the FMU SDK tool and each FMU
calculates and outputs a simulation value based on the input value. Every FMU was implemented
using fmiSetFMUState and fmiGetFMUState to provide the rollback function, and the performance of
the proposed MAs was tested through the co-simulation. In previous studies [36–38], the components
of EV were modeled mathematically and based on these, simulations were performed to particularly
measure battery consumption according to the driving cycle inputted in the EV model. Herein,
the modeling of the subsystem through a mathematical model by the FMU is explained.

Sensors 2020, 20, 252 15 of 27

Sensors 2019, 19, x 14 of 26

calculates and outputs a simulation value based on the input value. Every FMU was implemented
using fmiSetFMUState and fmiGetFMUState to provide the rollback function, and the performance
of the proposed MAs was tested through the co-simulation. In previous studies [36–38], the
components of EV were modeled mathematically and based on these, simulations were performed
to particularly measure battery consumption according to the driving cycle inputted in the EV model.
Herein, the modeling of the subsystem through a mathematical model by the FMU is explained.

Figure 11. Functional mock-up interface-based electric vehicle co-simulation model.

4.1.1. Driving Cycle FMU

This FMU calculates the EV speed and acceleration value by time. The calculation formula is as
follows. In other words, if the vehicle’s driving cycle is referenced, the speed value by current time
(s) can be obtained. However, as this value is a discrete value of the second unit, a continuous
simulation was facilitated through the following formula for each section by referencing the driving
cycle. Here, if the acceleration a(t) is not provided in the driving cycle, it can be simply calculated as
follows. 𝑣(𝑡) = 𝑣 + 𝑎 × 𝑡 (1)𝑣(𝑡) = 𝑣(𝑘) + 𝑎(𝑘) × 𝑡 (𝑘 ≤ 𝑡 < 𝑘 + 1) (2)𝑎(𝑘) = 𝑣(𝑘 + 1) − 𝑣(k) (𝑘 = 0, 1,2, … (sec))𝑎 (3)

4.1.2. Tractive effort FMU

Next, the following is a formula used in the FMU model to find the vehicle’s tractive effort or
force 𝐹௧ , traction torque 𝑇௧ and traction power 𝑃௧ . Based on these, the vehicle wheel’s angular
velocity and revolution per minute (RPM) are determined. 𝐹௧ = 𝐹 + 𝐹ௗ+𝐹 + 𝐹 + 𝐹௪ (4)𝐹 = 𝜇𝑚𝑔 (5)

𝐹ௗ = 12 𝜌𝐴𝐶ௗ𝑣ଶ (6)

𝐹 = 𝑚𝑔𝑠𝑖𝑛(𝛼) (7)𝐹 = 𝑚𝑎 (8)

Figure 11. Functional mock-up interface-based electric vehicle co-simulation model.

4.1.1. Driving Cycle FMU

This FMU calculates the EV speed and acceleration value by time. The calculation formula is as
follows. In other words, if the vehicle’s driving cycle is referenced, the speed value by current time (s)
can be obtained. However, as this value is a discrete value of the second unit, a continuous simulation
was facilitated through the following formula for each section by referencing the driving cycle. Here,
if the acceleration a(t) is not provided in the driving cycle, it can be simply calculated as follows.

v(t) = v0 + a× t (1)

v(t) = v(k) + a(k) × t (k ≤ t < k + 1) (2)

a(k) = v(k + 1) − v(k) (k = 0, 1, 2, . . . (sec))a (3)

4.1.2. Tractive effort FMU

Next, the following is a formula used in the FMU model to find the vehicle’s tractive effort or
force Ft, traction torque Tt and traction power Pt. Based on these, the vehicle wheel’s angular velocity
and revolution per minute (RPM) are determined.

Ft = Frr + Fad+Fhc + Fla + Fwa (4)

Frr = µrrmg (5)

Fad =
1
2
ρACdv2 (6)

Fhc = mgsin(α) (7)

Fla = ma (8)

Fwa = 0.05× Fla (9)

Tt = Ft × rw (10)

Pt = Ft × v (11)

ωw =
v
rw

(12)

Sw =
30
π
× ωw (13)

Sensors 2020, 20, 252 16 of 27

4.1.3. Gear Box FMU

For a gear box model, the following formulas are used to calculate the electric machine (electric
motors, electric generators)’s shaft power (Ps) and shaft torque (Ts) based on the vehicle’s tractive
effort or force. If the tractive force is a negative number, i.e., If brake is applied, power is generated by
regenerative braking; therefore, a negative value is obtained when calculated with the following formula:

Ts =
Tt

ηg ×G
(Pt > 0) (14)

Tsr = −ηg ×
Tt

G
(Pt < 0) (15)

Ss = Ssr = G× Sw (16)

Ps = Ts × Ss ×
π
30

(17)

Psr = Tsr × Ss ×
π
30

(18)

4.1.4. Electric-Machine FMU

We used an induction machine (asynchronous machine) to model the electric machine and assumed
that this model used an AC-DC converter for regenerative braking mode [41,42]. The efficiency map
data determined by this model and the electric machine’s speed and torque data were used to obtain
the efficiency of power consumed in the motoring mode and the efficiency of power generated in the
recuperation mode, which are indicated by ηm and ηr, respectively. Then, based on these, the power
consumed in the motoring mode and the power generated in the recuperation mode were calculated by
the following formulas. The Lookup2d function was implemented in the FMU. This function performs
a role similar to that of lookup2d in MATLAB/Simulink. We calculated efficiency according to torque
and the speed of the electric machine using efficiency curves given in [36].

Efficiency(η) = lookup2d(Torque(Nm), Speed(rpm)) (19)

ηm = lookup2d(Ts, Ss) (20)

ηr = lookup2d(Tsr, Ssr) (21)

Pbm =
Ps

ηm
(22)

Pbr = ηr × Psr (23)

4.1.5. Power Consumption FMU

Suppose auxiliary load Paux is the power used for other purposes such as radio or heater, not the
power used for tractive force through vehicle wheels in an EV. Then, this model is for a formula that
calculates the total power consumed in the EV. If the tractive force is a positive number, then the total
power consumed in the EV is the sum of the auxiliary power consumption and the power consumed
in the motoring mode for wheel rotation. If the tractive force is a negative number, then it is the sum
of the auxiliary power consumption and the power generated in the recuperation mode because the
vehicle is in a braking situation.

Pbc(t) =
{

Pbm(t) + Paux, Ft(t) > 0
Pbr(t) + Paux, Ft(t) < 0

(24)

Sensors 2020, 20, 252 17 of 27

4.1.6. Battery Management System (BMS) FMU

The battery management system model consists of a battery pack and a module that measures the
SOC and SOH of the battery [43]. A battery current IB can be obtained through the battery’s no-load
voltage EB0, internal resistance RB0, and power consumption calculated by (24). If this is integrated,
the total consumed electric charge Q can be obtained. Furthermore, the battery cell capacity C may
change depending on the ambient temperature, as revealed by the following formula [34]. Through
this, the current SOC value of the battery can be finally be obtained.

IB(t) =
EB0

2×RBi
−

√(
EB0

2×RBi

)2

−
Pbc
RBi

(25)

Q(t) =
∫ t

0
IBdt (26)

C = C0 ∗
(
1 + alphaC×

(
Tcurrent − Tre f

))
(27)

SOC(t) =
C−Q(t)

C
(28)

In addition, the SOH of the battery can be calculated as follows:

SOH = 1− SOS = SOHc × SOHz (29)

For a new battery, SOHc = 1 and SOHz = 1 therefore, also SOH = 1. In this paper, it is assumed
that the value of SOH is 1.

4.2. Energy Conversion Chain of EV Co-Simulation Model

The EV simulation model has different energy conversion chains because of different energy flows
depending on the motoring and the regenerative mode [37]. In Figure 12, the energy required to move
the EV for 1 s is the same as Pt. First, in the case of motoring mode, the energy of each part is calculated
as follows:

PEM_IN =
PEM_OUT

ηm
(30)

PEM_OUT =
Pt

ηg
(Pt > 0) (31)

Sensors 2019, 19, x 17 of 26

Figure 12. Energy conversion chain of each modes; (a) motoring mode, (b) regenerative braking mode.

4.3. Distributed CPS Simulation Model Considering Sensor Information

Moreover, the EV model can be simulated with the following structure in order to use real-time
sensing data. In other words, the F-DCS simulates the EV model and the sensor node collects sensed
temperature data and saves them in a file, as shown in Figure 13. The data values saved in the file
were applied to the FMU in real-time through a cloud service in order to perform the simulation.

Figure 13. Simulation model including sensor information.

5. Simulation Experiments and Analysis

We experimentally validated the EV simulation model with the proposed algorithms to verify
the results by employing driving cycle data. In the test, the new European driving cycle (NEDC),
where 𝑉௫ equals 120 km/h and 𝑉௩ equals 32 km/h, was adopted as a standard driving cycle. The
NEDC, one of the standard driving cycles that includes specifications of urban, rural, and highway
driving conditions, is composed of four consecutive ECE-15 urban driving cycles (UDC) and one
extra-urban driving cycle (EUDC). Although the NEDC was originally designed to assess gasoline-
driven vehicles, it is now used to evaluate and measure the power consumption and driving range
of diesel-driven, hybrid and electric vehicles. The NEDC reflects the necessary conditions for
evaluating the EV system as it provides average velocity, certain ratio of braking time, and
acceleration similar to those in actual driving. Therefore, it provides cases that closely resemble real-
world situations in EV model simulations. We used FMU SDK [44] and OpenDDS [45] for
implementing F-DCS. For these experiments, we used six personal computers and an Ethernet switch.
Table 1 shows the EV simulation parameter setting values.

Figure 12. Energy conversion chain of each modes; (a) motoring mode, (b) regenerative braking mode.

Sensors 2020, 20, 252 18 of 27

Next, in the regenerative braking mode, the energy of each part is calculated as follows:

PEM_IN = PEM_OUT × ηr (32)

PEM_OUT = Pt × ηg (Pt < 0) (33)

4.3. Distributed CPS Simulation Model Considering Sensor Information

Moreover, the EV model can be simulated with the following structure in order to use real-time
sensing data. In other words, the F-DCS simulates the EV model and the sensor node collects sensed
temperature data and saves them in a file, as shown in Figure 13. The data values saved in the file
were applied to the FMU in real-time through a cloud service in order to perform the simulation.

Sensors 2019, 19, x 17 of 26

Figure 12. Energy conversion chain of each modes; (a) motoring mode, (b) regenerative braking mode.

4.3. Distributed CPS Simulation Model Considering Sensor Information

Moreover, the EV model can be simulated with the following structure in order to use real-time
sensing data. In other words, the F-DCS simulates the EV model and the sensor node collects sensed
temperature data and saves them in a file, as shown in Figure 13. The data values saved in the file
were applied to the FMU in real-time through a cloud service in order to perform the simulation.

Figure 13. Simulation model including sensor information.

5. Simulation Experiments and Analysis

We experimentally validated the EV simulation model with the proposed algorithms to verify
the results by employing driving cycle data. In the test, the new European driving cycle (NEDC),
where 𝑉௫ equals 120 km/h and 𝑉௩ equals 32 km/h, was adopted as a standard driving cycle. The
NEDC, one of the standard driving cycles that includes specifications of urban, rural, and highway
driving conditions, is composed of four consecutive ECE-15 urban driving cycles (UDC) and one
extra-urban driving cycle (EUDC). Although the NEDC was originally designed to assess gasoline-
driven vehicles, it is now used to evaluate and measure the power consumption and driving range
of diesel-driven, hybrid and electric vehicles. The NEDC reflects the necessary conditions for
evaluating the EV system as it provides average velocity, certain ratio of braking time, and
acceleration similar to those in actual driving. Therefore, it provides cases that closely resemble real-
world situations in EV model simulations. We used FMU SDK [44] and OpenDDS [45] for
implementing F-DCS. For these experiments, we used six personal computers and an Ethernet switch.
Table 1 shows the EV simulation parameter setting values.

Figure 13. Simulation model including sensor information.

5. Simulation Experiments and Analysis

We experimentally validated the EV simulation model with the proposed algorithms to verify the
results by employing driving cycle data. In the test, the new European driving cycle (NEDC), where Vmax

equals 120 km/h and Vavg equals 32 km/h, was adopted as a standard driving cycle. The NEDC, one of
the standard driving cycles that includes specifications of urban, rural, and highway driving conditions,
is composed of four consecutive ECE-15 urban driving cycles (UDC) and one extra-urban driving cycle
(EUDC). Although the NEDC was originally designed to assess gasoline-driven vehicles, it is now used
to evaluate and measure the power consumption and driving range of diesel-driven, hybrid and electric
vehicles. The NEDC reflects the necessary conditions for evaluating the EV system as it provides
average velocity, certain ratio of braking time, and acceleration similar to those in actual driving.
Therefore, it provides cases that closely resemble real-world situations in EV model simulations.
We used FMU SDK [44] and OpenDDS [45] for implementing F-DCS. For these experiments, we
used six personal computers and an Ethernet switch. Table 1 shows the EV simulation parameter
setting values.

Sensors 2020, 20, 252 19 of 27

Table 1. EV simulation parameter setting values.

Description Value (Default)

m Mass of the vehicle (kg) 1000
rw Wheel radius (m) 0.2736
g Gravity acceleration (m/s2) 9.81
ρ Air density 1.2
A Front area of vehicle (m2) 2.36
α Angle of driving surface (rad) 0
µrr Rolling resistance coefficient 0.015
Cd Aerodynamic drag coefficient 0.3
ηg Gearbox efficiency 0.98
G Gearbox ratio 8.59
C0 Initial capacity (C) 720000
Rbi Internal resistance (Ω) 0.008
Eb0 Open-circuit voltage (V) 53.6

alphaC Linear temperature coefficient of capacity (K−1) 0.03 (0)
Tref Reference temperature 20

SOHc Capacity state of health 1
SOHz Impedance state of health 1

Several studies involving conventional EV simulations first modeled the subsystems of an EV
mathematically, after which they implemented and simulated the models using MATLAB/Simulink.
This approach allowed the power system and driving distance of the EV to be predicted more
accurately [36,37,41,42]. In our study, we implemented the subsystems of an EV based on the
mathematical modeling method of existing studies. Therefore, the entire model shown in Figure 11 was
implemented and simulated with MATLAB/Simulink first. Then, the results were compared with the
simulation results that were derived by applying the method proposed in this paper, thereby evaluating
the accuracy of the proposed simulation.

Figure 14 shows the results of EV model simulation for 1180 s considering the driving cycle.
The results presented in Figure 14 appear to agree well with the results of a simulation based on
MATLAB/Simulink [46]. This is because it adopts the driving cycle data where most of the average
velocities and key values are the same.

Sensors 2019, 19, x 18 of 26

Table 1. EV simulation parameter setting values.

 Description Value (Default)
m Mass of the vehicle (kg) 1000 𝑟௪ Wheel radius (m) 0.2736
g Gravity acceleration (m/s2) 9.81 𝜌 Air density 1.2
A Front area of vehicle (m2) 2.36 𝛼 Angle of driving surface (rad) 0 𝜇 Rolling resistance coefficient 0.015
Cd Aerodynamic drag coefficient 0.3 𝜂 Gearbox efficiency 0.98
G Gearbox ratio 8.59
C0 Initial capacity (C) 720000
Rbi Internal resistance (Ω) 0.008
Eb0 Open-circuit voltage (V) 53.6

alphaC Linear temperature coefficient of capacity (K-1) 0.03 (0)
Tref Reference temperature 20

SOHc Capacity state of health 1
SOHz Impedance state of health 1

Several studies involving conventional EV simulations first modeled the subsystems of an EV
mathematically, after which they implemented and simulated the models using MATLAB/Simulink.
This approach allowed the power system and driving distance of the EV to be predicted more
accurately [36–37,41–42]. In our study, we implemented the subsystems of an EV based on the
mathematical modeling method of existing studies. Therefore, the entire model shown in Figure 11
was implemented and simulated with MATLAB/Simulink first. Then, the results were compared
with the simulation results that were derived by applying the method proposed in this paper, thereby
evaluating the accuracy of the proposed simulation.

Figure 14 shows the results of EV model simulation for 1180 s considering the driving cycle. The
results presented in Figure 14 appear to agree well with the results of a simulation based on
MATLAB/Simulink [46]. This is because it adopts the driving cycle data where most of the average
velocities and key values are the same.

(a)

(b)

Figure 14. Cont.

Sensors 2020, 20, 252 20 of 27
Sensors 2019, 19, x 19 of 26

(c)

(d)

Figure 14. Results of EV simulation using driving cycle data; (a) Velocity (m/s) for time t, (b) tractive
effort or force Ft (N), (c) power consumption from the battery Pbc (W), (d) SOC of the battery.

Furthermore, to quantitatively measure the simulation accuracy of the proposed method, the
mean absolute percentage error (MAPE) value of the simulation values was determined as follows:

𝑀𝐴𝑃𝐸(%) = 1𝑛 ฬ𝑥పෝ − 𝑥𝑥 ฬ
ୀଵ × 100 (34)

where n is the number of simulation data values, 𝑥పෝ is the ith simulation result when a certain
algorithm was used, and 𝑥 is the ith simulation value when MATLAB/Simulink was used. For the
simulation data, the values measured in 1 s increments from 0 to 1180 s were used to evaluate the
performance of the proposed algorithm. Because the MAPE can be applied only when the value of 𝑥 is not 0, as shown in the above equation, we measured the simulation results Ft, Pbc, and SOC that
did not have a value of 0 in the simulation section.

The simulation values of FMU SDK and F-DCS with RRA, which are provided in Table 2, are
less than 5%. Furthermore, the two algorithms yielded the same MAPE values, and this is because
the F-DCS with the RRA algorithm was implemented on the basis of FMU SDK and the repeating
sections were removed while maintaining the same simulation accuracy of FMU SDK. The MAPE
values of DACCOSIM were smaller than those of F-DCS, and it was shown that accurate simulation
is feasible.

Table 2. MAPE (%) of simulation values.

Simulation Value DACCOSIM FMU SDK F-DCS with RRA
Ft 6.7 4.8 4.8
Pbc 11.7 1.25 1.25

SOC 0.075 0.66 0.66

Next, each algorithm was evaluated by using the following equation to measure the zero
crossing point error (ZCPE), which indicates the error in the simulation time for ZCP. Here, m is the
frequency of ZCP that occurs in all simulation sections. 𝐴𝑣𝑔 𝑍𝐶𝑃𝐸 = ∑ 𝑇ାଵ − 𝑇ୀଵ 𝑚 (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑍𝐶𝑃) (35)

The simulation results in Table 3 indicate that the average ZCPE of DACCOSIM and FMU SDK
is the same as the step size. This is because in the case of a fixed step size, the time error for ZCP is
proportional to the step size, as shown in Figure 9. However, in the case of F-DCS with RRA, it is
confirmed that the simulation can be performed for ZCP with a value smaller than the time threshold
value by using the bisection algorithm.

Figure 14. Results of EV simulation using driving cycle data; (a) Velocity (m/s) for time t, (b) tractive
effort or force Ft (N), (c) power consumption from the battery Pbc (W), (d) SOC of the battery.

Furthermore, to quantitatively measure the simulation accuracy of the proposed method, the mean
absolute percentage error (MAPE) value of the simulation values was determined as follows:

MAPE(%) =
1
n

n∑
i=1

∣∣∣∣∣ x̂i − xi
xi

∣∣∣∣∣× 100 (34)

where n is the number of simulation data values, x̂i is the ith simulation result when a certain algorithm
was used, and xi is the ith simulation value when MATLAB/Simulink was used. For the simulation
data, the values measured in 1 s increments from 0 to 1180 s were used to evaluate the performance of
the proposed algorithm. Because the MAPE can be applied only when the value of xi is not 0, as shown
in the above equation, we measured the simulation results Ft, Pbc, and SOC that did not have a value
of 0 in the simulation section.

The simulation values of FMU SDK and F-DCS with RRA, which are provided in Table 2, are less
than 5%. Furthermore, the two algorithms yielded the same MAPE values, and this is because the
F-DCS with the RRA algorithm was implemented on the basis of FMU SDK and the repeating sections
were removed while maintaining the same simulation accuracy of FMU SDK. The MAPE values of
DACCOSIM were smaller than those of F-DCS, and it was shown that accurate simulation is feasible.

Table 2. MAPE (%) of simulation values.

Simulation Value DACCOSIM FMU SDK F-DCS with RRA

Ft 6.7 4.8 4.8
Pbc 11.7 1.25 1.25

SOC 0.075 0.66 0.66

Next, each algorithm was evaluated by using the following equation to measure the zero crossing
point error (ZCPE), which indicates the error in the simulation time for ZCP. Here, m is the frequency
of ZCP that occurs in all simulation sections.

Avg ZCPE =

∑m
i=1 Tn+1 − Tn

m
(f or all ZCP) (35)

The simulation results in Table 3 indicate that the average ZCPE of DACCOSIM and FMU SDK
is the same as the step size. This is because in the case of a fixed step size, the time error for ZCP is
proportional to the step size, as shown in Figure 9. However, in the case of F-DCS with RRA, it is
confirmed that the simulation can be performed for ZCP with a value smaller than the time threshold
value by using the bisection algorithm.

Sensors 2020, 20, 252 21 of 27

Table 3. Average zero crossing point error (ZCPE) of simulation values.

Simulation Value

DACCOSIM/FMU SDK F-DCS with RRA

Fixed Step Size Adaptive Step Size
(Tthres = 0.0001)1 0.01 0.0001

Average ZCPE

Ft 1 0.01 0.0001 0.000061
Pbc 1 0.01 0.0001 0.000061

The simulation results using the NEDC driving cycle data, where the validation procedure with
the measurement of the SOC value changing with simulation duration until the value of 0.1 was applied,
is shown in Figure 15. In the validation with the application of the F-DCS with RRA for effectively
reducing the overall simulation time, the calculated amount of battery SOC consumed was confirmed
to agree with the results of general simulation cases (MATLAB/Simulink, DACOSSIM, FMU SDK
default co-simulation algorithm [47]). An examination of the simulation result in Figure 15a reveals
that the resulting battery SOC was almost the same as that of other conventional simulation tools.
This result verifies the accuracy of the simulation measurement of the battery SOC of the proposed
F-DCS. The simulation running time was evaluated in comparison with other FMI-based simulation
tools. As shown in Figure 15b, the simulation time required by F-DCS with RRA was more than 30%
less than that required by other methods. This means that if a driving cycle pattern with repetitive
cycles exists in the simulation, it is safe to perform the simulation by proceeding with the rollback
using that pattern. In addition, comparing the values of the stored rollback pattern information with
the values generated during the progress of the simulation, looking for mapped values and applying
them can improve efficiency in terms of simulation time.

Figure 16a shows the results of the performance of the number of DDS data message transmissions
and in an environment that considers distributed co-simulation. As data are transmitted in the
pub/sub format, as described by the distributed CPS simulation frameworks in Section 4, the number
of messages generated by a simulation with a connected structure, as shown in Figure 11, can be
calculated by the following formula.

Total data message = Simulation loop numalgorithm × numlink (36)

Total control message = Rollback numalgorithm × (numnode − 1) (37)

Figure 16b shows that the result of DDS control messages decreased by more than 45%. With the
FMU SDK algorithm, the occurrence of message generation increases significantly as all nodes that
subscribe to a rollback receive a message containing the rollback information when the rollback occurs.
By applying the F-DCS with RRA algorithm, the time for exchanging messages with the progress of
simulation appears to be reduced by more than 30%, according to the reduction of the number of
rollbacks using the patterns.

Finally, the result of applying the sensor to the simulation and linking it is demonstrated in
Figure 17. The simulation test was conducted using the test model shown in Figure 11 and a wide
range of ambient temperatures was used for the information generated from the sensor. The simulation
test was performed by using the measurement environments of 20 ◦C and 25 ◦C for the temperature
measured with the sensor. In the results of battery SOC, the sensor information was not reflected
without the F-DCS; nevertheless, the proposed algorithm could obtain simulation results by reflecting
the sensor information value.

Sensors 2020, 20, 252 22 of 27

Sensors 2019, 19, x 20 of 26

The simulation results using the NEDC driving cycle data, where the validation procedure with
the measurement of the SOC value changing with simulation duration until the value of 0.1 was
applied, is shown in Figure 15. In the validation with the application of the F-DCS with RRA for
effectively reducing the overall simulation time, the calculated amount of battery SOC consumed was
confirmed to agree with the results of general simulation cases (MATLAB/Simulink, DACOSSIM,
FMU SDK default co-simulation algorithm [47]). An examination of the simulation result in
Figure 15a reveals that the resulting battery SOC was almost the same as that of other conventional
simulation tools. This result verifies the accuracy of the simulation measurement of the battery SOC
of the proposed F-DCS. The simulation running time was evaluated in comparison with other FMI-
based simulation tools. As shown in Figure 15b, the simulation time required by F-DCS with RRA
was more than 30% less than that required by other methods. This means that if a driving cycle
pattern with repetitive cycles exists in the simulation, it is safe to perform the simulation by
proceeding with the rollback using that pattern. In addition, comparing the values of the stored
rollback pattern information with the values generated during the progress of the simulation, looking
for mapped values and applying them can improve efficiency in terms of simulation time.

(a)

(b)

Figure 15. Results of model validation; (a) result of battery SOC, (b) average total simulation time
(sec).

Table 3. Average zero crossing point error (ZCPE) of simulation values.

Simulation
value

DACCOSIM / FMU SDK F-DCS with RRA
Fixed step size Adaptive step size

(Tthres = 0.0001) 1 0.01 0.0001
Average ZCPE

Ft 1 0.01 0.0001 0.000061
Pbc 1 0.01 0.0001 0.000061

Figure 15. Results of model validation; (a) result of battery SOC, (b) average total simulation time (sec).

Sensors 2019, 19, x 21 of 26

Figure 16a shows the results of the performance of the number of DDS data message
transmissions and in an environment that considers distributed co-simulation. As data are
transmitted in the pub/sub format, as described by the distributed CPS simulation frameworks in
Section 4, the number of messages generated by a simulation with a connected structure, as shown
in Figure 11, can be calculated by the following formula. 𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑜𝑝 𝑛𝑢𝑚௧ × 𝑛𝑢𝑚 (36)𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑅𝑜𝑙𝑙𝑏𝑎𝑐𝑘 𝑛𝑢𝑚௧ × (𝑛𝑢𝑚ௗ − 1) (37)

Figure 16b shows that the result of DDS control messages decreased by more than 45%. With the
FMU SDK algorithm, the occurrence of message generation increases significantly as all nodes that
subscribe to a rollback receive a message containing the rollback information when the rollback
occurs. By applying the F-DCS with RRA algorithm, the time for exchanging messages with the
progress of simulation appears to be reduced by more than 30%, according to the reduction of the
number of rollbacks using the patterns.

(a)

(b)

Figure 16. Results of data distribution service (DDS) validation; (a) DDS data message, (b) DDS
control message.

Finally, the result of applying the sensor to the simulation and linking it is demonstrated in
Figure 17. The simulation test was conducted using the test model shown in Figure 11 and a wide
range of ambient temperatures was used for the information generated from the sensor. The
simulation test was performed by using the measurement environments of 20 °C and 25 °C for the
temperature measured with the sensor. In the results of battery SOC, the sensor information was not
reflected without the F-DCS; nevertheless, the proposed algorithm could obtain simulation results by
reflecting the sensor information value.

Figure 16. Results of data distribution service (DDS) validation; (a) DDS data message, (b) DDS
control message.

Sensors 2020, 20, 252 23 of 27

Sensors 2019, 19, x 22 of 26

Figure 17. Test results on distributed co-simulation linked with sensor information.

6. Conclusions

Co-simulation has significant potential in terms of improving the accuracy and efficiency of CPS
simulations. However, because modeling and simulation differ between industrial areas, it is
reasonable to apply appropriate techniques to each area. This paper presents a DDS middleware-
based distributed co-simulation framework and proposes a method of determining the step size that
can be commonly applied in all FMUs. When a repetitive pattern was observed in the frequently used
driving cycle in EV simulation, simulations were performed by predicting the pattern. Based on this
method, the proposed algorithms facilitated more efficient simulations while still maintaining
conventional accuracy.

The proposed algorithms were applied to the EV simulation model and the results confirm that
the proposed algorithms improved the performance by reducing the simulation time by over 30%
compared to conventional algorithms. Furthermore, real-time data were received from the sensor
node and applied to the EV simulation model. The results confirm that the real environment could
be considered in the simulations. If an algorithm applicable to models of other areas in addition to
the EV model in this study were developed, it would become the foundation of digital twin research.

Author Contributions: Conceptualization, S.J.H.; formal analysis, S.J.H.; investigation, S.J.H.; methodology,
S.J.H., D.S.L.; writing—review and editing, D.S.L.; supervision, I.W.J., W.T.K; funding acquisition, W.T.K

Funding: This research was supported by the Institute Information & communications Technology Promotion
(IITP) (NO.2019-0-01347 and No. 2018-0-01456)

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Abbreviations
CPS cyber physical system
EV electric vehicle
ICT information and communication technology
CPESs cyber physical energy systems
WAN wide area network
ZC zero crossing
ZCP zero crossing point
ZCPE zero crossing point error
FMI Functional mock-up interface

Figure 17. Test results on distributed co-simulation linked with sensor information.

6. Conclusions

Co-simulation has significant potential in terms of improving the accuracy and efficiency of
CPS simulations. However, because modeling and simulation differ between industrial areas, it is
reasonable to apply appropriate techniques to each area. This paper presents a DDS middleware-based
distributed co-simulation framework and proposes a method of determining the step size that can
be commonly applied in all FMUs. When a repetitive pattern was observed in the frequently used
driving cycle in EV simulation, simulations were performed by predicting the pattern. Based on
this method, the proposed algorithms facilitated more efficient simulations while still maintaining
conventional accuracy.

The proposed algorithms were applied to the EV simulation model and the results confirm that
the proposed algorithms improved the performance by reducing the simulation time by over 30%
compared to conventional algorithms. Furthermore, real-time data were received from the sensor
node and applied to the EV simulation model. The results confirm that the real environment could be
considered in the simulations. If an algorithm applicable to models of other areas in addition to the EV
model in this study were developed, it would become the foundation of digital twin research.

Author Contributions: Conceptualization, S.H.; formal analysis, S.H.; investigation, S.H.; methodology, S.H.,
D.L.; writing—review and editing, D.L.; supervision, I.J., W.K.; funding acquisition, W.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Institute Information & communications Technology Promotion
(IITP) (NO.2019-0-01347 and No. 2018-0-01456).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Abbreviations
CPS cyber physical system
EV electric vehicle
ICT information and communication technology
CPESs cyber physical energy systems
WAN wide area network
ZC zero crossing

Sensors 2020, 20, 252 24 of 27

ZCP zero crossing point
ZCPE zero crossing point error
FMI Functional mock-up interface
API application programming interface
FMU functional mock-up unit
IP intellectual property
MA master algorithm
DDS data distribution service
OMG object management group
IoT internet of things
RPM revolution per minute
BMS battery management system
MAPE mean absolute percentage error
NEDC new European driving cycle
UDE urban driving cycle
SOC State of charge
SOH State of health
SOS State of sickness
Variables
v Velocity of the vehicle, m/s
A Frontal area of the vehicle, m2

a Acceleration of the vehicle, m/s2

Ft Traction force of the vehicle, N
Frr Rolling resistance force of the wheels, N
Fad Aero dynamic drag, N
Fhc Hill climbing force, N
Fla Force required to give linear acceleration, N
Fwa Force required to give angular acceleration to the rotating motor, N
µrr Coefficient of rolling resistance
m Vehicle mass, kg
g Gravity acceleration, m/s2

ρ Density of the air
Cd Aerodynamic drag coefficient
α Angle of the driving surface, rad
rw Wheel radius, m
Pt Traction power, W
wW Angular velocity of the wheels, rad/s
SW Angular velocity of the wheels, rpm
Tt Traction torque, Nm
Ts Shaft torque of electric machine (motoring mode), Nm
Tsr Shaft torque of electric machine (regenerative braking mode), Nm
ηg Gearbox efficiency g
G Gear ratio of differential
Ss Shaft angular velocity of electric machine (motoring mode), rpm
Ssr Shaft angular velocity of electric machine (regenerative breaking mode), rpm
Ps Shaft power of electric machine (motoring mode), W
Psr Shaft power of electric machine (regenerative breaking mode), W
ηm Efficiency of power consumed (motoring mode)
ηr Efficiency of power generated (regenerative breaking mode)
Pbm Power consumed by electric machine (motoring mode), W
Pbr Power generated by electric machine (regenerative breaking mode), W
Paux Power consumed by auxiliary loads, W
Pbc Total power consumed in the EV, W

Sensors 2020, 20, 252 25 of 27

Eb0 Open-circuit voltage of the battery, V
RBi Internal Resistance of the battery, Ω
Q Total charge of the battery
IB Battery current,
C Battery capacity, Ah
alphaC Linear temperature coefficient of the capacity C, K−1

Tref Reference temperature, K

References

1. Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; IEEE Computer
Society: Washington, DC, USA, 2008; pp. 363–369.

2. Derler, P.; Lee, E.A.; Vincentelli, A.S. Modeling cyber–physical systems. In Proceedings of the 18th IEEE
International Conference and Workshops on Engineering of Computer-Based Systems, Las Vegas, NV, USA,
27–29 April 2011; Volume 100, pp. 13–28.

3. Eidson, J.C.; Lee, E.A.; Matic, S.; Seshia, S.A.; Zou, J. Distributed real-time software for cyber–physical
systems. Proc. IEEE 2011, 100, 45–59. [CrossRef]

4. National Science Foundation of the United States. Cyber-Physical System (CPS) Program Solicitation.
Available online: http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm (accessed on 18 August 2017).

5. Guan, X.; Yang, B.; Chen, C.; Dai, W.; Wang, Y. A comprehensive overview of cyber-physical systems: From
perspective of feedback system. IEEE/CAA J. Autom. Sin. 2016, 3, 1–14.

6. Sharma, A.; Rathee, G.; Kumar, R.; Saini, H.; Vijaykumar, V.; Nam, Y.; Chilamkurti, N. A Secure, Energy-and
SLA-Efficient (SESE) E-Healthcare Framework for Quickest Data Transmission Using Cyber-Physical System.
Sensors 2019, 19, 2119. [CrossRef] [PubMed]

7. Jiang, Y.; Yin, S.; Kaynak, O. Data-driven monitoring and safety control of industrial cyber-physical systems:
Basics and beyond. IEEE Access 2018, 6, 47374–47384. [CrossRef]

8. Roy, D.; Zhang, L.; Chang, W.; Mitter, S.K.; Chakraborty, S. Semantics-preserving cosynthesis of cyber-physical
systems. Proc. IEEE 2017, 106, 171–200. [CrossRef]

9. Yu, Z.; Zhou, L.; Ma, Z.; El-Meligy, M.A. Trustworthiness modeling and analysis of cyber-physical
manufacturing systems. IEEE Access 2017, 5, 26076–26085. [CrossRef]

10. Emadi, A.; Lee, Y.J.; Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in
hybrid electric vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2237–2245. [CrossRef]

11. Iora, P.; Tribioli, L. Effect of ambient temperature on electric vehicles’ energy consumption and range: Model
definition and sensitivity analysis based on nissan leaf data. World Electr. Veh. J. 2019, 10, 2. [CrossRef]

12. Morris, T.H.; Srivastava, A.K.; Reaves, B.; Pavurapu, K.; Abdelwahed, S.; Vaughn, R.; Wesley, S.; Dandass, Y.
Engineering future cyber-physical energy systems: Challenges, research needs, and roadmap. In Proceedings
of the 41st North. American power symposium, Starkville, MS, USA, 4–6 October 2009; pp. 1–6.

13. Tehrani, K.; Maurice, O. A cyber physical energy system design (CPESD) for electric vehicle applications.
In Proceedings of the 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA, 18–21
June 2017; pp. 1–6.

14. Ge, Y.; Dong, Y.; Zhao, H. A cyber-physical energy system architecture for electric vehicles charging
application. In Proceedings of the 12th International Conference on Quality Software, Xi’an, China, 27–29
August 2012; pp. 246–250.

15. Kim, J.E.; Mosse, D. Generic framework for design, modeling and simulation of cyber physical systems.
ACM SIGBED Rev. 2008, 5, 1. [CrossRef]

16. Gao, D.W.; Mi, C.; Emadi, A. Modeling and simulation of electric and hybrid vehicles. Proc. IEEE 2007, 95,
729–745. [CrossRef]

17. Muta, K.; Yamazaki, M.; Tokieda, J. Development of New-Generation Hybrid System THS II-Drastic Improvement of
Power Performance and Fuel Economy; No. 2004-01-0064; SAE Technical Paper; SAE International: Warrendale,
PA, USA, 2004.

http://dx.doi.org/10.1109/JPROC.2011.2161237
http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
http://dx.doi.org/10.3390/s19092119
http://www.ncbi.nlm.nih.gov/pubmed/31067811
http://dx.doi.org/10.1109/ACCESS.2018.2866403
http://dx.doi.org/10.1109/JPROC.2017.2779456
http://dx.doi.org/10.1109/ACCESS.2017.2777438
http://dx.doi.org/10.1109/TIE.2008.922768
http://dx.doi.org/10.3390/wevj10010002
http://dx.doi.org/10.1145/1366283.1366284
http://dx.doi.org/10.1109/JPROC.2006.890127

Sensors 2020, 20, 252 26 of 27

18. Maia, R.; Silva, M.; Araújo, R.; Nunes, U. Electric vehicle simulator for energy consumption studies in electric
mobility systems. In Proceedings of the 2011 IEEE Forum on Integrated and Sustainable Transportation
Systems, Vienna, Austria, 29 June–1 July 2011; pp. 227–232.

19. Mahseredjian, J.; Dennetière, S.; Dubé, L.; Khodabakhchian, B.; Gérin-Lajoie, L. On a new approach for the
simulation of transients in power systems. Electr. Power Syst. Res. 2007, 77, 1514–1520. [CrossRef]

20. Gomes, C.; Thule, C.; Broman, D.; Larsen, P.G.; Vangheluwe, H. Co-simulation: A survey. ACM Comput. Surv.
2018, 51, 49. [CrossRef]

21. Faruque, M.O.; Dinavahi, V.; Steurer, M.; Monti, A.; Strunz, K.; Martinez, J.A.; Chang, G.W.; Jatskevich, J.;
Iravani, R.; Davoudi, A. Interfacing issues in multi-domain simulation tools. IEEE Trans. Power Deliv. 2011,
27, 439–448. [CrossRef]

22. Zhao, H.; Wang, B.; Zhang, G.; Feng, Y. Energy Saving Design and Control of Steering Wheel System of
Steering by Wire Vehicle. IEEE Access 2019, 7, 44307–44316. [CrossRef]

23. Chen, Y.; Li, X.; Wiet, C.; Wang, J. Energy management and driving strategy for in-wheel motor electric
ground vehicles with terrain profile preview. IEEE Trans. Ind. Inform. 2013, 10, 1938–1947. [CrossRef]

24. Zhang, Z.; Eyisi, E.; Koutsoukos, X.; Porter, J.; Karsai, G.; Sztipanovits, J. A co-simulation framework for
design of time-triggered automotive cyber physical systems. Simul. Model. Pract. Theory 2014, 43, 16–33.
[CrossRef]

25. Li, W.; Zhu, X.Y.; Ju, J. Hierarchical Braking Torque Control of In-Wheel-Motor-Driven Electric Vehicles Over
CAN. IEEE Access 2018, 6, 65189–65198. [CrossRef]

26. Yu, W.; Xue, Y.; Luo, J.; Ni, M.; Tong, H.; Huang, T. An UHV grid security and stability defense system:
Considering the risk of power system communication. IEEE Trans. Smart Grid 2015, 7, 491–500. [CrossRef]

27. Blochwitz, T. Functional Mock-Up Interface for Model Exchange and Co-Simulation. Available online:
https://www.fmi-Standard.org/downloads/ (accessed on 25 July 2014).

28. Hyundai Mobis. Available online: https://www.mobis.co.kr/main/index.do (accessed on 29 November 2019).
29. Broman, D.; Brooks, C.; Greenberg, L.; Lee, E.A.; Masin, M.; Tripakis, S.; Wetter, M. Determinate composition

of FMUs for co-simulation. In Proceedings of the Eleventh ACM International Conference on Embedded
Software, Montreal, QC, Canada, 29 September–4 October 2013; p. 2.

30. Cremona, F.; Lohstroh, M.; Broman, D.; Di Natale, M.; Lee, E.A.; Tripakis, S. Step revision in hybrid
co-simulation with FMI. In Proceedings of the 2016 ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), Kanpur, India, 18–20 November 2016; pp. 173–183.

31. Galtier, V.; Vialle, S.; Dad, C.; Tavella, J.P.; Lam-Yee-Mui, J.P.; Plessis, G. FMI-based distributed multi-simulation
with DACCOSIM. In Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, San Diego, CA, USA, 7–10 April 2015; Society for Computer Simulation International: San
Diego, CA, USA, 2015; pp. 39–46.

32. Lacoursière, C.; Härdin, T. FMI Go! A simulation runtime environment with a client server architecture over
multiple protocols. In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic,
15–7 May 2017; Linköping University Electronic Press: Linköping, Sweden, 2017; pp. 653–662.

33. Tijero, H.P.; Gutierrez, J.J. On the schedulability of a data-centric real-time distribution middleware.
Comput. Stand. Interfaces 2012, 34, 203–211. [CrossRef]

34. Einhorn, M.; Conte, F.V.; Kral, C.; Niklas, C.; Popp, H.; Fleig, J. A modelica library for simulation of electric
energy storages. In Proceedings of the 8th International Modelica Conference, Dresden, Germany, 20–22
March 2011; Linköping University Electronic Press: Linköping, Sweden, 2011; pp. 436–445.

35. Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and IV
performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [CrossRef]

36. Bhatt, A. Planning and application of Electric Vehicle with MATLAB®/Simulink®. In Proceedings of the 2016
IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India,
14–17 December 2016; pp. 1–6.

37. Larminie, J.; Lowry, J. Electric Vehicle Technology Explained; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN
978-1-119-94273-3.

38. Soylu, S. (Ed.) Electric Vehicles: Modelling and Simulations; BoD–Books on Demand: Norderstedt, Germany,
2011; ISBN 978-953-307-447-1.

39. Niederjohn, R.J.; Stick, P.P. A computer interface for efficient zero-crossing interval measurement.
IEEE Trans. Comput. 1975, 100, 329–331. [CrossRef]

http://dx.doi.org/10.1016/j.epsr.2006.08.027
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1109/TPWRD.2011.2170861
http://dx.doi.org/10.1109/ACCESS.2019.2906224
http://dx.doi.org/10.1109/TII.2013.2290067
http://dx.doi.org/10.1016/j.simpat.2014.01.001
http://dx.doi.org/10.1109/ACCESS.2018.2877960
http://dx.doi.org/10.1109/TSG.2015.2392100
https://www.fmi-Standard.org/downloads/
https://www.mobis.co.kr/main/index.do
http://dx.doi.org/10.1016/j.csi.2011.08.005
http://dx.doi.org/10.1109/TEC.2006.874229
http://dx.doi.org/10.1109/T-C.1975.224217

Sensors 2020, 20, 252 27 of 27

40. Cellier, F.E.; Kofman, E. Continuous System Simulation; Springer Science & Business Media: Berlin, Germany,
2006; ISBN 978-0-387-26102-7.

41. Pejovic, P.; Kolar, J.W.; Nishida, Y. Bidirectional AC DC Converter for Regenerative Braking. Electronics 2012,
16, 3–8. [CrossRef]

42. Karotiya, R.M.; Gaidhane, M.A. Regenerative Braking Method Used in Converter for Traction Application.
2015. Available online: https://pdfs.semanticscholar.org/84ca/bf9fb0fd498dcaf455e524c4f5993a4511c7.pdf
(accessed on 6 September 2015).

43. Cheng, K.W.E.; Divakar, B.P.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (BMS) and SOC
development for electrical vehicles. IEEE Trans. Veh. Technol. 2010, 60, 76–88. [CrossRef]

44. Qtronic, FMU SDK. version 2.0.6. Available online: https://www.qtronic.de/doc.fmusdk.zip (accessed on 25
July 2014).

45. OpenDDS. version 3.13. Available online: https://opendds.org/ (accessed on 23 August 2018).
46. Butler, K.L.; Ehsani, M.; Kamath, P. A MATLAB-based modeling and simulation package for electric and

hybrid electric vehicle design. IEEE Trans. Veh. Technol. 1999, 48, 1770–1778. [CrossRef]
47. FMU SDK Co-Simulation Master Algorithm. Available online: https://github.com/schteppe/fmusdk.git

(accessed on 28 November 2012).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7251/ELS1216003P
https://pdfs.semanticscholar.org/84ca/bf9fb0fd498dcaf455e524c4f5993a4511c7.pdf
http://dx.doi.org/10.1109/TVT.2010.2089647
https://www.qtronic.de/doc.fmusdk.zip
https://opendds.org/
http://dx.doi.org/10.1109/25.806769
https://github.com/schteppe/fmusdk.git
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Function Mock-Up Interface
	Master Algorithm for Rollback
	Middleware for Distributed Co-Simulation

	Distributed CPS Simulation Framework with RRA
	Distributed CPS Simulation Framework
	Redundancy Reduction Algorithm
	Adaptive Step Size Algorithm
	Efficient Zero Crossing Detection Algorithm

	Distributed CPS Model Based on Hybrid Modeling
	EV Co-Simulation Model
	Driving Cycle FMU
	Tractive effort FMU
	Gear Box FMU
	Electric-Machine FMU
	Power Consumption FMU
	Battery Management System (BMS) FMU

	Energy Conversion Chain of EV Co-Simulation Model
	Distributed CPS Simulation Model Considering Sensor Information

	Simulation Experiments and Analysis
	Conclusions
	References

