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Abstract: Various combining methods have been proposed to utilize multi-satellite-based
augmentation system (SBAS) correction to provide accurate position in the global navigation
satellite system (GNSS) receiver. However, the proposed methods have not been objectively compared
and analyzed, making it difficult to know which ones are effective for multi-GNSS positioning.
This paper presents efficient methods of combining multi-SBAS corrections in multi-GNSS positioning
by comparing three methods: correction domain integration, measurement domain integration,
and position domain integration. The performance of the three methods were analyzed through a
covariance analysis that was expanded to multi-GNSS and multi-SBAS. Then, the results were verified
by experiments using real measurements and corrections. Furthermore, implementation issues, such
as computational complexity, availability, and flexibility, are analyzed. As a result, three methods
had the same precision, but different complexity, availability, and flexibility. These results will be
important guidelines to design, implement, and analyze navigation systems based on multi-GNSS
with multi-SBAS corrections.
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1. Introduction

Global navigation satellite systems (GNSS) have become a major navigation and positioning
means in many areas, but the horizontal position accuracy of a standalone GNSS is known to be
at least 5.0 m with a 95% confidence level [1]. To improve position accuracy, the receiver has been
designed to receive multi-GNSS signals from multi-frequencies and multi-constellation GNSS [2–4].
In a multi-GNSS receiver, not only is the global positioning system (GPS) used, but also the Russian
global navigation satellites system (GLONASS), the Beidou navigation satellite system (BDS), and
Galileo are used to increase the accuracy and reliability of the position [2]. In addition, signal availability
can be improved because the probability of receiving more than four satellite signals is improved by
using multi-GNSS even in an urban canyon [3]. By using multi-frequencies, accuracy can be further
improved by eliminating the ionospheric delay contained in the pseudo-range measurement [4].

Another way to improve the accuracy, precision, and integrity of a GNSS is the use of a differential
GNSS (DGNSS). The accuracy and precision of a DGNSS is improved through the elimination of
common errors, such as ephemeris error, satellite clock error, and ionospheric and tropospheric delay,
using the corrections from reference stations located at known positions. Real-time kinematic (RTK)
positioning is a form of DGNSS that uses carrier phase measurements and achieves centimeter-level
precision [5,6].

A satellite-based augmentation system (SBAS) uses a geostationary satellite to provide the spatial
corrections for a wide area. The fast, long-term, and ionospheric corrections are broadcasted to
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compensate for pseudo-range, satellite ephemeris, and ionospheric delay. Besides these corrections,
SBAS provides degradation parameters, such as fast correction degradation factor, grid ionospheric
vertical error indicator, and clock-ephemeris covariance matrix [7,8]. Because the corrections and
degradation parameters are broadcast by a GPS-like L1 (1575.42 MHz) signal, the accuracy, precision,
and integrity of the GNSS receiver can be further improved compared to when a standalone receiver
without an external communication link is used. In [9], SBAS was added to an integrated navigation
system to improve the integrity of the vehicle navigation. In [10], SBAS correction was used to
enhance the quality of satellite orbits and clock information in real-time single-frequency precise
point positioning.

Currently, many SBASs, such as the U.S. Wide Area Augmentation System (WAAS), European
Geostationary Navigation Overlay System (EGNOS), Japanese Multi-Functional Satellite Augmentation
System (MSAS), Indian GPS and Geostationary equatorial orbit Augmented Navigation (GAGAN),
and Russian System for Differential Correction and Monitoring (SDCM), are in operation. Korea also
plans to build the Korea Augmentation Satellite System (KASS), aiming to start operation in 2022 [11].

In some regions, two or more SBAS corrections are accessible with an increase in the number
of SBASs. For example, MSAS and SDCM signals are available in Korea. As MSAS provides GPS
corrections and SDCM provides GPS and GLONASS corrections, GPS has two corrections from MSAS
and SDCM, while GLONASS has one correction from GLONASS [12]. To achieve maximum GPS
performance using both MSAS and SDCM, an efficient method to combine both systems is required.
However, currently, there is no standard method to integrate and use multi-SBASs [13]. The necessity
to combine multi-SBASs and multi-GNSSs will increase as more GNSSs and SBASs are available.

The authors of [13] presented the criteria for selecting proper satellites among multi-SBAS
corrections and compared their performance experimentally. The elevation angle, protection level,
number of satellites, and degradation of correction information were used as criteria, and the strengths
and weaknesses of each criteria were summarized. In [12], the authors proposed an approach to
integrate and utilize multi-SBAS corrections. The weighted sum of each SBAS correction was computed
and applied as an integrated correction, where the weights were determined using integrity information,
such as fast and long-term degradation confidence, user ionospheric range error confidence, airborne
receiver error confidence, and tropospheric error confidence. The authors demonstrated that the
integration of MSAS and GAGAN in Singapore can improve availability and accuracy. The authors
of [14] proposed a more practical method that also considered various situations, such as insufficient
correction information in one SBAS. In our previous study [7], the integrated position was obtained
from the weighted sum of the positions obtained from each combination of multi-GNSS and multi-SBAS.
Since each position was independently computed and combined using arbitrary weights, it had a
simple structure that could easily cope with various environments.

As mentioned, a few combination methods were proposed and applied, but their performances
were verified in different respective environments, such as the GNSS-used region. To apply the
combination methods to navigation systems, their performances should be compared in common
environments and through reasonable evaluation methods. Additionally, each method’s characteristics
should be analyzed.

This paper presents three efficient methods of combining multi-SBAS corrections in multi-GNSS
positioning and compares their performance indices, such as precision, availability, flexibility, and
computation complexity, where flexibility implies the ability to implement, modify, and tune easily and
simply. The first method, correction domain integration (CDI), was proposed in [12,14]. The second
method was measurement domain integration (MDI), proposed in [14]. The third method was position
domain integration (PDI), proposed by the authors of [7]. The optimum weights for the three methods
were derived and their precisions were compared with covariance analysis. The results of the analysis
were verified by an experiment using real measurements and corrections from a commercial GNSS
receiver. Comparisons of the computational complexity, the required number of measurements, and
ease of application of the three methods were also performed. We thought that the results of the
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performance comparison and analysis for the various combination methods presented in this paper
will be a guideline for the implementation of navigation systems using multiple SBAS and GNSS.

The rest of the paper is organized as follows: Section 2 briefly describes the SBAS operations and
provides the covariance analysis. In Section 3, three integration methods (CDI, MDI, and PDI) for single
GNSS positioning with multi-SBAS are presented and their covariance analysis is given. Section 4
expands the results of Section 3 to multi-GNSS positioning with multi-SBAS. Section 5 verifies the
results using real measurements and corrections. Section 6 summarizes and discusses the properties of
each integration method. The final section draws the conclusions.

2. Single GNSS Positioning and Error Analysis with Single SBAS Correction

A GNSS positioning procedure with SBAS correction was derived and the performance of the
obtained position was evaluated using the covariance analysis. GNSS pseudo-range measurement was
denoted as Equation (1), where subscript i represents the GNSS type, such as GPS, GLONASS, Galileo,
BDS, and so on:

Ψi = ri + cBi + cbi + Ei + Ii + Ti + vi. (1)

If Ni satellites are available in a GNSS, Ψi ∈ RNi×1 is a pseudo-range measurements vector, and
ri ∈ RNi×1 is the distance vector between the satellites and a receiver. cBi is the product of a receiver clock
bias B ∈ R1×1 and speed of light c, and cbi is the product of a satellite clock bias vector bi ∈ RNi×1 and
speed of light. Ei ∈ RNi×1, Ii ∈ RNi×1, and Ti ∈ RNi×1 indicate the ephemeris error vector, ionospheric
delay vector, and tropospheric delay vector, respectively. In addition, a receiver measurement noise
vector vi ∼ N(0, σ2

i INi) ∈ RNi×1 is the additive white Gaussian noise (AWGN) with zero mean and (σi)
2

variance, where INi is an identity matrix with dimension Ni.
As a wide-area differential GNSS, an SBAS provides three types of corrections using geostationary

satellites to complement and supplement GNSS position accuracy and integrity. First, the fast correction
can compensate a range measurement using two parameters: pseudo-range correction (PRC) and
range rate correction (RRC). The fast correction parameters are included in Message types (MTs) 2–5
and they are transmitted every 6–60 s to the receiver. Second, the long-term correction eliminates the
satellite position and satellite clock error. Because MTs 24 and 25 are transmitted in 120 s periods,
they require a relatively longer time than fast correction. Third, ionospheric correction provides the
amount of ionospheric delays in the service area using MTs 18 and 26. The receiver can compute the
ionospheric delays of the ionospheric pierce point (IPP) by using the surrounding ionospheric grid
points (IGPs).

Figure 1 shows the positioning procedure using three corrections provided by an SBAS. Using the
fast, long-term, and ionospheric corrections, cbi + Ei + Ii terms in Equation (1) can be compensated.
In addition, using the tropospheric corrections in [15] (p. 253), which is not seen in Figure 1 because
standard procedures are not defined, the Ti term can also be corrected. Therefore, the computed SBAS
corrections can be denoted using Equation (2), where the superscript j represents the type of SBAS,
including WAAS, MSAS, SDCM, EGNOS, and KASS:

η
j
i ≡ cb j

i + E j
i + I j

i + T j
i . (2)

Besides the three corrections, SBAS provides integrity and degradation information for each

correction for the kth satellite in a GNSS variance of fast correction plus long-term correction (σ
j
i, f lt)

2

k

and variance of ionospheric correction (σ
j
i,UIRE)

2

k
, where superscript 2 is squared. In addition, the

variance of tropospheric delay compensation (σ
j
i,tropo)

2

k
can be computed, as shown in [15] (p. 254).
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Figure 1. Positioning procedure using satellite-based augmentation system (SBAS) corrections. 
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In this paper, the variance of SBAS correction for the kth satellite in a GNSS, (σ j
i )

2

k , was computed
as the sum of the fast, long-term, ionospheric, and tropospheric corrections, as shown in Equation (3),
and was adopted as a weighting in the weighted least squares (WLS) positioning algorithm [16,17]:

(σ
j
i )

2

k = (σ
j
i, f lt)

2

k
+ (σ

j
i,UIRE)

2

k
+ (σ

j
i,tropo)

2

k
. (3)

Because each correction of SBAS is uncorrelated, its covariance matrix is denoted as a diagonal
matrix and can be written as Equation (4), where diag indicates a diagonal matrix and the diagonal

terms (σ j
i )

2

k , k = 1, . . . , Ni can be computed using Equation (3):

cov(η j
i ) = diag((σ j

i )
2

1, (σ j
i )

2

2, . . . , (σ j
i )

2

Ni
). (4)

The corrected pseudo-range measurements were obtained using Equation (5) by applying the
SBAS corrections of Equation (2) to the pseudo-range of Equation (1). The error δη j

i = ηi − η
j
i + vi is the

sum of receiver noise vi and the remaining terms after applying SBAS corrections ηi − η
j
i ; without loss

of generality, it is assumed as AWGN with zero mean vector and R j
i covariance matrix [16] (p. 301).

Ψ j
i = Ψi − η

j
i = ri + cBi + δη

j
i ∼ N(0, R j

i ). (5)

The covariance of receiver noise can be denoted as a matrix, which consists of the variance of
each satellite: (σi)

2
1, (σi)

2
2, . . . ,(σi)

2
Ni

because the each channel’s measurement noise in receiver can
be different based on the elevation angle of satellite. Therefore, the covariance matrix of corrected
measurements can be expressed as Equation (6):

R j
i ≡ cov(δη j

i ) =



(σ
j
i )

2

1 0 0

0 (σ
j
i )

2

2 0
. . .

0 0 (σ
j
i )

2

Ni


+


(σi)

2
1 0 0

0 (σi)
2
2 0

. . .
0 0 (σi)

2
Ni

. (6)

By linearizing at a linearization point, Equation (5) becomes Equation (7), where
[
r j

i + cBi
]
0

is the

sum of the computed range and clock bias, H j
i is a design matrix, and δx j

i is the offset of the user’s
position and clock bias from the linearization point. As the linearization point is close to the user’s
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position, a few iterations are required to calculate this position [16]. The linearization point can be
initialized by a known position that is close the user’s current or previously calculated position.

δΨ j
i ≡ Ψ j

i −
[
r j

i + cBi
]
0
= H j

iδx j
i + δη

j
i . (7)

Applying WLS with the weighting of Equation (6), the estimated navigation solution δx j
i and its

covariance are obtained as follows:

δx j
i =

[
(H j

i )
T
(R j

i )
−1

H j
i

]−1
(H j

i )
T
(R j

i )
−1
δΨ j

i and (8)

cov(δx j
i ) =

[
(H j

i )
T
(R j

i )
−1

H j
i

]−1
. (9)

In our analysis, H j
i = H j is held because the satellites are very far away from the user and the

effect of SBAS corrections to the line of sight vector is negligible. If the quality of the pseudo-range is
improved by SBAS corrections, the covariance of the corrected pseudo-range measurement R j

i will be
decreased as compared to that of the uncorrected pseudo-range measurement Ri. This implies that the
precision of the estimated navigation solution δx j

i is improved by applying SBAS corrections.

3. Single GNSS Positioning and Error Analysis with Multi-SBAS Correction

In this section, three methods (CDI, MDI, and PDI) to integrate multi-SBAS corrections for a single
GNSS are presented and their performances are compared through a covariance analysis.

3.1. CDI

The concept of CDI is shown in Figure 2, where Ψ• is a pseudo-range measurement vector,
η1
•, η2
•, . . . , η

NSBAS
• are the computed correction vectors of multi-SBAS, and w1

•, w2
•, . . . , wNSBAS

• are the
weight vectors. In this section, subscript (•), instead of i, is used to indicate an unspecific GNSS system.
The corresponding corrections are weighted and then summed to generate the CDI correction, as
shown in Equation (10). And Equation (11) denotes the corrected pseudo-range.

ηCDI
• = w1

•η
1
• + · · ·+ wNSBAS

• ηNSBAS
• =

NSBAS∑
j=1

w j
•η

j
•. (10)

ΨCDI
• = Ψ• − ηCDI

• = r• + cB• + δηCDI
• ∼ N(0, RCDI

• ). (11)

Because the corrections from each SBAS are uncorrelated, the covariance of the corrected
pseudo-range RCDI

• can be written as

RCDI
• = w1

•R
1
•(w

1
•)

T
+ · · ·+ wNSBAS

• RNSBAS
• (wNSBAS

• )
T
=

NSBAS∑
j=1

w j
•R

j
•(w

j
•)

T
. (12)

By applying WLS to Equation (11), the navigation solution and covariance of CDI can be derived
as Equations (13) and (14), respectively, where RCDI

• is utilized as a weight matrix for WLS:

δxCDI
• =

[
(HCDI
• )

T
(RCDI
• )

−1
HCDI
•

]−1
(HCDI
• )

T
(RCDI
• )

−1
δΨCDI
• and (13)

cov(δxCDI
• ) =

[
(HCDI
• )

T
(RCDI
• )

−1
HCDI
•

]−1
. (14)
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In Equations (13) and (14), HCDI
• becomes H•, as mentioned in Section 2, since the satellites are

very far away from the user. Using an optimum weighting of Equation (15) [18], Equation (12) becomes
Equation (16) by using the fact that the covariance matrix is a diagonal symmetric matrix.

w j
• =

NSBAS∑
m=1

(Rm
• )
−1


−1

(R j
•)
−1

. (15)

RCDI
• =

NSBAS∑
j=1


NSBAS∑

m=1

(Rm
• )
−1


−1

(R j
•)
−1

R j
•(R

j
•)
−1

NSBAS∑
m=1

(Rm
• )
−1


−1 =

NSBAS∑
j=1

(R j
•)
−1


−1

. (16)

Because (RCDI
• )

−1
δΨCDI
• is (R1

•)
−1
δΨ1
• + (R2

•)
−1
δΨ2
• + . . . + (RNSBAS

• )
−1
δΨNSBAS
• , the navigation

solution of Equation (13) can be re-written as that of Equation (17). Similarly, the covariance of
CDI can be derived as Equation (18).

δxCDI
• =

(H•)T


NSBAS∑

j=1

(R j
•)
−1

H•


−1

(H•)
T


NSBAS∑

j=1

(R j
•)
−1
δΨ j
•

. (17)

cov(δxCDI
• ) =

(H•)T
NSBAS∑

j=1

(R j
•)
−1

H•


−1

. (18)

This result shows that the precision of the navigation solution may depend on the covariance that
was expressed as Equation (18). And the covariance will be reduced by the integration of the inverse
of each covariance of corrected measurements. As the simplest and best example, if all corrections of
SBASs exhibit the same performance, i.e., R1

• = R2
• = . . . = RNSBAS

• ≡ R•, the covariance of Equation

(18) becomes
[
(H•)

T(R•)
−1H•

]−1
/NSBAS, which means that the precision of the navigation solution is

NSBAS times better than that of a single SBAS.
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Figure 2. Correction domain integration (CDI) for single global navigation satellite system(GNSS)
augmented with multi-SBAS.
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3.2. MDI

The concept of MDI is shown in Figure 3. In MDI, NSBAS corrections from multi-SBAS were
applied to a pseudo-range. Equation (19) is a linearized equation for each corrected pseudo-range and
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...
δΨNSBAS
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
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•

...
HNSBAS
•

δxMDI
• +


δη1
•

...
δηNSBAS
•

 ∼ N(


0
...
0

,


R1
• 0

. . .

0 RNSBAS
•

). (19)

δΨMDI
• = HMDI

• δxMDI
• + δηMDI

• ∼ N(0, RMDI
• ). (20)
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By applying WLS to Equation (20), the navigation solution and its covariance are obtained as
Equations (21) and (22), respectively. In the derivation, H1

• = H2
• . . . = HNSBAS

• ≡ H• was used because
the satellites are very far away from the user.

δxMDI
• =

[
(HMDI
• )

T
(RMDI
• )

−1HMDI
•

]−1
(HMDI
• )

T
(RMDI
• )

−1
δΨMDI
•

=

NSBAS∑
j=1

(H j
•)

T
(R j
•)
−1

H j
•

−1NSBAS∑
j=1

(H j
•)

T
(R j
•)
−1
δΨ j
•

=

(H•)T

NSBAS∑
j=1

(R j
•)
−1

H•


−1

HT
•

NSBAS∑
j=1

(R j
•)
−1
δΨ j
•


(21)

cov(δxMDI
• ) =

NSBAS∑
j=1

(H j
•)

T
(R j
•)
−1

H j
•


−1

=

(H•)T
NSBAS∑
m=1

(Rm
• )
−1H•


−1

. (22)

A comparison of Equations (17) and (18) and Equations (21) and (22) clearly shows that the
navigation solution and the covariance of MDI and CDI are identical.

3.3. PDI

In the PDI, shown in Figure 4, first, NSBAS navigation solutions were computed independently
using the NSBAS-corrected pseudo-range. The procedure for finding each navigation solution is
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explained in Section 2. Then, NSBAS navigation solutions were weighted-summed to obtain the
navigation solution of the PDI δxPDI

• , as shown in Equation (23) with covariance of Equation (24).

δxPDI
• =

NSBAS∑
j=1

w j
•δx j
•. (23)

cov(δxPDI
• ) =

NSBAS∑
j=1

w j
•

[
(H j
•)

T
(R j
•)
−1

H j
•

]−1
(w j
•)

T
. (24)
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Using Equation (25) as an optimum weighting [18], Equations (23) and (24) become Equations (26)
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w j
• =

NSBAS∑
m=1

{
(Hm
• )

T(Rm
• )
−1Hm

•

}
−1

(H j
•)

T
(R j
•)
−1

H j
•. (25)

δxPDI
• =

NSBAS∑
j=1

(H j
•)

T
(R j
•)
−1

H j
•
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(H j
•)

T
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•)
−1
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• =
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j=1

(R j
•)
−1

H•


−1

(H•)
T

m∑
j=1

(R j
•)
−1
δΨ j
•. (26)

cov(δxPDI
• ) =

NSBAS∑
j=1

(H j
•)

T
(R j
•)
−1

H j
•


−1

=

(H•)T
NSBAS∑

j=1

(R j
•)
−1

H•


−1

. (27)

Equations (26) and (27) show that the navigation solution and covariance of PDI are same as those
of CDI and MDI. This means that the three combination methods (CDI, MDI, and PDI) provide the
same navigation solution with the same quality if the optimum weightings are used in case of a single
GNSS and multi-SBAS.

4. Multi-GNSS Positioning and Error Analysis with Multi-SBAS Corrections

In this section, the results of single GNSS positioning with multi-SBAS corrections, explained
in the previous section, are expanded to multi-GNSS positioning, including GPS, GLONASS, BDS,
and Galileo. The CDI, MDI, and PDI were expanded to multi-GNSS and their performances were
compared using a covariance analysis.
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4.1. CDI

The concept of CDI for NGNSS GNSS and NSBAS SBAS is shown in Figure 5. By expanding Equation
(10), the weighted sum of corrections for the ith GNSS is obtained as:

ηCDI
i =

NSBAS∑
j=1

w j
iη

j
i , i = 1, . . . , NGNSS. (28)
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Hi


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Equation (34) also shows that, by combining the covariance of correlated measurements, the
overall combined covariance can be reduced; it is similar in form to Equation (18). For example,
if the quality of each SBAS is equal (i.e., R1

i = . . . = RNSBAS
i , i = 1, . . . , NGNSS), the covariance will be

reduced to 1/NSBAS and then NSBAS times performance improvement can be expected. In addition,
even if not realistic, if the constellation and number of satellites of each GNSS are the same, i.e.,
H1 = H2 = . . . = HNGNSS is satisfied, the covariance is reduced to 1/(NSBAS × NGNSS). This implies a
(NSBAS ×NGNSS) times improvement in the precision of the navigation solution is possible by combining
the multi-GNSS and multi-SBAS in the CDI scheme.

4.2. MDI

The concept of MDI for NGNSS GNSS and NSBAS SBAS is shown in Figure 6. The augmented form
of the linearized pseudo-range is denoted as:
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A comparison of Equations (36) and (37) and Equations (33) and (34) clearly shows that the 
navigation solution and the covariance of MDI and CDI are identical in multi-GNSS as well as in 
multi-SBAS. 

4.3. PDI 
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A comparison of Equations (36) and (37) and Equations (33) and (34) clearly shows that the
navigation solution and the covariance of MDI and CDI are identical in multi-GNSS as well as
in multi-SBAS.

4.3. PDI

The concept of PDI for NGNSS GNSS and NSBAS SBAS is shown in Figure 7. By applying WLS to
all corrected pseudo-ranges, (NSBAS × NGNSS)-estimated navigation solutions and their covariances are
given as Equations (38) and (39), respectively.

δx j
i =

[
(H j

i )
T
(R j

i )
−1

H j
i

]−1
(H j

i )
T
(R j

i )
−1
δΨ j

i , i = 1, . . . , NGNSS, j = 1, . . . , NSBAS. (38)

cov(δx j
i ) =

[
(H j

i )
T
(R j

i )
−1

H j
i

]−1
, i = 1, . . . , NGNSS, j = 1, . . . , NSBAS. (39)
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Equations (43) and (44) show that the navigation solution and covariance of PDI are the same
as those of CDI and MDI. This means that the three methods (CDI, MDI, and PDI) give the same
navigation solution with the same quality if the optimum weightings are used in cases of multi-GNSS
and multi-SBAS.

5. Experiment and Verification Using Real Measurement and Corrections

To verify the analysis results, the navigation solutions of three methods (CDI, MDI, and PDI) that
were calculated using real measurements and corrections were compared. In Chungbuk National
University in Korea, the real measurements and corrections for 1000 s were collected using a commercial
receiver (M8T, u-blox, Thalwil, Switzerland)) that supports receiving GPS L1 C/A, GLONASS G1 C/A,
MSAS, and SDCM. Although Korea is not an included service area for MSAS and SDCM, these signals
can be received and the given corrections are reasonable. Currently, MSAS provides corrections for
only GPS and SDCM provides corrections for both GPS and GLONASS. Therefore, three types of
corrected measurements were available, such as GPS corrected by MSAS, GPS corrected by SDCM,
and GLONASS corrected by SDCM.

The commercial receiver that was used generated a local time that was estimated by considering the
time offset among the different satellite systems. Because the pseudo-range of each GNSS is measured
based on the local time, the user does not need to consider the time offset alignment for positioning
using multi-GNSS. Therefore, the measurements and corrections from the commercial receiver could
be applied to the three methods mentioned above without additional modification. In the collected
real measurements, eight possible GPS measurements could be corrected by MSAS. Additionally, six
GPS and five GLONASS measurements that could be corrected by SDCM were received.

Using the collected real measurements, navigation solutions were calculated using the three
presented methods of CDI, MDI, and PDI. The experiment was performed with two scenarios. The first
was where only GPS measurements and multiple corrections were used. The second was where both
GPS and GLONASS measurements were used with two types of corrections. By comparing the results
of the two scenarios, the efficiency of the expansion to the multi-GNSS that is presented in this paper
was demonstrated.

In general, the reasonable covariance of GNSS and SBAS must be estimated to obtain a more
integrated, precise, and accurate position. However, because this experiment focused on comparing the
performance of the three integration methods in the same situation, each GNSS and SBAS covariance
was initialized as 1.0 m. Subsequently, the positioning results of each method were compared as
point-by-point to verify the error analysis results that the precision of the three methods would be
equal. The positioning results for the vertical and horizontal errors were presented as east-north-up
(ENU) coordinates, as depicted in Figures 8 and 9.

Figure 8a,b depicts the horizontal and vertical errors for GPS, MSAS, and SDCM integration using
CDI, MDI, and PDI for single GNSS and multi-SBAS that were mentioned in Section 3. To present
the efficiency of multi-SBAS integration, results of the positioning using corrected GPS by MSAS are
presented together as black circles. Table 1 presents the standard deviations for the east, north, and
up axes that indicate the precision. As can be seen from the experiment results, when CDI, MDI, and
PDI were applied, precision improved by approximately 0.01–0.07 m than in the case of GPS with
MSAS. Moreover, in the scatter plot of Figure 8, red stars (CDI), green circles (MDI), and blue points
(PDI) occur in the same positions. The cm-level precisions of CDI, MDI, and PDI were equal. These
results verified that the integration of MSAS and SDCM is more precise than when only one SBAS was
used. Additionally, the three integration methods had equal precisions. The experimental results are
consistent with the error analysis results of Section 3.
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Table 1. Standard deviation of CDI, MDI, and PDI for single GNSS and multi-SBAS integration.

Standard Deviation [m] East North Up

GPS with MSAS 0.45 1.16 0.78
CDI 0.44 1.15 0.71
MDI 0.44 1.15 0.71
PDI 0.44 1.15 0.71

Figure 9a,b depicts the horizontal and vertical errors for GPS, GLONASS, MSAS, and SDCM
integration using CDI, MDI, and PDI that were discussed in Section 4 to combine multi-GNSS and
multi-SBAS. Additionally, the standard deviations for each axis are presented in Table 2. By adding
GLONASS and the SDCM corrections, the standard deviations of each axis decreased by 0.09–0.12 m
more than in the case of GPS and MSAS. The experimental results also demonstrated that the cm-level
precisions of CDI, MDI, and PDI were measured equally. Therefore, the error analysis result that the
three methods for multi-GNSS and multi-SBAS have same precision is reasonable.
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Table 2. Standard deviation of CDI, MDI, and PDI for multi-GNSS and multi-SBAS integration.

Standard Deviation [m] East North Up

GPS with MSAS 0.45 1.16 0.78
CDI 0.36 1.05 0.66
MDI 0.36 1.05 0.66
PDI 0.36 1.05 0.66

6. Summary and Discussion

Besides positioning precision, issues such as computational complexity, availability, and flexibility
are also important. In this section, a brief analysis of performance, including implementation issues,
is given. Table 3 summarizes the results. As shown in Sections 3 and 4, the covariance analysis
indicated that the three methods were the same in precision. However, they differed in computational
complexity, availability, and flexibility.

Table 3. Comparison of CDI, MDI, and PDI.

CDI MDI PDI

Precision

NGNSS∑
i=1

(Hi)
T

NSBAS∑
j=1

(R j
i )
−1

Hi


−1 NGNSS∑

i=1
(Hi)

T

NSBAS∑
j=1

(R j
i )
−1

Hi


−1 NGNSS∑

i=1
(Hi)

T

NSBAS∑
j=1

(R j
i )
−1

Hi


−1

Complexity Low High Middle

Availability
NGNSS∑

i=1
Ni ≥ 4

NGNSS∑
i=1

Ni ≥ 4 Ni ≥ 4, i = 1, . . . , NGNSS

Flexibility Low Low High

To compare computational complexity, a number of operations, such as addition, multiplication,
and division, to obtain a position were analyzed and the results are summarized in Table 4. The number
of operations were determined by the number of GNSSs (m = NGNSS), the number of SBASs (n =
NSBAS), and the number of visible satellites. For ease of comparison, the number of visible satellites of
each GNSS was assumed to be the same (l = N1 = N2 = . . . = NNGNSS ).

Table 4. Complexity of CDI, MDI, and PDI.

CDI MDI PDI

Number of additions 8l2m + nml + mn− 5m + 135 8(nml)2 + 27nml + 83 12l2nm + 39nml + 95nm + 75
Number of multiplications 8l2m + nml + 24ml + 424 8(nml)2 + 39nml + 360 12l2nm+ 55nml+ 376nm+ 360

Number of divisions nml + 3ml + m + 16 4nml + 16 4nml + 16nm
Total number of operations

(n = 3, m = 3, l = 8) 4508 88443 25698

In CDI, the dimension of the H matrix and the number of inverse operations are independent of
the number of SBASs, so just a simple operation was added to correct the weighting. By contrast, MDI
complexity depends on the number of GNSSs, SBASs, and visible satellites. When multi-GNSS and
multi-SBAS are concerned, MDI requires more operations. The PDI requires m times (4 × 4) matrix
inversion, while CDI and MDI require one. However, the dimension of H matrix of MDI is nml and it
is larger than that of PDI(l) and CDI(l). The numerical example of 3 GNSSs and 3 SBASs with 8 visible
satellites shows that MDI requires more computational loads.

In GNSS, at least four pseudo-range measurements are required to find position and time. In PDI,
each GNSS requires at least four visible satellites, while in CDI and MDI, the position can be found
with four satellites regardless of GNSS type. This implies that the availability of PDI is worse than the
other methods.

As PDI combines the navigation solutions, it can be easily implemented by combining two or
more off-the-shelf receivers that support different GNSSs and SBASs. However, MDI and CDI require
a modification of off-the-shelf receivers to integrate the corrections and pseudo-range measurements,
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such as system time difference correction. This means that PDI is more flexible than CDI and MDI in
implementation and expansion.

In summary, CDI, MDI, and PDI have the same precision, but each method has different pros and
cons of implementation. Although CDI has less computational load, it is less flexible. Therefore, CDI is
suitable for a large number of GNSSs and SBASs. MDI is preferred in urban areas where lots of GNSS
and SBAS signals are blocked because of high availability, even though it requires more computing
resources. PDI is advantageous in implementation since it does not require modification of existing
receivers, even though it has a lack of availability. As more GNSSs and more SBASs are accessible in
near future, the ease of implementation might be more important in combing multi-SBAS corrections
in multi-GNSS.

7. Conclusions

Currently, multi-SBAS utilization methods are not officially provided. Although a few methods
have already been proposed, each method was verified in different environments and their pros and
cons were not presented. In this study, to effectively utilize multi-SBAS corrections in multi-GNSS
positioning, three methods, namely, CDI, MDI, and PDI, were presented and their performances were
compared. The structures and navigation algorithms for single GNSS with multi-SBAS corrections
were presented and then the results were expanded to multi-GNSS. The optimum weights were derived
from covariance analysis and, when the optimum weightings of the three methods were applied
to the WLS, the analysis revealed that the precisions of the three methods are equal. Experimental
results using a commercial receiver and real measurements and corrections confirmed the analysis.
Besides precision, implementation issues, such as computational complexity, availability, and flexibility,
were also analyzed. CDI requires a small computational load, but is less flexible. MDI provides
high availability with more computational complexity. PDI is more flexible, but has less availability.
The results are expected to be a useful guideline in the design, implementation, and analysis of an
efficient multi-GNSS positioning system using multi-SBAS corrections, which will be common in
applications in the near future.
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