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Abstract

:

Globally, cervical cancer remains as the foremost prevailing cancer in females. Hence, it is necessary to distinguish the importance of risk factors of cervical cancer to classify potential patients. The present work proposes a cervical cancer prediction model (CCPM) that offers early prediction of cervical cancer using risk factors as inputs. The CCPM first removes outliers by using outlier detection methods such as density-based spatial clustering of applications with noise (DBSCAN) and isolation forest (iForest) and by increasing the number of cases in the dataset in a balanced way, for example, through synthetic minority over-sampling technique (SMOTE) and SMOTE with Tomek link (SMOTETomek). Finally, it employs random forest (RF) as a classifier. Thus, CCPM lies on four scenarios: (1) DBSCAN + SMOTETomek + RF, (2) DBSCAN + SMOTE+ RF, (3) iForest + SMOTETomek + RF, and (4) iForest + SMOTE + RF. A dataset of 858 potential patients was used to validate the performance of the proposed method. We found that combinations of iForest with SMOTE and iForest with SMOTETomek provided better performances than those of DBSCAN with SMOTE and DBSCAN with SMOTETomek. We also observed that RF performed the best among several popular machine learning classifiers. Furthermore, the proposed CCPM showed better accuracy than previously proposed methods for forecasting cervical cancer. In addition, a mobile application that can collect cervical cancer risk factors data and provides results from CCPM is developed for instant and proper action at the initial stage of cervical cancer.
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1. Introduction


One form of gynecological cancer is cervical cancer. Cervical cancer complications are often associated with the infection of human papillomavirus. It is a common debilitating disease among women worldwide. It is the third most regularly diagnosed cancer (~485,000 cases) and the fourth worldwide driving cause of cancer-related deaths (236,000) each year [1,2]. The main cause of cervical cancer is persistent infection by oncogenic human papillomavirus (HPV). Cervical intraepithelial neoplasia 1–3 and in situ carcinoma are the early manifestations of cervical cancer [3]. Additional factors, including sexually transmitted infections, oral contraceptive use, smoking status, parity, and diet can add to the development of cervical cancer [4]. Generally, patients detected with cervical cancer at initial phases give no noticeable signs or indications that could lead to misdiagnosis [5]. The danger of cervical cancer can be expanded by 2 to 3 times if an HPV-contaminated patient smokes [6]. In case of multiple pregnancies, female HPV-infected patients without pregnancies have lower occurrence of cervical cancer than those with more than one full-term pregnancy [7].



Past research has revealed that magnetic resonance imaging and diffusion-weighted imaging techniques can classify cervical cancer to some degree [8,9]. The absence of doctor skills and confined medical equipment make cervical cancer a main reason for mortality in low-income countries [10]. Additionally, the absence of doctor prowess and confined medical apparatus cause cervical cancer to be a noteworthy reason for death in low-income nations. Because of preventive steps taken by developed nations, the occurrence of cervical cancer worldwide fluctuates meaningfully [11]. Notwithstanding advances in prevention, screening, analysis, and remedy in the course of the past decade, significant local and worldwide discrepancies in cervical cancer findings have led worldwide gynecological cancer societies to publish proof-based management policies to enhance the quality care for patients [12]. The current diagnosis of cervical cancer relies mainly on histological and morphological examinations without well-defined sensitivity and specificity [13].



A recent study by Ghoneim et al. [14] used convolutional neural networks (CNN) and extreme learning machines for cervical cancer classification. The authors used Herlev database. The proposed CNN-ELM-based system achieved 99.5% accuracy in the detection problem (two-class) and 91.2% in the classification problem (seven-class). Chandran and Kumari [15] proposed a gray-level co-occurrence matrix and a probabilistic neural-network-based system, which achieved an accuracy of 92.8%. The images were MRI images, and the database was private. In [16], authors proposed k-NN and ANN-based classification systems. The Herlev database was used in the experiments. The k-NNs-based system achieved 88% accuracy, while the ANNs based system obtained 54% accuracy. Gupta et al. [17] designed a multiple back propagation NN-based system. A private database was used, where the image quality was not good. 95.6% accuracy was obtained by the system. Zhang et al. [18], used CNNs develop a system called DeepPap. Using the Herlev database, the system obtained 98.6% accuracy. Bora et al. [19] used CNNs and some additional features for Pap smear image classification. Based on the features, the accuracies varied between 90% and 95%. Adem et al. [20] used a stacked autoencoder with a soft-max layer and achieved an accuracy of 97.25% in the cervical cancer dataset.



In case of cervical cancer, present studies emphasize the development of more precise models instead of the significance of data pre-processing. The outlier detection approach may be used during the pre-processing step to discover discrepancies in data. Accordingly, a good classifier may be generated for better decision-making. Apparently, machine learning (ML) methods are the most useful in predictions. They are widely applied in numerous kinds of cancer studies. Past studies [10,21,22] have used various ML techniques for cervical cancer diagnosis and prediction. However, ML techniques face some challenges, including problems of missing values in dataset, determining precise attributes, removing outliers from the data, distributing class, and attaining results with higher prediction accuracy. Thus, the present work aims to face these challenges. Prior studies have not combined outlier detection and data balancing for cervical cancer prediction. The present work proposes a cervical cancer prediction model (CCPM) by utilizing density-based spatial clustering of applications with noise (DBSCAN) and iForest for outlier detection, with synthetic minority over sampling technique (SMOTE) and SMOTETomek for data balancing, and random forest for cervical cancer prediction based on risk factors [23,24,25]. Hence, the key novelty of the present study is to combine the outlier detection methods, DBSCAN and iForest, the data oversampling methods, SMOTE and SMOTETomek, and random forest classifier for cervical cancer prediction based on risk factors to improve the prediction performance.



The reminder of the paper is organized as follows. Section 2 explains related works on prediction model for cervical cancer, outlier detection methods, over-sampling methods for data balancing, and random forest. Section 3 presents the dataset description with proposed CCPM and evaluation metrics. Section 4 deals with the feature extraction results, DBSCAN and iForest for outlier detection, and SMOTE and SMOTETomek for balancing the dataset along with the results and discussions of four target variables. In Section 5, concluding remarks are presented.




2. Related Work


Past research primarily employed a clinical feature-based approach, genetic feature-based approach, and image classification and segmentation to classify and understand cervical cancer’s presence. In case of cervical cancer cell images, a study by Zhang et al. [26] used various machine learning algorithms and matched their segmentation refinement with an artifact-nucleus classifier, for which random forest has revealed the best output. Along with other robust refinement methods, supervised and unsupervised methods were used to distinguish image patches or superpixels from extracted elements, such as Adaboost detectors [27], support vector machine (SVM) [28] or Gauussian mixture models [29]. In a study by Zhao et al. [30] a novel superpixel-based Markov random field (MRF) segmentation was also implemented for non-overlapping cells.



A linear kernel SVM classifier was used by Tareef et al. [31] on superpixels, accompanied by edge enhancement and adaptive thresholding. The results indicated Nuclei Precision: 94.3%; Recall: 92.0%; Dice similarity coefficient (DSC): 0.926. Cytoplasm DSC: 0.914. In one other study, Zhao et al. 2016 [30] used an MRF classifier with a Gap-search algorithm + Automatic labeling map. The findings revealed that Nuclei DSC: 0.93. Cytoplasm DSC: 0.82. In another work by Tareef et al. [28], the authors used SVM classification + Shape based-guided Level Set based on Sparse Coding for overlapping cytoplasm. The results showed that Nuclei Precision: 95%; Recall: 93%; DSC: 0.93, and Cytoplasm DSC: 0.89.



Tseng et al. [32] have reported three classification models of C5.0, SVM, and extreme machine learning to anticipate cervical cancer reoccurrence and to classify the best associated risk factors by utilizing a clinical dataset (e.g., age, radiation therapy, cell type, and tumor size). Their findings indicate that cell type and radiation therapy are two risk factors associated with reoccurrence of cervical cancer. Their findings uncovered that C5.0 had the greatest classification accuracy ratio for all classifiers [32].



Hu et al. [33] have explained a predictive model using multiple logistic regression analysis and artificial neural network to predict the presence of cervical cancer and to identify the maximum risk factors linked with cervical cancer. They used features such as HPV, four genetic factors, and educational level. The experiment recognized that HLA DRB1× 13-2 and HLA DRB1×3-17 alleles were two risk factors of cervical cancer. Such risk factors have been the source of rising cervical cancer risks. Their results indicated that back-substitution fitting of artificial neural network achieved the highest classification accuracy ratio for all classifiers. Sharma [34] has shown a classification model for identifying stages of cervical cancer using C5.0 with different options such as rule sets, boosting, and advanced pruning. Features such as, for instance, clinical diameter, uterine body, renal pelvic, and primary renal carcinoma have been used. Experimental results indicated that C5.0 with advanced pruning achieved the maximum accuracy ratio to identify stages of cervical cancer [34]. Sobar et al. [35] used social science behavior theory to classify the probability of being at risk from cervical cancer by classification methods such as naïve bayes and logistic regression. Their findings indicated that naïve Bayes had better accuracy than logistics regression [35].



Wu and Zhou [10] identified a classification model based on SVM for the diagnosis of cervical cancer. They used recursive feature elimination (RFE) and principle component analysis (PCA) techniques for feature elimination. Their findings revealed that the SVM-PCA had higher accuracy for features selection than SVM-RFE. Although the SVM method can accurately classify cervical cancer data, its high computation cost is a limitation. Recently, Abdoh et al. [22] have used random forest classifier with SMOTE and feature reduction techniques such as RFE and PCA for cervical cancer diagnosis. Their findings revealed that the SMOTE-RF model exceeded the SVM classification technique, similar to the findings of Wu and Zhou [10].



2.1. Feature Selection


Feature selection is defined as the method of choosing a subset of relevant features in data that are the most valuable for model construction. It reduces overfitting and training time with improved accuracy [36]. In the present study, we do not need to utilize all features present in the data for making an algorithm work. We can train the algorithm with the features that are indeed more significant to guaranteeing better findings than utilizing all features.



Chi-Squared Feature Selection


Chi-squared feature selection is used to infer a feature’s reliance on the class label [37]. It is one of the most frequently used methods for deciding the features that are effective. In Chi-square, a feature’s information value is measured by calculating the chi-square statistical value [38]. Several studies used chi-square as a feature extraction technique, such as in breast cancer [37], Parkinson’s disease using voice signal [39], cancer classification [38], computer-aided diagnosis of Parkinson’s disease [40], and healthcare tweet classification [41]. In Equation (1) given below, c is the number of classes, I is the number of intervals, Eij is the expected number of samples, and Aij is the number of samples of the C class within the j-th interval. The larger the value of χ2, the more information the related feature provides.


      χ   2    =   ∑       i = 1      C    ∑   j = 1  I       (   A  ij   −  E  ij    )   2     E  ij       



(1)









2.2. Outlier Detection Method


In information science, an outlier is an observation point that is far off from the bulk of observations. Outlier detection is defined as the way toward identifying and removing outliers from a dataset. The key benefit of removing outliers is that it will improve the accuracy. To the best of our knowledge, none of the studies in cervical cancer used the outlier removal technique. Several studies have reported that by removing the outliers while using the DBSCAN method [42,43,44,45], the performance of the prediction system is improved. Hence, we foresee that the outlier detection methods are able to enhance the accuracy of the classification model for cervical cancer. The present work used two outlier detection techniques, namely DBSCAN and iForest.



2.2.1. DBSCAN


This is a clustering-based method of outlier detection which may be used to isolate outliers [23]. Outliers are points that do not have a place in any cluster. The two key parameters of DBSCAN are epsilon (eps) and minimum points (MinPts). The eps shows the radius of neighborhood about a point x (ξ-neighborhood of x), while MinPts explain the minimum number of neighbors inside the eps radius. DBSCAN is a valuable tool for identifying and removing outliers. Past research has revealed that DBSCAN can successfully recognize outliers, showing excellent performance in social network community [43], wireless sensor networks [44], and type 2 diabetes and hypertension [46]. Verbiest et al. [47] have reported that combining outlier removal and oversampling method can produce better outcomes. Accordingly, merging DBSCAN for outlier detection with SMOTE and SMOTETomek methods might improve the accuracy of CCPM.




2.2.2. iForest


Isolation forest (iForest) is an outlier detection technique [48,49]. It differentiates outliers through developing isolation tress (iTrees) and handling outliers as instances/points that have a short average length inside iTrees. Past studies have revealed noteworthy findings using iForest for outlier and anomaly detection. Domingues et al. [50] have estimated diverse outlier detection techniques by means of UCI repository datasets. Their findings revealed that iForest could be successfully used to classify outliers while providing outstanding scalability on large datasets with bearable memory use. Calheiros et al. [51] have applied iForest for unsupervised anomaly detection to locate concerns in large scale cloud datacenters. Their findings indicate that iForest can be viable and beneficial to locate the anomaly. iForest uses the property that outliers are more vulnerable to isolation, so it is possible to identify outliers as observations with short predicted track lengths (i.e., less splits) throughout the forest [52]. Many studies used iForest as an outlier detection technique such as in the detection of insulin pump in artificial pancreas [53], fault detection in artificial pancreas [54], medication errors [55], diabetics [56], Medicare provider fraud [52], and detection of anomalous vital signs of the elderly [57].





2.3. Oversampling Method for Imbalance Dataset


Machine learning methods can confront difficulties when one class dominates a dataset (i.e., the number of records in one class exceeds the number of other classes by very much). This dataset is called an imbalanced dataset. It deceives the classification, with a negative impact on findings. In the present study, we used SMOTE and SMOTETomek to handle the imbalanced dataset problem.



2.3.1. SMOTE


SMOTE is a technique of oversampling proposed by Chawla et al. [24]. This randomly produces a new minority class instances from the sample’s nearest minority class neighbors. These instances are created taking into account features of the original dataset, with the objective that they conclude original minority class instances. It is used in various fields including breast cancer detection [58,59], liver cancer [60], and cervical cancer [22] to resolve the unbalanced problem. To increase the minority class, SMOTE uses Equation (2)


    x  s y n     =  x i    + (  x  k n n     −  x i  ) × t   



(2)







Firstly, SMOTE recognizes the feature vector    x i    and find the K-nearest neighbors    x  k n n    . Then, it calculates the difference between the feature vector and k-nearest neighbor. Thereafter, it multiplies the difference by a random number from 0 to 1. It then adds the output number to feature vector to identify a new point on the line segment. Lastly, it repeats the above steps to find feature vectors.




2.3.2. SMOTETomek


SMOTETomek is a technique used to handle imbalanced data. Many past studies have used SMOTETomek and revealed favorable outcomes in balancing the data and enhancing the model performance. It showed better area under the curve value than synthetic minority oversampling technique edited nearest neighbor (SMOTEENN) when numerous imbalanced datasets are used [61]. Goel et al. [62] have reviewed five sampling techniques to resolve the imbalanced data problem by using eight datasets from the UCI repository. Their findings indicate that for most datasets, SMOTETomek can increase the model accuracy. Chen et al. [63] have used SMOTETomek to resolve the imbalanced data issue in lane-changing behavior and random forest to foresee the risk associated with lane changing. Their result revealed that SMOTETomek considerably enhanced the model by as much as 80.3%. Tomek Links can be described as a method for undersampling or as a technique for cleaning up data. They can be identified as a pair of the nearest neighbors of opposite classes, which are minimally distant [64]. They are used to remove the overlapping samples that SMOTE adds. Past studies used SMOTETomek as oversampling technique in various healthcare areas such as self-care problem identification for children with disability [65], cancer gene expression data [66], vertebral column pathologies, diabetes and Parkinson’s disease [67], and breast cancer [68].





2.4. Random Forest


RF algorithm is an ensemble classifier which generates multiple decision trees along with weak classifiers learned from the data on a random sample [69,70]. RFs vanquish numerous issues with decision trees. For instance, they can reduce overfitting and produce low variance. We used random forest for prediction in cervical cancer. The following steps describe the generation of each tree in random forest:




	
Choose a value of n that shows the number of trees that will be increased in a forest;



	
Generate n bootstrap samples with bagging technique of the training set;



	
For each bootstrap dataset, grow a tree. If this training set would consist of M number of input variables, m<<M number of inputs are selected randomly out of M and the best split on these m attributes is used to split the node. The value of m will remain constant during forest growing;



	
The tree will be grown to the largest possible level;



	
The prediction results are obtained from the model (most frequent class) of each decision tree in the forest.








Past work has revealed that RF is useful for predicting cervical cancer, with high classification accuracy [22]. Past studies have shown that the outlier data, together with imbalanced datasets, are difficult issues in classification. For instance, they may decrease the system’s overall performance [47]. Hereafter, we proposed a CCPM that comprised DBSCAN and iForest for outlier detection to eliminate the outlier data, SMOTE and SMOTETomek for class balancing, and RF for predicting cervical cancer. By eliminating outlier data along and balancing the dataset, RF is expected to give better results.





3. Dataset Description


The used dataset was published on the repository of UCI collected at Hospital Universitario de Caracas in Caracas, Venezuela [71]. The dataset contained 858 instances with 36 features. Table 1 displays dataset features, total number of entries, and the missing value for each feature. To deal with missing values, the present study used the mean equation as depicted in Equation (3).


   x ¯  =  1 n   (   ∑   i = 1  n   x i  )   =    x 1  +  x 2  +  x 3  +  x 4  + ⋯  n    



(3)







There are four target variables (Schiller, Hinselmann, Cytology, and Biopsy). Schiller’ test uses iodine solution in cervix. The cervix is examined by naked eye to diagnose cervical cancer [72]. Due to its poor performance, the Schiller’ test has been replaced by cytology. Cytology test is used to examine cancer, precancerous conditions, and urinary tract infection. Hinselmann’s test is applied to study the cervix, vulva, and vagina.



3.1. Prediction Model for Cervical Cancer


The proposed CCPM consists of outlier detection based on DBSCAN and iForest. It also has SMOTE and SMOTETomek to balance the data with RF for cancer prediction.



Lastly, the performance of the proposed CCPM is compared with the performances of other existing models. Figure 1 elucidates the proposed CCPM model.



We used 70 % dataset values for training and 30% for testing with 10 cross validation. We have used the Python programming language and scikit-learn, pandas, numpy libraries used for machine learning models. For outlier detection, we have used scikit-learn library in python programming language [73]. For oversampling, we have used the imbalanced-learn Python library [74].




3.2. Evaluation Metrics


The prediction output may have the following four possible outcomes on the basis of a confusion matrix [75], true positive (TP), true negative (TN), false positive (FP), and false negative (FN). Table 2 displays the precision, recall, specificity, F1 score, and accuracy. Table 3 shows different outcomes of two-class prediction.





4. Results and Discussion


This section deals with the results of feature extraction and four scenarios of CCPM in terms of precision, sensitivity, specificity, F1 score, and accuracy. Four scenarios are divided into four sections. Each section displays results and their explanation. We then compared biopsy results with results of past studies and some practical implications to conclude this section.



4.1. Feature Extraction Results


In the present study, we used chi-square to extract the features from the dataset. The main aim of the feature extraction technique is to extract the most valuable features from a given rather than the whole features. For simplicity, we have extracted first ten features that have the highest chi-score. Besides, we have added the chi-score of ten variables in the feature extraction table. We used these features for our analysis. After selecting these features, we used outlier detection techniques to remove outliers from the data. Table 4 displays the results of chi-square.




4.2. DBSCAN and iForest for Outlier Detection


To implement the DBSCAN-based outlier detection, the optimum value of MinPts and eps must first be established. If the value of eps is too low, it will generate more clusters and normal data may be counted as outliers. On the other hand, if it is too large, it will produce fewer clusters, and true outliers could be categorized as normal data [23,43,44]. We specified the MinPts value to be 5. Next, we have to determine the optimal number of eps. First, we measure each point’s average distance from its nearest neighbors. The value k represents MinPts and is outlined by the user. The goal is to decide the “knee” used to estimate the parameter collection of eps. A “knee” is the point at which a sharp shift occurs along the k-distance curve [46]. Figure 2 displays the k-dist graph sorted for the cervical cancer data set and the optimal value of eps. The "knee" shows up at the distance of 3 in the cervical cancer dataset. Lastly, the outlier data are excluded, and standard data are used for further analysis.



iForest works in two phases. The first (training) stage constructs isolation trees using training set subsamples. The second stage (testing) passes through isolation trees to obtain an outlier score for each case. Both subsample size (MaxSample) and number of trees to be built (NumTree) are essential parameters to be calculated. The iForest works well when the MaxSample is kept small; the larger MaxSample reduces the ability of iForest to isolate outer data, as normal data can meddle with isolation [48,49,50]. Number of Trees influences the scale of the ensemble. We tried different configuration parameters and found that MaxSample is 10% of the total data size and NumTree is 100% optimal. The iForest was implemented using scikit-learn python library. In case of DBSCAN, we found two outliers. We removed these outliers and processed the data for further analysis. However, iForest found eighty-six outliers. We removed those outliers as well and processed the data.




4.3. SMOTE and SMOTETomek for Balancing the Dataset


We also used over-sampling methods to increase the number of cases in a balanced way. We applied SMOTE or SMOTETomek methods to balance the datasets. SMOTE oversamples the minority class to randomly generate instances and increase minority class instances, and Tomek under-samples a class to remove noise while maintaining balanced distributions. As can be seen in Table 5, the dataset is balanced after the application of SMOTE and SMOTETomek. The classification aim is to diminish errors during the learning process; hence, we anticipate that a better model accuracy can be attained from the balanced datasets.




4.4. Results of Target Variables: Biopsy, Schiller, Hinselmann, Cytology


The ten features extracted by Chi-square were used for all models (SVM, multilayer perceptron (MLP), logistic regression (LR), naïve Bayes, and K-nearest neighbors (KNN)), and all four target variables (Biopsy, Schiller, Hinselmann, and Cytology). For each of the target variables, the CCPM was compared with other conventional machine learning models. The results of CCPM for each of the target variables outperformed previous machine learning approaches (with reference to Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20 and Table 21). The key reason for these results is the combination of the outlier removal and data balancing techniques. Hence, this improves the accuracy for our CCPM.




4.5. Comparison with Previous Studies


We compared the results of our CCPM with past studies that used the cervical cancer dataset. The study by Wu and Zhu [10] used SVM-RFE and SVM-PCA, while Abdoh et al. [22] used SMOTE-RF-RFE and SMOTE-RF-PCA. Table 22, Table 23, Table 24 and Table 25 illustrates the comparison of results on the sensitivity, specificity, and accuracy of all target variables of CCPM with Wu and Zhu [10] and Abdoh et al. [22]. All four proposed scenarios of CCPM surpassed past studies by Wu and Zhu [10] and Abdoh et al. [22] in terms of sensitivity, specificity, and accuracy. A study by Deng et al. [76] used SMOTE for handling the imbalanced data, and SVM, XGBoost and RF to identify the risk factors of cervical cancers. Our CCPM produces better results as compared to the Deng et al. [76]. They accuracies achieved by SVM, XGBoostand Random Forest are 90.34, 96.34, and 97.39, respectively. A recent study by Adem et al. [20] used a stacked autoencoder with a soft-max layer and achieved an accuracy of 97.25% in the cervical cancer dataset. Our CCPM surpassed Deng et al. [76] and Adem et al. [20] in terms of accuracy. Thus, we can conclude that our proposed CCPM is better than other machine learning models as well as past studies.



Our proposed CCPM has four combinations, two outlier detection methods and two data oversampling methods, and their results varied target variables and performance measures. For example, the combination of iForest and SMOTETomek showed the best performances in sensitivity and accuracy in biopsy and specificity in Schiller and Hinselmann, but that of DBSCAN and SMOTE was the best in sensitivity and accuracy in Schiller and Hinselmann tests. In summary, iForest showed better results than DBSCAN for biopsy tests, but DBSCAN was usually better than iForest for the cytology test. However, we recommend using all of four combinations for predicting cervical cancer and using ensemble results of them for more robust prediction.



In case of risk factors, Table 1 showed the entire attributes’ name and the corresponding number of each attribute. The ten features in our study were Smokes (years), Hormonal Contraceptives (years), STDs (number), STDs: genital herpes, STDs: HIV, STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, Dx. We compared the results of risk factors based on feature extraction results with past studies [10,22,77]. The factor Dx: Cancer found in our study is also validated by the Wu and Zhu [10], while the factors smokes per years and Hormonal contraceptives found by Wu and Zhu [10], and Smokes and Hormonal Contraceptives found by Abdoh et al. [22] seemed quite relevant to the factors Smokes (years) and Hormonal Contraceptives (years) factors found in the present study. Furthermore, we compared our features result with past study by Nithya and Ilango [77]. These findings have revealed that the common features between both studies include Smokes (years), Hormonal Contraceptives (years), STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx. Hence, Smokes (years), Hormonal Contraceptives (years), STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx are the factors that corresponds to the riskiest factors of cervical cancer. Based on our experiment the existence of these factors enhances the risk of being a cervical cancer patient. The present work identified the topmost significant features for the classification of cervical cancer patients to be Smokes (years), Hormonal Contraceptives (years), STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx.



The complexity of an algorithm is generally calculated using Big-O notation [78,79,80]. Time complexity and space complexity are two types of computational complexity [81,82]. Time complexity deals with how long the algorithm is executed for, while space complexity deals with how much memory is used by its algorithm. An algorithm will process amounts of data, where N is a symbol of amounts of data. If an algorithm does not depend on N, then the algorithm has constant complexity or symbolized by O(1) (Big-O one). On the contrary, if the algorithm is dependent on N, the complexity depends on line code in algorithm and it is can be O(n), O(n2), O(log n) and others. Let n be the number of training examples, d be the number of dimensions of the data, k be the number of neighbors or the number of trees, and c be the number of classes. Table 26 depicts the time and space complexities of some machine learning algorithms. In our CCPM, the RF becomes slow and requires more memory space for training as compared to other algorithms. In addition, the proposed CCPM requires additional computation for outlier detection and data balancing. In our CCPM, however, we got better accuracy compared to other conventional machine learning methods.




4.6. Practical Implications


Lee et al. [83] have studied the impacts of educational text messages concerning HPV vaccination and its advantages and observed a substantial upsurge in HPV vaccination intake in targeted populations. Cancer screening programs have also used text messaging in an attempt to tackle the screening intake. Weaver et al. [84] have recently examined how elderly patients would be interested in text messages intended to motivate their participation in a screening program. Their findings indicated that older populations were extremely interested in such messages based on their involvement. A recent study by Ijaz et al. [46] has used IoT for a healthcare monitoring system for patients at home and used personal healthcare devices that perceive and estimate a persons’ biomedical signals. The system can notify health personnel in real-time when patients experience emergency situations.



In the present work, we implemented CCPM into a mobile app to show its practical implication for simple users. Figure 3 shows the architecture framework of CCPM. A mobile app collects user’s risk factor data and then sends it to Representational State Transfer (REST API) to be stored in a a secure remote server. We used NoSQL MongoDB to store user data by keeping in mind that it could store large amounts of data. Finally, CCPM was used to forecast the presence of cervical cancer as long as users input risk factors. Predication results are shown in the mobile app.



Figure 4a,b shows a prototype of the mobile app. When a user presses the “send” button, risk factors that the user inputs are stored in the remote server. CCPM is then activated to foresee the existence of cervical cancer. Figure 4b depicts the interface of mobile application when the user receives prediction results. Therefore, it is expected that the CCPM mobile application can help users find the risk of cervical cancer proficiently at an early stage.



In our CCPM mobile application, maintaining the safety of healthcare data is of paramount importance. The data in the CCPM mobile application are encrypted. Encryption is an essential for our CCPM mobile application since it scrambles a user’s personal data. We used secure sockets layer (SSL) technology that encrypts information transmitted between a mobile application and the server. SSL uses a cryptographic system that uses two keys to encrypt data, e.g., a public key known to everyone and a private or secret key known only to the recipient of the message [85,86]. The NoSQL MongoDB helps to store the user data. A secure log-in feature can be added to mobile application which is called two-factor authentication (2FA). 2FA improves the mobile application’s security. Some examples of 2FA include: Username/password + SMS code, Username/password + code sent via email, and Username/password + biometric authentication (a fingerprint). Another important feature to secure the user data is with the help of data wiping. To implement data wiping, an app can: log out a user after a certain period of inactivity, keep information in an encrypted form, and perform an automatic data wipe after a certain number of unsuccessful login attempts. This gives users a sense of greater control over privacy, security, and confidentiality in towards their healthcare data. The security systems described above can keep the health data secured and safe in our mobile application.





5. Conclusions


As indicated by the World Health Organization (WHO), about 80% cases of cervical cancer are noted in developing nations. A cure ratio is described as the ratio of female cases that are healed from the disease. It can be boosted by classifying the risk factors of cervical cancer [22]. This study proposed a CCPM that used Chi-square as feature extraction technique. We extracted ten features and used them in our study. The current dataset is unbalanced. It has a lot of missing values. For missing values, we used mean equation. The current work proposed CCPM by joining DBSCAN and iForest for outlier detection, with SMOTE and SMOTETomek for class balancing and RF as a classifier. The CCPM can help users find the risk of cervical cancer at an early stage. Accuracies achieved by Biopsy forDBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, and iForest + SMOTE + RF were 96.708%, 97.007%, 98.919%, and 98.925%, respectively. While for Schiller accuracies for DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest + SMOTE + RF were 99.48%, 99.22%, 98.50%, and 98.71% respectively. In case of Hinselmann, the accuracies achieved by DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest + SMOTE + RF were 99.50%, 99.01%, 99.50%, and 99.50% respectively. For Cytology, the accuracies achieved by DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest + SMOTE + RF were 97.72%, 97.22%, 97.50%, and 97.51% respectively. Hence, combining iForest with SMOTE and SMOTETomek can produce better results than combining DBSCAN with SMOTE and SMOTETomek. Besides, we compared Hinselmann, Schiller, Cytology, and Biopsy results with past studies by Wu and Zhu [10] and Abdoh et al. [22] in terms of sensitivity, specificity, and accuracy. Our results revealed that DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest + SMOTE + RF surpassed past studies by Wu and Zhu [10] and Abdoh et al. [22]. Besides, Our CCPM surpassed Deng et al. [76] and Adem et al. [20] in terms of accuracy. As a result, we can conclude that our proposed CCPM is better than other models as well as past studies.



In future work, we will employ more diverse techniques for outlier detection and over-sampling methods. We will also apply each combination to CCPM to improve its diagnosis performance. The proposed method can be applied to other cervical cancer datasets. Results on these may provide additional intuitions for the early diagnosis of cervical cancer.



This study also has a limitation, as only one dataset is employed. Since we only focus on cervical cancer in this study, we only used one dataset. In future research, the proposed CCPM can be applied to diverse cancer datasets (such as breast, liver, lung, prostate, thyroid, and kidney) to enhance the clarity and quality of results. Another limitation is that our algorithm (which is a combination of outlier technique and data balancing with RF) becomes slower and needs more memory to run, but as we got a better accuracy, it serves our purpose.
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Figure 1. Prediction model for cervical cancer. 
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Figure 2. Optimal eps value for DBSCAN. 
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Figure 3. Cervical Cancer Predication Model architecture framework. 
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Figure 4. (a) Interface of mobile application to gather user’s data. (b) Prediction result interface of CCPM mobile application. 
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Table 1. Dataset features, number of entries, and missing values.
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	Number
	Attribute Name
	Type
	Missing Values





	1
	Age
	Int
	0



	2
	Number of sexual partners
	Int
	26



	3
	First sexual intercourse (age)
	Int
	7



	4
	Num of pregnancies
	Int
	56



	5
	Smokes
	bool
	13



	6
	Smokes (years)
	bool
	13



	7
	(Smokes (packs/year)
	bool
	13



	8
	Hormonal Contraceptives
	bool
	108



	9
	Hormonal Contraceptives (years)
	Int
	108



	10
	Intrauterine Device (IUD)
	bool
	117



	11
	IUD (years)
	Int
	117



	12
	Sexually Transmitted Disease (STD)
	bool
	105



	13
	STDs (number)
	Int
	105



	14
	STDs: condylomatosis
	bool
	105



	15
	STDs: cervical condylomatosis
	bool
	105



	16
	STDs: vaginal condylomatosis
	bool
	105



	17
	STDs: vulvo-perineal condylomatosis
	bool
	105



	18
	STDs: syphilis
	bool
	105



	19
	STDs: pelvic inflammatory disease
	bool
	105



	20
	STDs: genital herpes
	bool
	105



	21
	STDs: molluscum contagiosum
	bool
	105



	22
	STDs: AIDS
	bool
	105



	23
	STDs: HIV
	bool
	105



	24
	STDs: Hepatitis B
	bool
	105



	25
	STDs: HPV
	bool
	105



	26
	STDs: Number of diagnosis
	Int
	0



	27
	STDs: Time since first diagnosis
	Int
	787



	28
	STDs: Time since last diagnosis
	Int
	787



	29
	Dx: Cancer
	bool
	0



	30
	Dx: Cervical Intraepithelial Neoplasia (CIN)
	bool
	0



	31
	Dx: Human Papillomavirus (HPV)
	bool
	0



	32
	Diagnosis: Dx
	bool
	0



	33
	Hinselmann: target variable
	bool
	



	34
	Schiller: target variable
	bool
	



	35
	Cytology: target variable
	bool
	



	36
	Biopsy: target variable
	bool
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Table 2. Performance metrics for the classification model.






Table 2. Performance metrics for the classification model.





	Performance Metric
	Formula





	Precision
	   TP /  (  TP + FP  )    



	Recall/Sensitivity
	   TP /  (  TP + FN  )    



	Specificity/True Negative Rate
	TN/(TN + FP)



	F1 Score
	2 × (Precision × Recall)/(Precision + Recall)



	Accuracy
	    (  TP + TN  )  /  (  TP + TN + FP + FN  )    










[image: Table] 





Table 3. Different outcomes of two-class prediction.






Table 3. Different outcomes of two-class prediction.










	
	Predicted as “Yes”
	Predicted as “No”





	Actual “Yes”
	True Positive (TP)
	False Negative (FN)



	Actual “No”
	False Positive (FP)
	True Negative (TN)
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Table 4. Results of Chi-square.






Table 4. Results of Chi-square.





	No
	Feature’s Name
	Features Scores





	1
	Smokes (years)
	421.4689



	2
	Hormonal Contraceptives (years)
	246.6243



	3
	Sexually Transmitted Diseases (STDs) (number)
	87.28867



	4
	STDs: genital herpes
	43.73654



	5
	STDs: HIV
	29.35086



	6
	STDs: Number of diagnosis
	21.74795



	7
	Dx: Cancer
	21.74795



	8
	Dx: cervical intraepithelial neoplasia (CIN)
	20.71644



	9
	Dx: human papillomavirus (HPV)
	12.64184



	10
	Dx
	12.44904
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Table 5. Results of synthetic minority over sampling technique (SMOTE) and SMOTETomek.






Table 5. Results of synthetic minority over sampling technique (SMOTE) and SMOTETomek.





	
Before SMOTE

	
After SMOTE

	
Before SMOTETomek

	
After SMOTETomek






	
Minority (%)

	
Majority (%)

	
Minority (%)

	
Majority (%)

	
Minority (%)

	
Majority (%)

	
Minority (%)

	
Majority (%)




	
55 (6.41%)

	
803 (93.59%)

	
803 (93.59%)

	
803 (93.59%)

	
55 (6.41%)

	
803 (93.59%)

	
803 (93.59%)

	
803 (93.59%)
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Table 6. Performance evaluation results based on density-based spatial clustering of applications with noise (DBSCAN) and SMOTE for Biopsy.






Table 6. Performance evaluation results based on density-based spatial clustering of applications with noise (DBSCAN) and SMOTE for Biopsy.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	92.797
	91.666
	93.908
	92.768
	92.768



	MLP
	96.049
	97.549
	94.416
	96.000
	96.001



	Logistic Regression
	94.020
	93.627
	94.416
	94.015
	94.014



	Naïve Bayes
	93.666
	96.568
	90.355
	93.506
	93.516



	KNN
	94.289
	98.039
	89.847
	94.001
	94.014



	Proposed CCPM (Random Forest)
	97.025
	98.039
	95.939
	97.006
	97.007
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Table 7. Performance evaluation results based on DBSCAN and SMOTETomek for Biopsy.






Table 7. Performance evaluation results based on DBSCAN and SMOTETomek for Biopsy.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.692
	93.782
	95.544
	94.682
	94.683



	MLP
	95.697
	95.854
	95.544
	95.696
	95.696



	Regression
	95.697
	95.854
	95.544
	95.696
	95.696



	Naïve Bayes
	93.587
	96.373
	90.594
	93.416
	93.417



	KNN
	94.430
	94.300
	94.554
	94.430
	94.430



	Proposed CCPM (Random Forest)
	96.720
	97.409
	96.039
	96.720
	96.708
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Table 8. Performance evaluation results based on iForest and SMOTE for Biopsy.






Table 8. Performance evaluation results based on iForest and SMOTE for Biopsy.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy(%)





	SVM
	95.501
	90.957
	99.456
	95.154
	95.161



	MLP
	96.432
	93.085
	99.456
	96.233
	96.236



	Regression
	96.131
	93.085
	98.913
	95.965
	95.967



	Naïve Bayes
	95.656
	92.021
	98.913
	95.426
	95.430



	KNN
	98.668
	97.872
	99.456
	98.655
	98.655



	Proposed CCPM (Random Forest)
	98.924
	98.936
	98.130
	98.924
	98.925
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Table 9. Performance evaluation results based on iForest and SMOTETomek for Biopsy.






Table 9. Performance evaluation results based on iForest and SMOTETomek for Biopsy.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.726
	91.935
	97.282
	94.591
	94.594



	MLP
	96.845
	94.623
	98.913
	96.755
	96.756



	Logistic Regression
	94.853
	90.860
	98.369
	94.587
	94.594



	Naïve Bayes
	94.619
	90.322
	98.369
	94.316
	94.324



	KNN
	97.302
	96.774
	97.826
	97.297
	97.297



	Proposed CCPM (Random Forest)
	98.918
	98.924
	98.913
	98.918
	98.919
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Table 10. Performance evaluation results based on DBSCAN and SMOTE for Schiller.






Table 10. Performance evaluation results based on DBSCAN and SMOTE for Schiller.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	95.582
	96.292
	94.807
	95.572
	95.572



	MLP
	97.759
	96.825
	95.710
	96.759
	97.662



	Logistic Regression
	95.297
	91.594
	98.498
	95.096
	95.106



	Naïve Bayes
	93.165
	90.963
	96.033
	93.589
	93.575



	KNN
	92.205
	93.440
	91.119
	92.247
	92.244



	Proposed CCPM (Random Forest)
	98.216
	99.208
	99.487
	99.217
	99.217
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Table 11. Performance evaluation results based on DBSCAN and SMOTETomek for Schiller.






Table 11. Performance evaluation results based on DBSCAN and SMOTETomek for Schiller.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	95.393
	93.298
	97.368
	95.393
	95.393



	MLP
	97.912
	97.883
	97.938
	97.762
	97.911



	Regression
	93.641
	87.891
	94.680
	93.188
	93.105



	Naïve Bayes
	93.587
	96.373
	90.594
	93.416
	93.417



	KNN
	94.580
	97.387
	91.150
	94.261
	91.260



	Proposed CCPM (Random Forest)
	99.509
	99.484
	99.463
	99.474
	99.479
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Table 12. Performance evaluation results based on iForest and SMOTE for Schiller.






Table 12. Performance evaluation results based on iForest and SMOTE for Schiller.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	96.613
	94.623
	97.563
	96.141
	96.143



	MLP
	98.771
	97.291
	98.677
	98.774
	97.724



	Regression
	94.497
	91.714
	96.938
	94.363
	94.373



	Naïve Bayes
	93.048
	92.746
	93.343
	93.098
	93.098



	KNN
	93.317
	94.514
	91.344
	93.881
	93.881



	Proposed CCPM (Random Forest)
	98.714
	97.314
	100.00
	98.714
	98.714
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Table 13. Performance evaluation results based on iForest and SMOTETomek for Schiller.






Table 13. Performance evaluation results based on iForest and SMOTETomek for Schiller.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.011
	93.625
	94.329
	94.054
	94.010



	MLP
	97.369
	96.808
	96.913
	97.509
	97.164



	Logistic Regression
	94.142
	91.635
	96.681
	94.073
	94.072



	Naïve Bayes
	93.085
	92.000
	95.172
	93.866
	93.866



	KNN
	94.762
	94.707
	91.344
	93.072
	93.072



	Proposed CCPM (Random Forest)
	98.463
	98.907
	98.074
	98.499
	98.495










[image: Table] 





Table 14. Performance evaluation results based on DBSCAN and SMOTE for Hinselmann.






Table 14. Performance evaluation results based on DBSCAN and SMOTE for Hinselmann.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	98.500
	98.492
	98.507
	98.500
	98.500



	MLP
	98.759
	100.00
	98.760
	98.759
	98.759



	Logistic Regression
	97.796
	98.994
	96.568
	97.766
	97.766



	Naïve Bayes
	97.165
	98.963
	95.433
	97.089
	97.087



	KNN
	96.905
	98.440
	95.433
	96.847
	96.844



	Proposed CCPM (Random Forest)
	99.016
	100.00
	97.948
	98.997
	98.997
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Table 15. Performance evaluation results based on DBSCAN and SMOTETomek for Hinselmann.






Table 15. Performance evaluation results based on DBSCAN and SMOTETomek for Hinselmann.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	99.004
	99.512
	98.461
	98.999
	98.053



	MLP
	98.792
	100.00
	97.512
	98.762
	98.620



	Regression
	98.034
	98.989
	97.073
	98.015
	98.015



	Naïve Bayes
	93.587
	96.373
	90.594
	93.416
	93.417



	KNN
	97.580
	98.507
	96.550
	97.561
	97.560



	Proposed CCPM (Random Forest)
	99.509
	100.00
	98.963
	99.504
	99.504
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Table 16. Performance evaluation results based on iForest and SMOTE for Hinselmann.






Table 16. Performance evaluation results based on iForest and SMOTE for Hinselmann.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	99.514
	97.012
	97.024
	98.509
	98.530



	MLP
	98.771
	96.050
	98.677
	98.774
	98.270



	Regression
	98.537
	97.014
	98.058
	98.533
	98.533



	Naïve Bayes
	98.048
	98.238
	96.172
	98.048
	98.048



	KNN
	98.317
	99.514
	97.044
	98.288
	98.288



	Proposed CCPM (Random Forest)
	99.514
	99.014
	100.00
	99.504
	99.504
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Table 17. Performance evaluation results based on iForest and SMOTETomek for Hinselmann.






Table 17. Performance evaluation results based on iForest and SMOTETomek for Hinselmann.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	97.755
	96.431
	99.481
	99.754
	98.754



	MLP
	97.369
	97.326
	98.913
	99.509
	98.509



	Logistic Regression
	98.529
	99.065
	97.927
	98.525
	98.525



	Naïve Bayes
	97.085
	98.000
	96.172
	97.066
	97.066



	KNN
	97.782
	98.507
	97.044
	97.772
	97.772



	Proposed CCPM (Random Forest)
	98.514
	100.00
	98.974
	99.509
	99.509
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Table 18. Performance evaluation results based on DBSCAN and SMOTE for Cytology.






Table 18. Performance evaluation results based on DBSCAN and SMOTE for Cytology.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.475
	99.519
	87.807
	93.852
	93.872



	MLP
	91.759
	90.465
	92.710
	94.759
	94.682



	Logistic Regression
	84.999
	80.000
	89.393
	84.637
	84.635



	Naïve Bayes
	80.655
	71.065
	88.345
	79.792
	79.900



	KNN
	94.002
	99.000
	87.878
	93.467
	93.521



	Proposed CCPM (Random Forest)
	97.225
	96.428
	97.989
	97.215
	97.217
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Table 19. Performance evaluation results based on DBSCAN and SMOTETomek for Cytology.






Table 19. Performance evaluation results based on DBSCAN and SMOTETomek for Cytology.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.413
	98.098
	90.000
	94.165
	94.187



	MLP
	99.452
	99.083
	91.052
	95.182
	95.175



	Regression
	86.326
	77.860
	93.137
	85.490
	85.606



	Naïve Bayes
	81.145
	84.882
	85.912
	80.123
	80.128



	KNN
	91.111
	90.952
	80.888
	89.560
	89.620



	Proposed CCPM (Random Forest)
	97.228
	97.428
	97.989
	97.715
	97.716
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Table 20. Performance evaluation results based on iForest and SMOTE for Cytology.






Table 20. Performance evaluation results based on iForest and SMOTE for Cytology.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	94.333
	97.963
	90.293
	94.041
	94.043



	MLP
	93.771
	94.291
	93.677
	91.774
	91.724



	Regression
	83.098
	79.487
	87.980
	84.671
	84.641



	Naïve Bayes
	81.635
	77.830
	85.106
	81.261
	81.250



	KNN
	89.497
	97.129
	78.971
	88.242
	88.366



	Proposed CCPM (Random Forest)
	97.518
	97.448
	97.584
	97.518
	97.514
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Table 21. Performance evaluation results based on iForest and SMOTETomek for Cytology.






Table 21. Performance evaluation results based on iForest and SMOTETomek for Cytology.





	Method
	Precision (%)
	Recall/Sensitivity (%)
	Specificity (%)
	F1 Score (%)
	Accuracy (%)





	SVM
	93.231
	99.038
	85.556
	92.512
	92.537



	MLP
	91.998
	92.788
	94.913
	92.523
	92.234



	Logistic Regression
	85.784
	77.669
	92.422
	84.093
	84.900



	Naïve Bayes
	93.085
	92.000
	95.172
	93.866
	93.866



	KNN
	89.321
	93.333
	84.532
	89.071
	89.108



	Proposed CCPM (Random Forest)
	97.463
	97.907
	97.074
	97.499
	97.495










[image: Table] 





Table 22. Comparison of biopsy test results of CCPM with past studies.






Table 22. Comparison of biopsy test results of CCPM with past studies.





	
Studies

	
Method

	
No of Features

	
Sensitivity (%)

	
Specificity (%)

	
Accuracy (%)






	
Wu and Zhu [10]

	
SVM-RFE

	
6

	
100

	
87.32

	
92.39




	
18

	
100

	
90.05

	
94.03




	
SVM-PCA

	
8

	
100

	
89.09

	
93.45




	
11

	
100

	
90.05

	
94.03




	
Abdoh et al. [22]

	
Smote-RF-RFE

	
6

	
94.94

	
95.52

	
95.23




	
18

	
94.42

	
97.26

	
95.87




	
Smote-RF-PCA

	
8

	
93.77

	
97.26

	
95.55




	
11

	
94.16

	
97.76

	
95.74




	
Present work

	
DBSCAN + SMOTETomek + RF

	
10

	
97.409

	
96.039

	
96.708




	
DBSCAN + SMOTE+ RF

	
10

	
98.039

	
95.939

	
97.007




	
iForest + SMOTETomek + RF

	
10

	
98.924

	
98.913

	
98.919




	
iForest + SMOTE + RF

	
10

	
98.936

	
98.130

	
98.925











[image: Table] 





Table 23. Comparison of Schiller test results of CCPM with past studies.






Table 23. Comparison of Schiller test results of CCPM with past studies.





	
Studies

	
Method

	
No of Features

	
Sensitivity (%)

	
Specificity (%)

	
Accuracy (%)






	
Wu and Zhu [10]

	
SVM-RFE

	
7

	
98.73

	
84.46

	
90.18




	
18

	
98.73

	
84.63

	
90.18




	
SVM-PCA

	
6

	
98.99

	
83.14

	
89.49




	
12

	
98.99

	
84.30

	
90.18




	
Abdoh et al. [22]

	
Smote-RF-RFE

	
7

	
93.24

	
90.31

	
91.73




	
18

	
93.51

	
92.35

	
92.91




	
Smote-RF-PCA

	
6

	
92.70

	
96.17

	
94.49




	
12

	
92.03

	
97.58

	
94.88




	
Present work

	
DBSCAN + SMOTETomek + RF

	
10

	
99.48

	
99.46

	
99.48




	
DBSCAN + SMOTE+ RF

	
10

	
99.20

	
99.49

	
99.22




	
iForest + SMOTETomek + RF

	
10

	
98.91

	
98.07

	
98.50




	
iForest + SMOTE + RF

	
10

	
97.31

	
100

	
98.71











[image: Table] 





Table 24. Comparison of Hinselmann test results of CCPM with past studies.






Table 24. Comparison of Hinselmann test results of CCPM with past studies.





	
Studies

	
Method

	
No of Features

	
Sensitivity (%)

	
Specificity (%)

	
Accuracy (%)






	
Wu and Zhu [10]

	
SVM-RFE

	
5

	
100

	
84.63

	
90.77




	
15

	
100

	
84.49

	
93.69




	
SVM-PCA

	
5

	
100

	
84.63

	
92.09




	
11

	
100

	
84.65

	
93.79




	
Abdoh et al. [22]

	
Smote-RF-RFE

	
5

	
96.52

	
93.80

	
95.14




	
15

	
96.65

	
95.14

	
95.88




	
Smote-RF-PCA

	
5

	
96.52

	
98.30

	
97.42




	
11

	
96.52

	
98.42

	
97.48




	
Present work

	
DBSCAN + SMOTETomek + RF

	
10

	
100

	
98.96

	
99.50




	
DBSCAN + SMOTE+ RF

	
10

	
100

	
97.95

	
99.01




	
iForest + SMOTETomek + RF

	
10

	
100

	
98.97

	
99.50




	
iForest + SMOTE + RF

	
10

	
99.01

	
100

	
99.50
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Table 25. Comparison of CYTOLOGY TEST results of CCPM with past studies.






Table 25. Comparison of CYTOLOGY TEST results of CCPM with past studies.





	
Studies

	
Method

	
No of features

	
Sensitivity (%)

	
Specificity (%)

	
Accuracy (%)






	
Wu and Zhu [10]

	
SVM-RFE

	
8

	
100

	
84.42

	
90.65




	
15

	
100

	
87.28

	
92.37




	
SVM-PCA

	
8

	
100

	
86.65

	
91.98




	
11

	
100

	
87.44

	
92.46




	
Abdoh et al. [22]

	
Smote-RF-RFE

	
8

	
87.37

	
97.54

	
92.52




	
15

	
93.56

	
98.15

	
95.89




	
Smote-RF-PCA

	
8

	
95.58

	
97.17

	
96.39




	
11

	
95.32

	
98.40

	
96.89




	
Present work

	
DBSCAN + SMOTETomek + RF

	
10

	
97.43

	
98.01

	
97.72




	
DBSCAN + SMOTE+ RF

	
10

	
96.43

	
98.01

	
97.22




	
iForest + SMOTETomek + RF

	
10

	
97.91

	
97.08

	
97.50




	
iForest + SMOTE + RF

	
10

	
97.45

	
97.58

	
97.51
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Table 26. Time and Space Complexities of Machine Learning Algorithms.






Table 26. Time and Space Complexities of Machine Learning Algorithms.





	Model Name
	Time Complexity
	Space Complexity





	KNN
	O(knd)
	O(nd)



	Logistic Regression
	O(nd)
	O(d)



	SVM
	O(n²)
	O(kd)



	Naive Bayes
	O(nd)
	O(cd)



	Random Forest
	O(nlog(n)dk)
	O(depth of tree ∗ k)
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