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Abstract: Globally, cervical cancer remains as the foremost prevailing cancer in females. Hence, it is
necessary to distinguish the importance of risk factors of cervical cancer to classify potential patients.
The present work proposes a cervical cancer prediction model (CCPM) that offers early prediction
of cervical cancer using risk factors as inputs. The CCPM first removes outliers by using outlier
detection methods such as density-based spatial clustering of applications with noise (DBSCAN)
and isolation forest (iForest) and by increasing the number of cases in the dataset in a balanced
way, for example, through synthetic minority over-sampling technique (SMOTE) and SMOTE with
Tomek link (SMOTETomek). Finally, it employs random forest (RF) as a classifier. Thus, CCPM lies
on four scenarios: (1) DBSCAN + SMOTETomek + RF, (2) DBSCAN + SMOTE+ RF, (3) iForest +

SMOTETomek + RF, and (4) iForest + SMOTE + RF. A dataset of 858 potential patients was used to
validate the performance of the proposed method. We found that combinations of iForest with SMOTE
and iForest with SMOTETomek provided better performances than those of DBSCAN with SMOTE
and DBSCAN with SMOTETomek. We also observed that RF performed the best among several
popular machine learning classifiers. Furthermore, the proposed CCPM showed better accuracy than
previously proposed methods for forecasting cervical cancer. In addition, a mobile application that
can collect cervical cancer risk factors data and provides results from CCPM is developed for instant
and proper action at the initial stage of cervical cancer.

Keywords: cancer; artificial intelligence; digital health; machine learning; medical information
systems; cervical cancer; imbalanced data analysis; outlier detection

1. Introduction

One form of gynecological cancer is cervical cancer. Cervical cancer complications are often
associated with the infection of human papillomavirus. It is a common debilitating disease among
women worldwide. It is the third most regularly diagnosed cancer (~485,000 cases) and the fourth
worldwide driving cause of cancer-related deaths (236,000) each year [1,2]. The main cause of cervical
cancer is persistent infection by oncogenic human papillomavirus (HPV). Cervical intraepithelial
neoplasia 1–3 and in situ carcinoma are the early manifestations of cervical cancer [3]. Additional
factors, including sexually transmitted infections, oral contraceptive use, smoking status, parity, and
diet can add to the development of cervical cancer [4]. Generally, patients detected with cervical cancer
at initial phases give no noticeable signs or indications that could lead to misdiagnosis [5]. The danger
of cervical cancer can be expanded by 2 to 3 times if an HPV-contaminated patient smokes [6]. In case
of multiple pregnancies, female HPV-infected patients without pregnancies have lower occurrence of
cervical cancer than those with more than one full-term pregnancy [7].
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Past research has revealed that magnetic resonance imaging and diffusion-weighted imaging
techniques can classify cervical cancer to some degree [8,9]. The absence of doctor skills and confined
medical equipment make cervical cancer a main reason for mortality in low-income countries [10].
Additionally, the absence of doctor prowess and confined medical apparatus cause cervical cancer to be
a noteworthy reason for death in low-income nations. Because of preventive steps taken by developed
nations, the occurrence of cervical cancer worldwide fluctuates meaningfully [11]. Notwithstanding
advances in prevention, screening, analysis, and remedy in the course of the past decade, significant
local and worldwide discrepancies in cervical cancer findings have led worldwide gynecological cancer
societies to publish proof-based management policies to enhance the quality care for patients [12].
The current diagnosis of cervical cancer relies mainly on histological and morphological examinations
without well-defined sensitivity and specificity [13].

A recent study by Ghoneim et al. [14] used convolutional neural networks (CNN) and extreme
learning machines for cervical cancer classification. The authors used Herlev database. The proposed
CNN-ELM-based system achieved 99.5% accuracy in the detection problem (two-class) and 91.2% in the
classification problem (seven-class). Chandran and Kumari [15] proposed a gray-level co-occurrence
matrix and a probabilistic neural-network-based system, which achieved an accuracy of 92.8%.
The images were MRI images, and the database was private. In [16], authors proposed k-NN and
ANN-based classification systems. The Herlev database was used in the experiments. The k-NNs-based
system achieved 88% accuracy, while the ANNs based system obtained 54% accuracy. Gupta et al. [17]
designed a multiple back propagation NN-based system. A private database was used, where the
image quality was not good. 95.6% accuracy was obtained by the system. Zhang et al. [18], used CNNs
develop a system called DeepPap. Using the Herlev database, the system obtained 98.6% accuracy.
Bora et al. [19] used CNNs and some additional features for Pap smear image classification. Based on
the features, the accuracies varied between 90% and 95%. Adem et al. [20] used a stacked autoencoder
with a soft-max layer and achieved an accuracy of 97.25% in the cervical cancer dataset.

In case of cervical cancer, present studies emphasize the development of more precise models
instead of the significance of data pre-processing. The outlier detection approach may be used during
the pre-processing step to discover discrepancies in data. Accordingly, a good classifier may be
generated for better decision-making. Apparently, machine learning (ML) methods are the most useful
in predictions. They are widely applied in numerous kinds of cancer studies. Past studies [10,21,22]
have used various ML techniques for cervical cancer diagnosis and prediction. However, ML techniques
face some challenges, including problems of missing values in dataset, determining precise attributes,
removing outliers from the data, distributing class, and attaining results with higher prediction
accuracy. Thus, the present work aims to face these challenges. Prior studies have not combined outlier
detection and data balancing for cervical cancer prediction. The present work proposes a cervical
cancer prediction model (CCPM) by utilizing density-based spatial clustering of applications with noise
(DBSCAN) and iForest for outlier detection, with synthetic minority over sampling technique (SMOTE)
and SMOTETomek for data balancing, and random forest for cervical cancer prediction based on risk
factors [23–25]. Hence, the key novelty of the present study is to combine the outlier detection methods,
DBSCAN and iForest, the data oversampling methods, SMOTE and SMOTETomek, and random forest
classifier for cervical cancer prediction based on risk factors to improve the prediction performance.

The reminder of the paper is organized as follows. Section 2 explains related works on prediction
model for cervical cancer, outlier detection methods, over-sampling methods for data balancing, and
random forest. Section 3 presents the dataset description with proposed CCPM and evaluation metrics.
Section 4 deals with the feature extraction results, DBSCAN and iForest for outlier detection, and
SMOTE and SMOTETomek for balancing the dataset along with the results and discussions of four
target variables. In Section 5, concluding remarks are presented.
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2. Related Work

Past research primarily employed a clinical feature-based approach, genetic feature-based
approach, and image classification and segmentation to classify and understand cervical cancer’s
presence. In case of cervical cancer cell images, a study by Zhang et al. [26] used various machine
learning algorithms and matched their segmentation refinement with an artifact-nucleus classifier,
for which random forest has revealed the best output. Along with other robust refinement methods,
supervised and unsupervised methods were used to distinguish image patches or superpixels from
extracted elements, such as Adaboost detectors [27], support vector machine (SVM) [28] or Gauussian
mixture models [29]. In a study by Zhao et al. [30] a novel superpixel-based Markov random field
(MRF) segmentation was also implemented for non-overlapping cells.

A linear kernel SVM classifier was used by Tareef et al. [31] on superpixels, accompanied by edge
enhancement and adaptive thresholding. The results indicated Nuclei Precision: 94.3%; Recall: 92.0%;
Dice similarity coefficient (DSC): 0.926. Cytoplasm DSC: 0.914. In one other study, Zhao et al. 2016 [30]
used an MRF classifier with a Gap-search algorithm + Automatic labeling map. The findings revealed
that Nuclei DSC: 0.93. Cytoplasm DSC: 0.82. In another work by Tareef et al. [28], the authors used
SVM classification + Shape based-guided Level Set based on Sparse Coding for overlapping cytoplasm.
The results showed that Nuclei Precision: 95%; Recall: 93%; DSC: 0.93, and Cytoplasm DSC: 0.89.

Tseng et al. [32] have reported three classification models of C5.0, SVM, and extreme machine
learning to anticipate cervical cancer reoccurrence and to classify the best associated risk factors by
utilizing a clinical dataset (e.g., age, radiation therapy, cell type, and tumor size). Their findings indicate
that cell type and radiation therapy are two risk factors associated with reoccurrence of cervical cancer.
Their findings uncovered that C5.0 had the greatest classification accuracy ratio for all classifiers [32].

Hu et al. [33] have explained a predictive model using multiple logistic regression analysis and
artificial neural network to predict the presence of cervical cancer and to identify the maximum
risk factors linked with cervical cancer. They used features such as HPV, four genetic factors, and
educational level. The experiment recognized that HLA DRB1× 13-2 and HLA DRB1×3-17 alleles
were two risk factors of cervical cancer. Such risk factors have been the source of rising cervical cancer
risks. Their results indicated that back-substitution fitting of artificial neural network achieved the
highest classification accuracy ratio for all classifiers. Sharma [34] has shown a classification model
for identifying stages of cervical cancer using C5.0 with different options such as rule sets, boosting,
and advanced pruning. Features such as, for instance, clinical diameter, uterine body, renal pelvic,
and primary renal carcinoma have been used. Experimental results indicated that C5.0 with advanced
pruning achieved the maximum accuracy ratio to identify stages of cervical cancer [34]. Sobar et al. [35]
used social science behavior theory to classify the probability of being at risk from cervical cancer by
classification methods such as naïve bayes and logistic regression. Their findings indicated that naïve
Bayes had better accuracy than logistics regression [35].

Wu and Zhou [10] identified a classification model based on SVM for the diagnosis of cervical
cancer. They used recursive feature elimination (RFE) and principle component analysis (PCA)
techniques for feature elimination. Their findings revealed that the SVM-PCA had higher accuracy
for features selection than SVM-RFE. Although the SVM method can accurately classify cervical
cancer data, its high computation cost is a limitation. Recently, Abdoh et al. [22] have used random
forest classifier with SMOTE and feature reduction techniques such as RFE and PCA for cervical
cancer diagnosis. Their findings revealed that the SMOTE-RF model exceeded the SVM classification
technique, similar to the findings of Wu and Zhou [10].

2.1. Feature Selection

Feature selection is defined as the method of choosing a subset of relevant features in data that
are the most valuable for model construction. It reduces overfitting and training time with improved
accuracy [36]. In the present study, we do not need to utilize all features present in the data for making
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an algorithm work. We can train the algorithm with the features that are indeed more significant to
guaranteeing better findings than utilizing all features.

Chi-Squared Feature Selection

Chi-squared feature selection is used to infer a feature’s reliance on the class label [37]. It is one of
the most frequently used methods for deciding the features that are effective. In Chi-square, a feature’s
information value is measured by calculating the chi-square statistical value [38]. Several studies used
chi-square as a feature extraction technique, such as in breast cancer [37], Parkinson’s disease using
voice signal [39], cancer classification [38], computer-aided diagnosis of Parkinson’s disease [40], and
healthcare tweet classification [41]. In Equation (1) given below, c is the number of classes, I is the number
of intervals, Eij is the expected number of samples, and Aij is the number of samples of the C class within
the j-th interval. The larger the value of χ2, the more information the related feature provides.

χ2=
∑C

i = 1

∑I

j=1

(
Aij − Eij

)2

Eij
(1)

2.2. Outlier Detection Method

In information science, an outlier is an observation point that is far off from the bulk of observations.
Outlier detection is defined as the way toward identifying and removing outliers from a dataset.
The key benefit of removing outliers is that it will improve the accuracy. To the best of our knowledge,
none of the studies in cervical cancer used the outlier removal technique. Several studies have reported
that by removing the outliers while using the DBSCAN method [42–45], the performance of the
prediction system is improved. Hence, we foresee that the outlier detection methods are able to
enhance the accuracy of the classification model for cervical cancer. The present work used two outlier
detection techniques, namely DBSCAN and iForest.

2.2.1. DBSCAN

This is a clustering-based method of outlier detection which may be used to isolate outliers [23].
Outliers are points that do not have a place in any cluster. The two key parameters of DBSCAN
are epsilon (eps) and minimum points (MinPts). The eps shows the radius of neighborhood about
a point x (ξ-neighborhood of x), while MinPts explain the minimum number of neighbors inside
the eps radius. DBSCAN is a valuable tool for identifying and removing outliers. Past research has
revealed that DBSCAN can successfully recognize outliers, showing excellent performance in social
network community [43], wireless sensor networks [44], and type 2 diabetes and hypertension [46].
Verbiest et al. [47] have reported that combining outlier removal and oversampling method can produce
better outcomes. Accordingly, merging DBSCAN for outlier detection with SMOTE and SMOTETomek
methods might improve the accuracy of CCPM.

2.2.2. iForest

Isolation forest (iForest) is an outlier detection technique [48,49]. It differentiates outliers through
developing isolation tress (iTrees) and handling outliers as instances/points that have a short average
length inside iTrees. Past studies have revealed noteworthy findings using iForest for outlier and
anomaly detection. Domingues et al. [50] have estimated diverse outlier detection techniques by
means of UCI repository datasets. Their findings revealed that iForest could be successfully used to
classify outliers while providing outstanding scalability on large datasets with bearable memory use.
Calheiros et al. [51] have applied iForest for unsupervised anomaly detection to locate concerns in
large scale cloud datacenters. Their findings indicate that iForest can be viable and beneficial to locate
the anomaly. iForest uses the property that outliers are more vulnerable to isolation, so it is possible to
identify outliers as observations with short predicted track lengths (i.e., less splits) throughout the
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forest [52]. Many studies used iForest as an outlier detection technique such as in the detection of
insulin pump in artificial pancreas [53], fault detection in artificial pancreas [54], medication errors [55],
diabetics [56], Medicare provider fraud [52], and detection of anomalous vital signs of the elderly [57].

2.3. Oversampling Method for Imbalance Dataset

Machine learning methods can confront difficulties when one class dominates a dataset (i.e., the
number of records in one class exceeds the number of other classes by very much). This dataset is
called an imbalanced dataset. It deceives the classification, with a negative impact on findings. In the
present study, we used SMOTE and SMOTETomek to handle the imbalanced dataset problem.

2.3.1. SMOTE

SMOTE is a technique of oversampling proposed by Chawla et al. [24]. This randomly produces
a new minority class instances from the sample’s nearest minority class neighbors. These instances
are created taking into account features of the original dataset, with the objective that they conclude
original minority class instances. It is used in various fields including breast cancer detection [58,59],
liver cancer [60], and cervical cancer [22] to resolve the unbalanced problem. To increase the minority
class, SMOTE uses Equation (2)

xsyn= xi+(xknn −xi) × t (2)

Firstly, SMOTE recognizes the feature vector xi and find the K-nearest neighbors xknn. Then, it
calculates the difference between the feature vector and k-nearest neighbor. Thereafter, it multiplies
the difference by a random number from 0 to 1. It then adds the output number to feature vector to
identify a new point on the line segment. Lastly, it repeats the above steps to find feature vectors.

2.3.2. SMOTETomek

SMOTETomek is a technique used to handle imbalanced data. Many past studies have used
SMOTETomek and revealed favorable outcomes in balancing the data and enhancing the model
performance. It showed better area under the curve value than synthetic minority oversampling
technique edited nearest neighbor (SMOTEENN) when numerous imbalanced datasets are used [61].
Goel et al. [62] have reviewed five sampling techniques to resolve the imbalanced data problem
by using eight datasets from the UCI repository. Their findings indicate that for most datasets,
SMOTETomek can increase the model accuracy. Chen et al. [63] have used SMOTETomek to resolve
the imbalanced data issue in lane-changing behavior and random forest to foresee the risk associated
with lane changing. Their result revealed that SMOTETomek considerably enhanced the model by
as much as 80.3%. Tomek Links can be described as a method for undersampling or as a technique
for cleaning up data. They can be identified as a pair of the nearest neighbors of opposite classes,
which are minimally distant [64]. They are used to remove the overlapping samples that SMOTE
adds. Past studies used SMOTETomek as oversampling technique in various healthcare areas such
as self-care problem identification for children with disability [65], cancer gene expression data [66],
vertebral column pathologies, diabetes and Parkinson’s disease [67], and breast cancer [68].

2.4. Random Forest

RF algorithm is an ensemble classifier which generates multiple decision trees along with weak
classifiers learned from the data on a random sample [69,70]. RFs vanquish numerous issues with decision
trees. For instance, they can reduce overfitting and produce low variance. We used random forest for
prediction in cervical cancer. The following steps describe the generation of each tree in random forest:

• Choose a value of n that shows the number of trees that will be increased in a forest;
• Generate n bootstrap samples with bagging technique of the training set;
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• For each bootstrap dataset, grow a tree. If this training set would consist of M number of input
variables, m<<M number of inputs are selected randomly out of M and the best split on these m
attributes is used to split the node. The value of m will remain constant during forest growing;

• The tree will be grown to the largest possible level;
• The prediction results are obtained from the model (most frequent class) of each decision tree in

the forest.

Past work has revealed that RF is useful for predicting cervical cancer, with high classification
accuracy [22]. Past studies have shown that the outlier data, together with imbalanced datasets, are
difficult issues in classification. For instance, they may decrease the system’s overall performance [47].
Hereafter, we proposed a CCPM that comprised DBSCAN and iForest for outlier detection to eliminate
the outlier data, SMOTE and SMOTETomek for class balancing, and RF for predicting cervical cancer.
By eliminating outlier data along and balancing the dataset, RF is expected to give better results.

3. Dataset Description

The used dataset was published on the repository of UCI collected at Hospital Universitario de
Caracas in Caracas, Venezuela [71]. The dataset contained 858 instances with 36 features. Table 1
displays dataset features, total number of entries, and the missing value for each feature. To deal with
missing values, the present study used the mean equation as depicted in Equation (3).

x =
1
n

(∑n

i=1
xi

)
=

x1 + x2 + x3 + x4 + · · ·

n
(3)

There are four target variables (Schiller, Hinselmann, Cytology, and Biopsy). Schiller’ test uses
iodine solution in cervix. The cervix is examined by naked eye to diagnose cervical cancer [72]. Due to
its poor performance, the Schiller’ test has been replaced by cytology. Cytology test is used to examine
cancer, precancerous conditions, and urinary tract infection. Hinselmann’s test is applied to study the
cervix, vulva, and vagina.

3.1. Prediction Model for Cervical Cancer

The proposed CCPM consists of outlier detection based on DBSCAN and iForest. It also has
SMOTE and SMOTETomek to balance the data with RF for cancer prediction.

Table 1. Dataset features, number of entries, and missing values.

Number Attribute Name Type Missing Values

1 Age Int 0
2 Number of sexual partners Int 26
3 First sexual intercourse (age) Int 7
4 Num of pregnancies Int 56
5 Smokes bool 13
6 Smokes (years) bool 13
7 (Smokes (packs/year) bool 13
8 Hormonal Contraceptives bool 108
9 Hormonal Contraceptives (years) Int 108

10 Intrauterine Device (IUD) bool 117
11 IUD (years) Int 117
12 Sexually Transmitted Disease (STD) bool 105
13 STDs (number) Int 105
14 STDs: condylomatosis bool 105
15 STDs: cervical condylomatosis bool 105
16 STDs: vaginal condylomatosis bool 105
17 STDs: vulvo-perineal condylomatosis bool 105
18 STDs: syphilis bool 105
19 STDs: pelvic inflammatory disease bool 105
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Table 1. Cont.

Number Attribute Name Type Missing Values

20 STDs: genital herpes bool 105
21 STDs: molluscum contagiosum bool 105
22 STDs: AIDS bool 105
23 STDs: HIV bool 105
24 STDs: Hepatitis B bool 105
25 STDs: HPV bool 105
26 STDs: Number of diagnosis Int 0
27 STDs: Time since first diagnosis Int 787
28 STDs: Time since last diagnosis Int 787
29 Dx: Cancer bool 0
30 Dx: Cervical Intraepithelial Neoplasia (CIN) bool 0
31 Dx: Human Papillomavirus (HPV) bool 0
32 Diagnosis: Dx bool 0
33 Hinselmann: target variable bool
34 Schiller: target variable bool
35 Cytology: target variable bool
36 Biopsy: target variable bool

Lastly, the performance of the proposed CCPM is compared with the performances of other
existing models. Figure 1 elucidates the proposed CCPM model.
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Figure 1. Prediction model for cervical cancer.

We used 70 % dataset values for training and 30% for testing with 10 cross validation. We have
used the Python programming language and scikit-learn, pandas, numpy libraries used for machine
learning models. For outlier detection, we have used scikit-learn library in python programming
language [73]. For oversampling, we have used the imbalanced-learn Python library [74].

3.2. Evaluation Metrics

The prediction output may have the following four possible outcomes on the basis of a confusion
matrix [75], true positive (TP), true negative (TN), false positive (FP), and false negative (FN). Table 2
displays the precision, recall, specificity, F1 score, and accuracy. Table 3 shows different outcomes of
two-class prediction.

Table 2. Performance metrics for the classification model.

Performance Metric Formula

Precision TP/(TP + FP)
Recall/Sensitivity TP/(TP + FN)

Specificity/True Negative Rate TN/(TN + FP)
F1 Score 2 × (Precision × Recall)/(Precision + Recall)
Accuracy (TP + TN)/(TP + TN + FP + FN)
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Table 3. Different outcomes of two-class prediction.

Predicted as “Yes” Predicted as “No”

Actual “Yes” True Positive (TP) False Negative (FN)
Actual “No” False Positive (FP) True Negative (TN)

4. Results and Discussion

This section deals with the results of feature extraction and four scenarios of CCPM in terms of
precision, sensitivity, specificity, F1 score, and accuracy. Four scenarios are divided into four sections.
Each section displays results and their explanation. We then compared biopsy results with results of
past studies and some practical implications to conclude this section.

4.1. Feature Extraction Results

In the present study, we used chi-square to extract the features from the dataset. The main aim
of the feature extraction technique is to extract the most valuable features from a given rather than
the whole features. For simplicity, we have extracted first ten features that have the highest chi-score.
Besides, we have added the chi-score of ten variables in the feature extraction table. We used these
features for our analysis. After selecting these features, we used outlier detection techniques to remove
outliers from the data. Table 4 displays the results of chi-square.

Table 4. Results of Chi-square.

No Feature’s Name Features Scores

1 Smokes (years) 421.4689
2 Hormonal Contraceptives (years) 246.6243
3 Sexually Transmitted Diseases (STDs) (number) 87.28867
4 STDs: genital herpes 43.73654
5 STDs: HIV 29.35086
6 STDs: Number of diagnosis 21.74795
7 Dx: Cancer 21.74795
8 Dx: cervical intraepithelial neoplasia (CIN) 20.71644
9 Dx: human papillomavirus (HPV) 12.64184

10 Dx 12.44904

4.2. DBSCAN and iForest for Outlier Detection

To implement the DBSCAN-based outlier detection, the optimum value of MinPts and eps must
first be established. If the value of eps is too low, it will generate more clusters and normal data may
be counted as outliers. On the other hand, if it is too large, it will produce fewer clusters, and true
outliers could be categorized as normal data [23,43,44]. We specified the MinPts value to be 5. Next,
we have to determine the optimal number of eps. First, we measure each point’s average distance from
its nearest neighbors. The value k represents MinPts and is outlined by the user. The goal is to decide
the “knee” used to estimate the parameter collection of eps. A “knee” is the point at which a sharp
shift occurs along the k-distance curve [46]. Figure 2 displays the k-dist graph sorted for the cervical
cancer data set and the optimal value of eps. The "knee" shows up at the distance of 3 in the cervical
cancer dataset. Lastly, the outlier data are excluded, and standard data are used for further analysis.
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iForest works in two phases. The first (training) stage constructs isolation trees using training
set subsamples. The second stage (testing) passes through isolation trees to obtain an outlier score
for each case. Both subsample size (MaxSample) and number of trees to be built (NumTree) are
essential parameters to be calculated. The iForest works well when the MaxSample is kept small;
the larger MaxSample reduces the ability of iForest to isolate outer data, as normal data can meddle
with isolation [48–50]. Number of Trees influences the scale of the ensemble. We tried different
configuration parameters and found that MaxSample is 10% of the total data size and NumTree is
100% optimal. The iForest was implemented using scikit-learn python library. In case of DBSCAN, we
found two outliers. We removed these outliers and processed the data for further analysis. However,
iForest found eighty-six outliers. We removed those outliers as well and processed the data.

4.3. SMOTE and SMOTETomek for Balancing the Dataset

We also used over-sampling methods to increase the number of cases in a balanced way. We applied
SMOTE or SMOTETomek methods to balance the datasets. SMOTE oversamples the minority class
to randomly generate instances and increase minority class instances, and Tomek under-samples a
class to remove noise while maintaining balanced distributions. As can be seen in Table 5, the dataset
is balanced after the application of SMOTE and SMOTETomek. The classification aim is to diminish
errors during the learning process; hence, we anticipate that a better model accuracy can be attained
from the balanced datasets.

Table 5. Results of synthetic minority over sampling technique (SMOTE) and SMOTETomek.

Before SMOTE After SMOTE Before SMOTETomek After SMOTETomek

Minority (%) Majority (%) Minority (%) Majority (%) Minority (%) Majority (%) Minority (%) Majority (%)
55 (6.41%) 803 (93.59%) 803 (93.59%) 803 (93.59%) 55 (6.41%) 803 (93.59%) 803 (93.59%) 803 (93.59%)

4.4. Results of Target Variables: Biopsy, Schiller, Hinselmann, Cytology

The ten features extracted by Chi-square were used for all models (SVM, multilayer perceptron
(MLP), logistic regression (LR), naïve Bayes, and K-nearest neighbors (KNN)), and all four target
variables (Biopsy, Schiller, Hinselmann, and Cytology). For each of the target variables, the CCPM
was compared with other conventional machine learning models. The results of CCPM for each of the
target variables outperformed previous machine learning approaches (with reference to Tables 6–21).
The key reason for these results is the combination of the outlier removal and data balancing techniques.
Hence, this improves the accuracy for our CCPM.
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Table 6. Performance evaluation results based on density-based spatial clustering of applications with
noise (DBSCAN) and SMOTE for Biopsy.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 92.797 91.666 93.908 92.768 92.768
MLP 96.049 97.549 94.416 96.000 96.001

Logistic Regression 94.020 93.627 94.416 94.015 94.014
Naïve Bayes 93.666 96.568 90.355 93.506 93.516

KNN 94.289 98.039 89.847 94.001 94.014
Proposed CCPM
(Random Forest) 97.025 98.039 95.939 97.006 97.007

Table 7. Performance evaluation results based on DBSCAN and SMOTETomek for Biopsy.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.692 93.782 95.544 94.682 94.683
MLP 95.697 95.854 95.544 95.696 95.696

Regression 95.697 95.854 95.544 95.696 95.696
Naïve Bayes 93.587 96.373 90.594 93.416 93.417

KNN 94.430 94.300 94.554 94.430 94.430
Proposed CCPM
(Random Forest) 96.720 97.409 96.039 96.720 96.708

Table 8. Performance evaluation results based on iForest and SMOTE for Biopsy.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy(%)

SVM 95.501 90.957 99.456 95.154 95.161
MLP 96.432 93.085 99.456 96.233 96.236

Regression 96.131 93.085 98.913 95.965 95.967
Naïve Bayes 95.656 92.021 98.913 95.426 95.430

KNN 98.668 97.872 99.456 98.655 98.655
Proposed CCPM
(Random Forest) 98.924 98.936 98.130 98.924 98.925

Table 9. Performance evaluation results based on iForest and SMOTETomek for Biopsy.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.726 91.935 97.282 94.591 94.594
MLP 96.845 94.623 98.913 96.755 96.756

Logistic Regression 94.853 90.860 98.369 94.587 94.594
Naïve Bayes 94.619 90.322 98.369 94.316 94.324

KNN 97.302 96.774 97.826 97.297 97.297
Proposed CCPM
(Random Forest) 98.918 98.924 98.913 98.918 98.919

Table 10. Performance evaluation results based on DBSCAN and SMOTE for Schiller.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 95.582 96.292 94.807 95.572 95.572
MLP 97.759 96.825 95.710 96.759 97.662

Logistic Regression 95.297 91.594 98.498 95.096 95.106
Naïve Bayes 93.165 90.963 96.033 93.589 93.575

KNN 92.205 93.440 91.119 92.247 92.244
Proposed CCPM
(Random Forest) 98.216 99.208 99.487 99.217 99.217
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Table 11. Performance evaluation results based on DBSCAN and SMOTETomek for Schiller.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 95.393 93.298 97.368 95.393 95.393
MLP 97.912 97.883 97.938 97.762 97.911

Regression 93.641 87.891 94.680 93.188 93.105
Naïve Bayes 93.587 96.373 90.594 93.416 93.417

KNN 94.580 97.387 91.150 94.261 91.260
Proposed CCPM
(Random Forest) 99.509 99.484 99.463 99.474 99.479

Table 12. Performance evaluation results based on iForest and SMOTE for Schiller.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 96.613 94.623 97.563 96.141 96.143
MLP 98.771 97.291 98.677 98.774 97.724

Regression 94.497 91.714 96.938 94.363 94.373
Naïve Bayes 93.048 92.746 93.343 93.098 93.098

KNN 93.317 94.514 91.344 93.881 93.881
Proposed CCPM
(Random Forest) 98.714 97.314 100.00 98.714 98.714

Table 13. Performance evaluation results based on iForest and SMOTETomek for Schiller.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.011 93.625 94.329 94.054 94.010
MLP 97.369 96.808 96.913 97.509 97.164

Logistic Regression 94.142 91.635 96.681 94.073 94.072
Naïve Bayes 93.085 92.000 95.172 93.866 93.866

KNN 94.762 94.707 91.344 93.072 93.072
Proposed CCPM
(Random Forest) 98.463 98.907 98.074 98.499 98.495

Table 14. Performance evaluation results based on DBSCAN and SMOTE for Hinselmann.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 98.500 98.492 98.507 98.500 98.500
MLP 98.759 100.00 98.760 98.759 98.759

Logistic Regression 97.796 98.994 96.568 97.766 97.766
Naïve Bayes 97.165 98.963 95.433 97.089 97.087

KNN 96.905 98.440 95.433 96.847 96.844
Proposed CCPM
(Random Forest) 99.016 100.00 97.948 98.997 98.997

Table 15. Performance evaluation results based on DBSCAN and SMOTETomek for Hinselmann.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 99.004 99.512 98.461 98.999 98.053
MLP 98.792 100.00 97.512 98.762 98.620

Regression 98.034 98.989 97.073 98.015 98.015
Naïve Bayes 93.587 96.373 90.594 93.416 93.417

KNN 97.580 98.507 96.550 97.561 97.560
Proposed CCPM
(Random Forest) 99.509 100.00 98.963 99.504 99.504
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Table 16. Performance evaluation results based on iForest and SMOTE for Hinselmann.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 99.514 97.012 97.024 98.509 98.530
MLP 98.771 96.050 98.677 98.774 98.270

Regression 98.537 97.014 98.058 98.533 98.533
Naïve Bayes 98.048 98.238 96.172 98.048 98.048

KNN 98.317 99.514 97.044 98.288 98.288
Proposed CCPM
(Random Forest) 99.514 99.014 100.00 99.504 99.504

Table 17. Performance evaluation results based on iForest and SMOTETomek for Hinselmann.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 97.755 96.431 99.481 99.754 98.754
MLP 97.369 97.326 98.913 99.509 98.509

Logistic Regression 98.529 99.065 97.927 98.525 98.525
Naïve Bayes 97.085 98.000 96.172 97.066 97.066

KNN 97.782 98.507 97.044 97.772 97.772
Proposed CCPM
(Random Forest) 98.514 100.00 98.974 99.509 99.509

Table 18. Performance evaluation results based on DBSCAN and SMOTE for Cytology.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.475 99.519 87.807 93.852 93.872
MLP 91.759 90.465 92.710 94.759 94.682

Logistic Regression 84.999 80.000 89.393 84.637 84.635
Naïve Bayes 80.655 71.065 88.345 79.792 79.900

KNN 94.002 99.000 87.878 93.467 93.521
Proposed CCPM
(Random Forest) 97.225 96.428 97.989 97.215 97.217

Table 19. Performance evaluation results based on DBSCAN and SMOTETomek for Cytology.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.413 98.098 90.000 94.165 94.187
MLP 99.452 99.083 91.052 95.182 95.175

Regression 86.326 77.860 93.137 85.490 85.606
Naïve Bayes 81.145 84.882 85.912 80.123 80.128

KNN 91.111 90.952 80.888 89.560 89.620
Proposed CCPM
(Random Forest) 97.228 97.428 97.989 97.715 97.716

Table 20. Performance evaluation results based on iForest and SMOTE for Cytology.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 94.333 97.963 90.293 94.041 94.043
MLP 93.771 94.291 93.677 91.774 91.724

Regression 83.098 79.487 87.980 84.671 84.641
Naïve Bayes 81.635 77.830 85.106 81.261 81.250

KNN 89.497 97.129 78.971 88.242 88.366
Proposed CCPM
(Random Forest) 97.518 97.448 97.584 97.518 97.514
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Table 21. Performance evaluation results based on iForest and SMOTETomek for Cytology.

Method Precision (%) Recall/Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)

SVM 93.231 99.038 85.556 92.512 92.537
MLP 91.998 92.788 94.913 92.523 92.234

Logistic Regression 85.784 77.669 92.422 84.093 84.900
Naïve Bayes 93.085 92.000 95.172 93.866 93.866

KNN 89.321 93.333 84.532 89.071 89.108
Proposed CCPM
(Random Forest) 97.463 97.907 97.074 97.499 97.495

4.5. Comparison with Previous Studies

We compared the results of our CCPM with past studies that used the cervical cancer dataset.
The study by Wu and Zhu [10] used SVM-RFE and SVM-PCA, while Abdoh et al. [22] used SMOTE-RF-RFE
and SMOTE-RF-PCA. Tables 22–25 illustrates the comparison of results on the sensitivity, specificity, and
accuracy of all target variables of CCPM with Wu and Zhu [10] and Abdoh et al. [22]. All four proposed
scenarios of CCPM surpassed past studies by Wu and Zhu [10] and Abdoh et al. [22] in terms of sensitivity,
specificity, and accuracy. A study by Deng et al. [76] used SMOTE for handling the imbalanced data, and
SVM, XGBoost and RF to identify the risk factors of cervical cancers. Our CCPM produces better results
as compared to the Deng et al. [76]. They accuracies achieved by SVM, XGBoostand Random Forest are
90.34, 96.34, and 97.39, respectively. A recent study by Adem et al. [20] used a stacked autoencoder with
a soft-max layer and achieved an accuracy of 97.25% in the cervical cancer dataset. Our CCPM surpassed
Deng et al. [76] and Adem et al. [20] in terms of accuracy. Thus, we can conclude that our proposed
CCPM is better than other machine learning models as well as past studies.

Our proposed CCPM has four combinations, two outlier detection methods and two data
oversampling methods, and their results varied target variables and performance measures.
For example, the combination of iForest and SMOTETomek showed the best performances in sensitivity
and accuracy in biopsy and specificity in Schiller and Hinselmann, but that of DBSCAN and SMOTE
was the best in sensitivity and accuracy in Schiller and Hinselmann tests. In summary, iForest showed
better results than DBSCAN for biopsy tests, but DBSCAN was usually better than iForest for the
cytology test. However, we recommend using all of four combinations for predicting cervical cancer
and using ensemble results of them for more robust prediction.

Table 22. Comparison of biopsy test results of CCPM with past studies.

Studies Method No of
Features

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Wu and Zhu [10]
SVM-RFE

6 100 87.32 92.39
18 100 90.05 94.03

SVM-PCA
8 100 89.09 93.45
11 100 90.05 94.03

Abdoh et al. [22]
Smote-RF-RFE

6 94.94 95.52 95.23
18 94.42 97.26 95.87

Smote-RF-PCA
8 93.77 97.26 95.55
11 94.16 97.76 95.74

Present work

DBSCAN + SMOTETomek + RF 10 97.409 96.039 96.708
DBSCAN + SMOTE+ RF 10 98.039 95.939 97.007

iForest + SMOTETomek + RF 10 98.924 98.913 98.919
iForest + SMOTE + RF 10 98.936 98.130 98.925
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Table 23. Comparison of Schiller test results of CCPM with past studies.

Studies Method No of
Features

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Wu and Zhu [10]
SVM-RFE

7 98.73 84.46 90.18
18 98.73 84.63 90.18

SVM-PCA
6 98.99 83.14 89.49
12 98.99 84.30 90.18

Abdoh et al. [22]
Smote-RF-RFE

7 93.24 90.31 91.73
18 93.51 92.35 92.91

Smote-RF-PCA
6 92.70 96.17 94.49
12 92.03 97.58 94.88

Present work

DBSCAN + SMOTETomek + RF 10 99.48 99.46 99.48
DBSCAN + SMOTE+ RF 10 99.20 99.49 99.22

iForest + SMOTETomek + RF 10 98.91 98.07 98.50
iForest + SMOTE + RF 10 97.31 100 98.71

Table 24. Comparison of Hinselmann test results of CCPM with past studies.

Studies Method No of
Features

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Wu and Zhu [10]
SVM-RFE

5 100 84.63 90.77
15 100 84.49 93.69

SVM-PCA
5 100 84.63 92.09
11 100 84.65 93.79

Abdoh et al. [22]
Smote-RF-RFE

5 96.52 93.80 95.14
15 96.65 95.14 95.88

Smote-RF-PCA
5 96.52 98.30 97.42
11 96.52 98.42 97.48

Present work

DBSCAN + SMOTETomek + RF 10 100 98.96 99.50
DBSCAN + SMOTE+ RF 10 100 97.95 99.01

iForest + SMOTETomek + RF 10 100 98.97 99.50
iForest + SMOTE + RF 10 99.01 100 99.50

Table 25. Comparison of CYTOLOGY TEST results of CCPM with past studies.

Studies Method No of
features

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Wu and Zhu [10]
SVM-RFE

8 100 84.42 90.65
15 100 87.28 92.37

SVM-PCA
8 100 86.65 91.98
11 100 87.44 92.46

Abdoh et al. [22]
Smote-RF-RFE

8 87.37 97.54 92.52
15 93.56 98.15 95.89

Smote-RF-PCA
8 95.58 97.17 96.39
11 95.32 98.40 96.89

Present work

DBSCAN + SMOTETomek + RF 10 97.43 98.01 97.72
DBSCAN + SMOTE+ RF 10 96.43 98.01 97.22

iForest + SMOTETomek + RF 10 97.91 97.08 97.50
iForest + SMOTE + RF 10 97.45 97.58 97.51

In case of risk factors, Table 1 showed the entire attributes’ name and the corresponding number
of each attribute. The ten features in our study were Smokes (years), Hormonal Contraceptives (years),
STDs (number), STDs: genital herpes, STDs: HIV, STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, Dx.
We compared the results of risk factors based on feature extraction results with past studies [10,22,77].
The factor Dx: Cancer found in our study is also validated by the Wu and Zhu [10], while the factors
smokes per years and Hormonal contraceptives found by Wu and Zhu [10], and Smokes and Hormonal
Contraceptives found by Abdoh et al. [22] seemed quite relevant to the factors Smokes (years) and
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Hormonal Contraceptives (years) factors found in the present study. Furthermore, we compared
our features result with past study by Nithya and Ilango [77]. These findings have revealed that the
common features between both studies include Smokes (years), Hormonal Contraceptives (years),
STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx. Hence, Smokes (years), Hormonal
Contraceptives (years), STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx are the factors that
corresponds to the riskiest factors of cervical cancer. Based on our experiment the existence of these
factors enhances the risk of being a cervical cancer patient. The present work identified the topmost
significant features for the classification of cervical cancer patients to be Smokes (years), Hormonal
Contraceptives (years), STDs: Number of diagnosis, Dx: Cancer, Dx: HPV, and Dx.

The complexity of an algorithm is generally calculated using Big-O notation [78–80].
Time complexity and space complexity are two types of computational complexity [81,82].
Time complexity deals with how long the algorithm is executed for, while space complexity deals with
how much memory is used by its algorithm. An algorithm will process amounts of data, where N is a
symbol of amounts of data. If an algorithm does not depend on N, then the algorithm has constant
complexity or symbolized by O(1) (Big-O one). On the contrary, if the algorithm is dependent on N, the
complexity depends on line code in algorithm and it is can be O(n), O(n2), O(log n) and others. Let n
be the number of training examples, d be the number of dimensions of the data, k be the number of
neighbors or the number of trees, and c be the number of classes. Table 26 depicts the time and space
complexities of some machine learning algorithms. In our CCPM, the RF becomes slow and requires
more memory space for training as compared to other algorithms. In addition, the proposed CCPM
requires additional computation for outlier detection and data balancing. In our CCPM, however, we
got better accuracy compared to other conventional machine learning methods.

Table 26. Time and Space Complexities of Machine Learning Algorithms.

Model Name Time Complexity Space Complexity

KNN O(knd) O(nd)
Logistic Regression O(nd) O(d)

SVM O(n2) O(kd)
Naive Bayes O(nd) O(cd)

Random Forest O(nlog(n)dk) O(depth of tree ∗ k)

4.6. Practical Implications

Lee et al. [83] have studied the impacts of educational text messages concerning HPV vaccination
and its advantages and observed a substantial upsurge in HPV vaccination intake in targeted
populations. Cancer screening programs have also used text messaging in an attempt to tackle the
screening intake. Weaver et al. [84] have recently examined how elderly patients would be interested in
text messages intended to motivate their participation in a screening program. Their findings indicated
that older populations were extremely interested in such messages based on their involvement. A recent
study by Ijaz et al. [46] has used IoT for a healthcare monitoring system for patients at home and used
personal healthcare devices that perceive and estimate a persons’ biomedical signals. The system can
notify health personnel in real-time when patients experience emergency situations.

In the present work, we implemented CCPM into a mobile app to show its practical implication
for simple users. Figure 3 shows the architecture framework of CCPM. A mobile app collects user’s
risk factor data and then sends it to Representational State Transfer (REST API) to be stored in a a
secure remote server. We used NoSQL MongoDB to store user data by keeping in mind that it could
store large amounts of data. Finally, CCPM was used to forecast the presence of cervical cancer as long
as users input risk factors. Predication results are shown in the mobile app.
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Figure 3. Cervical Cancer Predication Model architecture framework.

Figure 4a,b shows a prototype of the mobile app. When a user presses the “send” button, risk
factors that the user inputs are stored in the remote server. CCPM is then activated to foresee the
existence of cervical cancer. Figure 4b depicts the interface of mobile application when the user receives
prediction results. Therefore, it is expected that the CCPM mobile application can help users find the
risk of cervical cancer proficiently at an early stage.
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CCPM mobile application.

In our CCPM mobile application, maintaining the safety of healthcare data is of paramount
importance. The data in the CCPM mobile application are encrypted. Encryption is an essential
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for our CCPM mobile application since it scrambles a user’s personal data. We used secure sockets
layer (SSL) technology that encrypts information transmitted between a mobile application and the
server. SSL uses a cryptographic system that uses two keys to encrypt data, e.g., a public key known to
everyone and a private or secret key known only to the recipient of the message [85,86]. The NoSQL
MongoDB helps to store the user data. A secure log-in feature can be added to mobile application
which is called two-factor authentication (2FA). 2FA improves the mobile application’s security. Some
examples of 2FA include: Username/password + SMS code, Username/password + code sent via email,
and Username/password + biometric authentication (a fingerprint). Another important feature to
secure the user data is with the help of data wiping. To implement data wiping, an app can: log out
a user after a certain period of inactivity, keep information in an encrypted form, and perform an
automatic data wipe after a certain number of unsuccessful login attempts. This gives users a sense of
greater control over privacy, security, and confidentiality in towards their healthcare data. The security
systems described above can keep the health data secured and safe in our mobile application.

5. Conclusions

As indicated by the World Health Organization (WHO), about 80% cases of cervical cancer are
noted in developing nations. A cure ratio is described as the ratio of female cases that are healed from
the disease. It can be boosted by classifying the risk factors of cervical cancer [22]. This study proposed
a CCPM that used Chi-square as feature extraction technique. We extracted ten features and used them
in our study. The current dataset is unbalanced. It has a lot of missing values. For missing values, we
used mean equation. The current work proposed CCPM by joining DBSCAN and iForest for outlier
detection, with SMOTE and SMOTETomek for class balancing and RF as a classifier. The CCPM can
help users find the risk of cervical cancer at an early stage. Accuracies achieved by Biopsy forDBSCAN +

SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, and iForest + SMOTE + RF
were 96.708%, 97.007%, 98.919%, and 98.925%, respectively. While for Schiller accuracies for DBSCAN +

SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest + SMOTE + RF
were 99.48%, 99.22%, 98.50%, and 98.71% respectively. In case of Hinselmann, the accuracies achieved
by DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek + RF, iForest
+ SMOTE + RF were 99.50%, 99.01%, 99.50%, and 99.50% respectively. For Cytology, the accuracies
achieved by DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest + SMOTETomek +

RF, iForest + SMOTE + RF were 97.72%, 97.22%, 97.50%, and 97.51% respectively. Hence, combining
iForest with SMOTE and SMOTETomek can produce better results than combining DBSCAN with
SMOTE and SMOTETomek. Besides, we compared Hinselmann, Schiller, Cytology, and Biopsy results
with past studies by Wu and Zhu [10] and Abdoh et al. [22] in terms of sensitivity, specificity, and
accuracy. Our results revealed that DBSCAN + SMOTETomek + RF, DBSCAN + SMOTE+ RF, iForest
+ SMOTETomek + RF, iForest + SMOTE + RF surpassed past studies by Wu and Zhu [10] and
Abdoh et al. [22]. Besides, Our CCPM surpassed Deng et al. [76] and Adem et al. [20] in terms of accuracy.
As a result, we can conclude that our proposed CCPM is better than other models as well as past studies.

In future work, we will employ more diverse techniques for outlier detection and over-sampling
methods. We will also apply each combination to CCPM to improve its diagnosis performance.
The proposed method can be applied to other cervical cancer datasets. Results on these may provide
additional intuitions for the early diagnosis of cervical cancer.

This study also has a limitation, as only one dataset is employed. Since we only focus on cervical
cancer in this study, we only used one dataset. In future research, the proposed CCPM can be applied
to diverse cancer datasets (such as breast, liver, lung, prostate, thyroid, and kidney) to enhance the
clarity and quality of results. Another limitation is that our algorithm (which is a combination of
outlier technique and data balancing with RF) becomes slower and needs more memory to run, but as
we got a better accuracy, it serves our purpose.
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