
sensors

Article

Real-Time Energy Efficient Hand Pose Estimation:
A Case Study

Mhd Rashed Al Koutayni 1,2,3,* , Vladimir Rybalkin 1, Jameel Malik 2,3,4, Ahmed Elhayek 2,
Christian Weis 1, Gerd Reis 2, Norbert Wehn 1 and Didier Stricker 2

1 Microelectronic Systems Design Research Group, Department of Electrical and Computer Engineering,
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany; rybalkin@eit.uni-kl.de (V.R.);
weis@eit.uni-kl.de (C.W.); wehn@eit.uni-kl.de (N.W.)

2 German Research Center for Artificial Intelligence, DFKI, 67663 Kaiserslautern, Germany;
jameel.malik@dfki.de (J.M.); ahmed.elhayek@dfki.de (A.E.); gerd.reis@dfki.de (G.R.);
didier.stricker@dfki.de (D.S.)

3 Department of Informatics, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
4 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and

Technology (NUST), Islamabad 44000, Pakistan
* Correspondence: rashed.al_koutayni@dfki.de

Received: 14 February 2020; Accepted: 12 May 2020; Published: 16 May 2020
����������
�������

Abstract: The estimation of human hand pose has become the basis for many vital applications where
the user depends mainly on the hand pose as a system input. Virtual reality (VR) headset, shadow
dexterous hand and in-air signature verification are a few examples of applications that require to
track the hand movements in real-time. The state-of-the-art 3D hand pose estimation methods are
based on the Convolutional Neural Network (CNN). These methods are implemented on Graphics
Processing Units (GPUs) mainly due to their extensive computational requirements. However,
GPUs are not suitable for the practical application scenarios, where the low power consumption
is crucial. Furthermore, the difficulty of embedding a bulky GPU into a small device prevents
the portability of such applications on mobile devices. The goal of this work is to provide an
energy efficient solution for an existing depth camera based hand pose estimation algorithm. First,
we compress the deep neural network model by applying the dynamic quantization techniques on
different layers to achieve maximum compression without compromising accuracy. Afterwards,
we design a custom hardware architecture. For our device we selected the FPGA as a target platform
because FPGAs provide high energy efficiency and can be integrated in portable devices. Our solution
implemented on Xilinx UltraScale+ MPSoC FPGA is 4.2× faster and 577.3×more energy efficient
than the original implementation of the hand pose estimation algorithm on NVIDIA GeForce GTX
1070.

Keywords: hardware architecture; FPGA; Zynq; UltraScale+; HLS; PyTorch; CNN; deep learning;
hand pose estimation

1. Introduction

The markerless 3D hand pose estimation (i.e., the ability to track and estimate the position of a
hand pose without using any special markers) is increasingly gaining importance for human machine
interaction (HMI) nowadays [1–3], which has many interesting applications such as manipulating
with virtual objects in virtual environments or handling with real objects using a robotic arm.
In Computer-Aided Design (CAD), for instance, a recent method has tried to minimize the use
of the mouse, thereby allowing the designers to move their hands freely in the air for drawing [4].

Sensors 2020, 20, 2828; doi:10.3390/s20102828 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8349-332X
http://www.mdpi.com/1424-8220/20/10/2828?type=check_update&version=1
http://dx.doi.org/10.3390/s20102828
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 2828 2 of 25

In the field of robotics, an intriguing application example is shadow dexterous hand where a robotic
arm has to mimic the human hand poses accurately [5]. Hand pose estimation can be helpful for
communication in sign language with deaf and mute people [6]. Accurate 3D hand pose tracking is
also important for smart interactions using wearable devices such as Google Glass and VR headsets.
In-air signature verification for VR application is another interesting domain where hand pose tracking
plays an important role [7].

Recently, depth-based deep hand pose estimation methods have achieved the state-of-the-art
accuracy on public benchmarks [8] due to the significant advancement in deep learning in the recent
years and the availability of low-cost depth cameras. Typically, Convolutional Neural Network
(CNN)-based hand pose estimation methods are implemented and executed on the CPUs and/or
Graphics Processing Units (GPUs). However, these platforms are not feasible in practice because of
their high computational costs, longer run-time and high power consumption. Moreover, it is difficult
to embed the GPUs into tiny, portable platforms due to their large size and low energy efficiency.
These drawbacks constrain the deployment of the GPU-based systems for the practical application
scenarios in the industrial environments such as HMI and shadow dexterous hand.

In order to overcome these challenges, we choose the FPGA as an underlying hardware platform
for the following reasons and we efficiently map the hand pose estimation CNN to it. First of all,
in contrast to the CPU-based context switching and multi-threading, the physical parallel execution
as well as pipelining in the FPGA make it the best choice for the real-time processing applications
as compared to GPUs and CPUs. Furthermore, many practical applications, as mentioned before,
require the deployment of hand pose estimation systems on portable platforms with limited hardware
resources and power budget. Lastly, the deployment of FPGA, in contrast to GPUs, does not require a
bulky PC or server. Thus, FPGA is considered more suitable for portability in terms of size as well.
Although the FPGAs are less energy efficient as compared to their ASIC counterparts, ASICs are
considered more costly and less flexible for after-development updates [9]. In this work, we address
several challenges during the hardware implementation, such as minimizing the area occupied on
chip which reflects on power consumption, as well as minimizing the latency of hand pose recognition.
We provide the first FPGA-based 2D CNN accelerator for hand pose estimation which predicts the 3D
coordinates of hand joints from a single depth image.

To develop such an FPGA implementation, we compress the 2D CNN by applying dynamic
quantization techniques. Instead of fine-tuning an already trained network, this step involves retraining
the CNN from scratch with constrained bitwidths for the weights and activations. This process is
called quantization-aware training (QAT). The resulting compressed CNN is much smaller than the
full-precision CNN while the accuracy is only slightly decreased. Once the network is compressed,
we design an efficient streaming hardware architecture. This step involves an iterative process of
exploring the design space, seeking to find the best hardware-aware representation for the different
CNN layers. In order to speed-up the design process, we use the High Level Synthesis (HLS) to
design the hardware architecture for the chosen CNN. We deploy the CNN hardware model on Xilinx
UltraScale+ MPSoC FPGA. Consequently, we synthesize and integrate the overall system, and we
design the needed software that runs on the processing system (PS) for preprocessing and input/output
interfacing with the programmable logic (PL).

The following points summarize the contribution of this paper:

• A compressed, fixed-point version of the hand pose estimation CNN network that is 5.3× smaller
as compared with the uncompressed, floating point CNN. This squeezed version of the GPU-based
CNN adopts customized bitwidths for weights and activations, and requires the minimum amount
of computation in the convolutional layer i.e., depthwise separable convolution.

• A hardware architecture that is 4.2× faster and 577.3×more energy efficient than the originally
proposed CNN implementation of hand pose estimation algorithm on NVIDIA GeForce GTX1070.
This architecture exploits the parallelization in FPGA in order to speedup the inference of

Sensors 2020, 20, 2828 3 of 25

hand joints coordinates based on Zynq UltraScale+ XCZU9EG MPSoC using High-Level
Synthesis (HLS).

Since this is the first FPGA-based hand pose estimation implementation, our work contributes
to the field of embedded vision by showing how fast and energy efficient an embedded
FPGA implementation can be as compared to the conventional GPU implementations and other
embedded platforms.

2. Related Work

To the best of our knowledge, we are not aware of any implementation of CNN-based hand pose
estimation on FPGA.
Hand Pose Estimation: Our implementation of hand pose estimation CNN on FPGA is originally
based on the work of Malik et al. [10] and inspired by it. In this work, Malik et al. have shown
enhanced precision over the state-of-the-art using a unified dataset. In fact, Oberweger et al. [11] tried
different CNN topologies for the 3D hand pose estimation, and the basic CNN in [10] is similar to one
of the CNNs in [11], in which only NYU and ICVL datasets were used to train and test the CNN.
Network Quantization: Krishnamoorthi [12] discussed different quantization techniques i.e.,
quantization-aware training and fine tuning (post quantization). He showed that quantization-aware
training can provide higher accuracy than post quantization training schemes. In [13], Hubara et al.
introduced a training method for the quantized neural networks. Furthermore, they have illustrated
different classification performance for different network topologies such as AlexNet and GoogleNet.
CNN Implementation on FPGA: Venieris et al. showed in their survey [14] that hardware architecture
for CNN implementation on FPGA can be categorized into two main categories: streaming
architectures and single computation engine. In streaming architecture [15–22], each layer is mapped
to a hardware block and these hardware blocks are connected with each others via stream pipes. In fact,
our architecture in this work is a simplified version of the FINN architecture [22].

3. Overview of The Proposed Approach

In this section, we provide an overview of the CNN-based hand pose estimation algorithm and
its implementation on the FPGA.

3.1. CNN-Based Hand Pose Estimation Algorithm

In this subsection, we explain the CNN architecture [11] which we adopt for the FPGA-based
hardware implementation. Figure 1 illustrates the complete topology of the mentioned CNN. The input
to this CNN is a preprocessed depth image of size 128 × 128. This CNN consists of 3 convolution
layers using 5 × 5, 5 × 5, 3 × 3 kernels, respectively. ReLU activation is applied to the output of
each convolution layer. The first two convolution-ReLU layers are connected to max pooling layers
with filter size 4 × 4, 2 × 2, respectively. It should be noted that depthwise convolution [23] is used
in the convolution layers. In other words, each input feature map is processed using one kernel
independently, and no mutual operation across different feature maps is performed. We will provide
more details about our implementation of depthwise convolution in Section 5.1.1. The 8 output feature
maps are then flattened into a 1D vector which represents the input of the fully connected layer set.
This set consists of 3 fully connected layers of size 1152, 1024 and 93, respectively. The first two layers
are attached to the ReLU activation layers.

However, the last fully connected layer (joint regression layer) is responsible for generating the
93 joint coordinates (i.e., 31 3D joint positions) and needs therefore no activation function.

Sensors 2020, 20, 2828 4 of 25

8
 x

 (
 5

 x
 5

)

(
4

x
4

)

8
x

(
5

 x
 5

)

(
2

 x
 2

)

Max Pool

128

31

31

8
8

128

124

124

8

28

28
14

14

8
 x

 (
 3

 x
 3

)

12

12

8 8

FC2Max Pool Conv

11
52

 x
 1

02
4

10
24

 x
 1

02
4

10
24

 x
 9

3

ConvConv FC1 FC3

12
8

128

J ∈ ℝ ℝ31x3

Feature Extraction 3D Joints Regression

Figure 1. The architecture of Convolutional Neural Network (CNN)-based hand pose estimation
algorithm. The CNN takes a 128×128 input preprocessed image. It consists of 3 convolution layers
each followed by an ReLU activation and max pooling. Afterwards, there are 2 fully connected layers
with ReLU activation. A third fully connected layer (joint regression layer) regresses 3D joint positions.
Conv stands for a convolution layer. Each conv is followed by a ReLU activation. FC denotes a fully
connected layer.

3.2. Design Process Overview

Figure 2 shows an overview of the hardware design process for implementing the aforementioned
CNN on the FPGA. The design process consists mainly of three major design stages. The first stage
is quantization-aware training (QAT). This stage requires the CNN layer description as well as the
hand pose dataset. In this stage, we quantize the CNN in order to decrease its size. This is done by
re-training the CNN from scratch under the constraint of limited weights and activations bitwidth(s).
As a result, we acquire a lightweight trained version of the CNN with fixed-precision weights and
activations. The second stage is the core stage in which we design the hardware streaming architecture
(HSA) and test it by simulation. We employ high level synthesis (HLS) which provides the register
transfer level (RTL) representation of the CNN. In order to design the hardware module that replicates
the quantized CNN behavior, the CNN topology and the quantized parameters are needed. As a result,
the RTL hardware module is generated. Subsequently, the third stage is the SI which stands for system
integration. This stage consists of two sub-stages. In the first sub-stage of the SI (hardware system
integration) we integrate the system. In other words, we bring together the different System-on-Chip
(SoC) components such as the programmable logic (PL) and the processing system (PS). Furthermore,
we specify and configure the interface protocol between the aforementioned components and the
off-chip DRAM memory. The outcome of this stage is the bitstream needed to configure the FPGA,
along with the hardware description. Although the interface between PS and PL is configured,
the software that runs on the PS is still missing. This is where the second sub-stage (on-chip software)
comes into play. In this stage, we develop the preprocessing and interface handling script for the PS.
Consequently, the final FPGA implementation is ready for on-board deployment.

Quantization
Aware

Training
(QAT)

Hardware
Streaming

Architecture
(HSA)

On-Chip
Software

Hand Pose
Dataset

CNN
Architecture

Final FPGA
Implementation

Quantized
CNN

RTL
Representation Bitstream

Hardware
System

Integration

System Integration (SI)

Figure 2. Design process overview; the first box illustrates the software-level design phase, while
the other boxes illustrate the hardware related design phase. The first stage is quantization-aware
training (QAT) in which we decrease the CNN memory demand as well as the computation time
on the hardware. The second stage is hardware streaming architecture (HSA) where the underlying
hardware structure is designed for the CNN. In system integration (SI) stage, the programmable logic
PL and the processing system PS are brought together and the interface with the memory is configured
through the hardware system integration sub-stage. Furthermore, the on-Chip Software is developed
for preprocessing and interfacing with the peripherals.

Sensors 2020, 20, 2828 5 of 25

4. Software Design Process

In this section, we first explain the training and testing process for the full-precision CNN.
Afterwards, we illustrate the quantization-aware training process and the quantization function.

4.1. Full-Precision CNN Training and Testing

Before the quantization-aware training process, it is important to obtain a full-precision version
of the CNN within the accepted error limit. The full-precision CNN is considered a baseline for
comparison with other customized compressed CNN models. In this work, we use PyTorch [24] to
build, train and test the CNN. The hyper parameters for the CNN were chosen as reported in [25].

4.1.1. Network Training

Table 1 shows the chosen training hyper parameters.

Table 1. Hyper parameters for training a full-precision CNN.

Hyper Parameters Value
No. Kernels per Conv Layer 8
No. Epochs 500
Optimizer SGD
Loss Function Criterion MSE
Batch Size 256
Learning Rate 0.005
Momentum 0.9

We train the hand pose estimation CNN on NVIDIA GeForce GTX 1070 GPU with 12 GB.
Stochastic Gradient Descent (SGD) is used to feed the network forward with batch size of 256 samples
every time before the back propagation takes place. A learning rate of 0.005 is chosen for gradient
calculation. In order to speed up the learning, SGD uses momentum equals to 0.9 which is normally
a recommended value. The error criterion used here is mean square error (MSE). We use the NYU
hand pose dataset [26] to train and test the CNN. This dataset offers RGBD images along with their
ground-truth 3D joint coordinates. The training set contains 72,757 frames, while the test set contains
8252 frames. The ground-truth values correspond to the x,y and z coordinates for each of the 31 joints
of the hand, thus 93 values for each frame.

4.1.2. Network Testing

In the testing phase, each image in the test set is fed in to the CNN, and the corresponding
estimated coordinates of the 31 3D joints are calculated. Afterwards, the performance of the network
is assessed by calculating the average single joint Euclidean error over all testset frames, measured
in mm. The average joint error for direct joint regression turns out to be 17.2 mm, which is exactly
the same error calculated by Zhou et al. in [25]. Further details about run-time delay and power
consumption will be presented later in Section 6.

4.2. Quantization-Aware Training (QAT)

The trained CNN model obtained so far is a full-precision model that employs floating point
(float) data type. In other words, 32 bits are used for representing each value in the model. In this
case, the total model size can be calculated as the total number of parameters times 32 bits. The more
parameters the model has, the larger will be the size, which makes it difficult to deploy CNNs on
portable platforms even for small CNNs. Therefore, we need to find a way to decrease the size of
the model with as little impact on accuracy as possible, and here comes the role of quantization.
Although the full-precision provides the best accuracy in most cases, there are numerous drawbacks of
using the full-precision CNNs. First of all, the more bits are used to represent the values, the more

Sensors 2020, 20, 2828 6 of 25

memory space is needed to store them. Secondly, when deploying this CNN on a portable device,
the power consumption might be higher due to the data transfer as well as the arithmetic operations,
which enormously reflects on the battery usage. Finally, the floating point numbers need a special
handling process when added, compared or multiplied, which may result in additional unneeded
delays. All these reasons urge the need of having a compact trained CNN model in which a negligible
amount of accuracy is sacrificed for a gain in space, power and execution time. For this purpose,
a quantization based training is to be performed.

Quantizing a neural network is the process of representing the CNN parameters with a fewer
number of bits with only a slight or negligible degradation in the performance, especially for important
applications as mentioned earlier in the introduction. Instead of using the floating point arithmetic
in the quantized CNN, the fixed point representation of the different weights, biases and activation
functions is applied. A fixed point value is represented as N = [I.F], where (I) is the integer part, (F) is
the fractional part and (.) is the decimal point. Therefore, the total number of bits used to represent the
fixed point value i.e., the word length (LN) is given as the sum of the number of integer bits (LI) and
fractional bits (LF):

LN = LI + LF (1)

In order to decide a suitable bitwidth for quantization, we go through an iterative design space
exploration with different widths for various coefficients. A trade-off between the number of bits and
the CNN inference accuracy constrains the choices of quantization bitwidths. In principle, not all
the layers in the model have to be quantized using the same bitwidth. For example, the bitwidth for
the fully connected layer parameters can be different from that of convolution layer kernels. This is
called “Dynamic Quantization”, in contrast to “Static Quantization” where all the layers use the same
quantization bitwidth.

4.3. Linear Quantization Function

The unsigned linear quantization function [27] converts a full-precision positive value x to an Lx

bit fixed point value x̂ by binary-shifting, rounding and cropping as follows:

x̂ = quant(x, Lx) = clamp(
round(x× 2LF)

2LF
, VL, VH) (2)

The rounding function round() calculates the nearest integer to a given floating point value, while
Lx and LF are the desired fixed point representation parameters of x̂. First of all, x is multiplied by
2LF (implemented as left-shift by LF = Lx − LI bits) in order to allocate all the needed bits on the left
side of the decimal point temporarily. Then, we throw away the extra fractional bits beyond LF bits by
rounding. Afterwards, the result is divided by 2LF (implemented as right-shift by LF bits) in order to
get the correct quantized value. Finally, the result is cropped using clamp() function in order to get
rid of the extra integer bits beyond the LI bits (if any). The clamp() function clips the input between a
minimum value VL and a maximum value VH as follows:

clamp(x, VL, VH) =


VL x < VL
x VL ≤ x ≤ VH
VH x > VH

(3)

The clamping limits VL and VH for the fixed point quantization function are the minimum and
maximum representable values using LI integer bits:

VL = 0
VH = 2LI − 2−LF

(4)

Sensors 2020, 20, 2828 7 of 25

In case of the negative value quantization, the most significant bit (MSB) is reserved as sign bit
and the signed quantization function has to be used. This can be obtained by correcting Equation (1)
to be Lx = LI + LF + 1 and the lower cropping limit in Equation (4) to be VL = −2LI .

Quantization-Aware Training Process

The quantization-aware training process is similar to the full-precision training process and uses
the same dataset. However, the main difference is that the quantization method mentioned in [13] is to
be used. Based on the quantization function, the input image is quantized, and so are the convolution
kernels, biases and weights of the fully connected layer. The training starts using a full-precision
version of the CNN. A copy of this full-precision CNN is kept for later use. The CNN is then quantized
and used for forward propagation of a batch of quantized input images. Next, the mean square
error (MSE) loss function is calculated for the back propagation. In this step, the gradients of the
loss function are calculated with respect to the quantized weights as they were used for the forward
propagation. The last step is the weight update which takes place on the full-precision parameters
rather than on their quantized version. After the completion of the software implementation and the
quantization, we highlight the hardware aspect mentioning the FPGA implementation process and the
encountered challenges.

5. Hardware Design Process

In this section, we explain the design of the hardware streaming architecture for the hand pose
estimation CNN and the hardware architecture for different CNN layers. We also highlight the
inter-layer packing technique that improves the overall throughput in the network. Furthermore,
we explain how the activations were quantized. We also provide some details regarding the hardware
platform selection and the system integration.

5.1. Hardware Streaming Architecture Design (HSA)

In the streaming architecture, each layer of the CNN is mapped to a separate hardware block and
the blocks are connected to each other via stream channels to form a pipeline (as shown in Figure 3).
Furthermore, the implementation of each layer can be optimized independently and the data can be
streamed between layers on the fly. Particularly, a partial result of a layer can be directly streamed
to the next layer without having to wait until the complete calculation is done [14]. As a result, this
architecture facilitates the parallelism between layer blocks through pipelining.

Input Conv 1 Pool 1 Conv 2 Pool 2 Conv 3 FC 1 FC 2 FC3 Output

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 114 bits 96 bits 114 bits

Figure 3. Streaming Architecture. Each CNN layer is mapped into a hardware block, and the hardware
blocks are connected to each others via stream channels. The bitwidth of each stream is shown on
this figure.

5.1.1. Convolutional and Pooling Layer Architecture

The convolutional layer as well as the pooling layer expect one or more feature maps as input
and generate a number of output feature maps. Each feature map is scanned line by line, and each line
is transferred to the next layer. This imposes that the first convolution or pooling operation cannot
be completed until the appropriate number of lines are received by the CNN layer, which highlights
the need to temporarily buffer the input lines. In case of convolutional layer, the kernel stride is
less than its dimension. Therefore, the same input columns and/or rows are expected to be used

Sensors 2020, 20, 2828 8 of 25

by a later convolution operation using the same kernel. Instead of having to fetch the same set of
input values from the previous feature maps repeatedly, local buffering saves the additional time
and space needed by the previous layer. Therefore, a line buffer and a window buffer are needed.
The line buffer is a special memory responsible for storing specific lines from previous feature maps
locally. The dimensions of a line buffer depend on the kernel size as well as the size of the input
feature map. The number of lines in a line buffer should be equal to the height of the kernel so that
enough values can be covered by the kernel vertically. Furthermore, the number of columns in the line
buffer should be the same number of columns in the input feature map(s). This is because a whole
line should be stored before storing the next line [28,29]. To support parallelization, an array of line
buffers, where each line buffer corresponds to an input feature map, is used. This could be thought
of as a 3 dimensional line buffer. While the data is being buffered by the line buffer, the calculation
of the concerned layer should take place. The window buffer is a small memory that has the same
dimensions as the convolution or pooling kernel. This memory is responsible for preparing the data
needed by the kernel to perform the convolution or the pooling.

The window buffer follows the same shifting pattern used by the kernel over the image. In fact,
the window buffer copies the pixels required by the operation from the line buffer. These pixels are
processed by the kernel, and the result is finally ready to be transferred to the next layer. Due to the
hardware level parallelization in FPGA, 8 window buffers can sample the 8 line buffers that correspond
to the 8 input channels, and 8 kernels can be applied on these window buffers in parallel. Resulting in
8 output values per clock cycle.

Figure 4 shows the basic structure of the line and window buffer where the fourth line of the
input map is being buffered. Furthermore, the window buffer is highlighting a 3 × 3 region which will
be treated by a kernel of the same size. Whenever a new input comes, the corresponding column is
shifted up allowing the pixel to be inserted.

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1

9 10 11 12 13 14

15 1617 18 19 20 21 22

23 2425 26 27 28 29 30

7 8

31

13 14 15

21 22 23

29 30 31

Input Feature Map Window Buffer

Line Buffer

Figure 4. Line buffer and window buffer architecture. This figure illustrates an example of a single line
buffer and a single window buffer for a single input feature map. In this example, the 4th line of the
input feature map is being streamed value by value to the line buffer. Specifically, the input value 31
is streamed from the input feature map to the appropriate location in the line buffer. The old values
(23 and 15) in the line buffer are shifted up to the appropriate places in their original lines, while the
old value 7 is no more needed. The window buffer copies the set of line buffer values that correspond
to the current operation (convolution or pooling).

The idle time of a particular convolution or max pooling layer is the total number of input values
that must be streamed to the line buffer in order for the convolution or max pooling computation
engine to start or continue working. For example, in case of 3× 3 convolution, the operation cannot be

Sensors 2020, 20, 2828 9 of 25

started until the first two lines and the first three values of the third line are already received by the
line buffer. Furthermore, the computation engine is paused at the end of the third line because it has
to wait for the first three values of the fourth line to be available. The same applies for the rest of the
lines. This imposes additional waiting delays during which the computation engine is idle. In fact,
every time the layer operation is executed, an output value is generated. Thus, we can consider the
size of the output feature map as the number of times the layer operation was executed. This way,
we can calculate idle time ∆idle of the layer as the difference between the total buffering time Ttotal
calculated as the size of the input feature map, and the effective computation time Te f f given as the
output feature map size, as shown in Equation (5).

∆idle = Ttotal − Te f f = Cin × Hin ×Win − Hout ×Wout

= Cin × Hin ×Win −
Hin − KH − (KH − 1)× (d− 1)

s
× Win − KW − (KW − 1)× (d− 1)

s

(5)

where Cin, Hin and Win are the number of input channels, the input height and the input width
,respectively, Hout and Wout are the output height and width, respectively, KH and KW are the kernel
height and width, respectively and finally s and d are the stride and dilation, respectively. It is noted
that the idle time depends on the number of the input feature maps but irrelevant to the number of the
output feature maps. The previous equation can be further simplified to Equation (6) by assuming that
the input feature maps and the kernels are all squares (Win = Hin and KW = KH), which is our case
(see Figure 1).

∆idle = Cin × H2
in −

(Hin − d× (KH − 1)− 1)2

s2
(6)

The physical time interval equivalent to ∆idle can be calculated as ∆idle × No.Clk× ClockPeriod,
where No.Clk is the number of clock cycles needed to transfer one input pixel to the line buffer. In the
following paragraphs, we provide architectural details on how the stride and group convolution are
handled and how they affect the idle time in a particular layer. Furthermore, we provide architectural
information about the dilation and the skip/merge connections in Section 7.

• Stride

In case of the convolutional layers, the kernel is shifted by one pixel after each convolution
operation horizontally or vertically (i.e., stride = 1). While in the first and the second max pooling
layers, the stride is equal to the pooling filter sizes (i.e., stride = 4 and 2, respectively). In order to
overcome the additional complexity imposed by the striding, we design a generic buffering engine
that can be dynamically customized for different stride values. For this purpose, a row counter and a
column counter are used to keep track of the row and the column to which the input value in the input
feature map belongs. As the input values are streamed to the line buffer, the window buffer copies the
chunk of values that are needed for the layer operation (i.e., convolution or max pooling) as illustrated
in Figure 4. However, the decision to start the layer operation is based on the values of the row and
the column counters. Specifically, the operation is allowed to be performed only when the row and
column counters are multiples of the vertical and horizontal strides respectively. Algorithm A1 in
Appendix A.1 shows how the stride operation is handled. In order to study the effect of the stride on
the layer’s idle time, we differentiate the idle time with respect to the stride s in Equation (6):

∂∆idle
∂s

=
2× (Hin − d× (KH − 1)− 1)2

s3 ≥ 0 (7)

This means that the higher the stride, the longer the waiting time within the layer.

Sensors 2020, 20, 2828 10 of 25

• Group Convolution

In group convolution, the input feature maps are arranged in groups, where each group is
convoluted with its corresponding set of kernels. This way, each output feature map will be inferred
from the input feature maps within the corresponding input group instead of being related to all input
feature maps as in the standard convolution. No architectural modification for the line buffers or the
window buffers is required, since the input still has to be buffered in the line buffers and then prepared
in the window buffers for convolution. We introduce the “group router”, an array of demultiplexers
that dynamically relate each window buffer to the correlative set of kernels. The routing decision
inside the group router is based on the input group order as well as the input feature map order.
In case of the first convolutional layer in our work, which produces 8 output channels from a single
input channel, 8 convolutional kernels are used for the single input group. While in the second and the
third convolutional layers, the standard convolution requires 64 kernels to produce 8 output channels.
As mentioned in Section 3.1, depthwise convolution is used to reduce the the number of kernels from
64 to 8, where each kernel is convoluted with a single input feature map. The group convolution has
no effect on the idle time ∆idle of the layer since it does not effect the buffering scheme in the line buffer.
Further details about the group convolution are available in Appendix A.3.

5.1.2. Zero Padding Layer Architecture

Zero padding is the process of increasing the size of a feature map by adding extra rows and/or
columns of zeros at its borders. Furthermore, the dimensions of the input feature maps of a max-pooling
layer should be multiples of the pooling filter dimensions, given that the strides are equal to the filter
dimensions. Otherwise, the filter would not fit at some or all feature maps borders. In our work,
we use a zero padding layer to pad the top and left borders in the input feature maps of the second
pooling layer, as it uses a pooling filter of size 2 × 2 for the input dimensions of size 27 × 27. Figure 5
illustrates a simplified representation of the padding layer architecture. The multiplexer pushes a zero
to the output stream when padding is needed, while it relays the input to the output otherwise. This
decision is based on the values of two counters (namely, row and column counters). These counters
keep track of the horizontal and vertical locations of each input value relatively to the corresponding
output feature map. Algorithm A2 in Appendix A.2 shows a code snippet for zero padding.

0

Pad ?

No Yes

Padding Decision Maker

Output Stream

..

..

Input Stream

00

Row
Counter

CMP

no_topno_left

no_bottomno_right

CMP Comparator

Column
Counter

CMP

Multiplexer OR Gate

Figure 5. Zero padding layer streaming architecture. In this architecture, the input values are streamed
in, and the padding decision maker controls the multiplexer based on the current row and column
indices. If the padding should be performed, a zero value is streamed out and the input stream stalls.
Otherwise, the input value is directly pushed as is to the output stream.

Sensors 2020, 20, 2828 11 of 25

5.1.3. Fully Connected Layer Architecture

The core operation of a fully connected layer is multiply and accumulate operation, where each
value in the input buffer is multiplied by the corresponding weights, and the results are then added
to the accumulators and stored there. Each value is multiplied by a number of weights equal to the
number of neurons in this layer. The basic architecture of this layer consists of a multiplier, an adder
and an accumulator, as shown in Figure 6. When the multiplications are complete, the result value is
passed to the ReLU activation function and then streamed out to the next layer via the output buffer.
In some scenarios, such as in the last fully connected layer, no activation function is needed. To support
parallelization, this architecture is instantiated a number of times equal to the parallelization degree.
Multiplications will then occur in parallel and a number of accumulators are updated simultaneously.

I
0

INPUT BUFFER

O
U

T
P

U
T

 B
U

F
F

E
R

XI
1

I
2

I
3

I
N
...

FC WEIGHTS

W
00

...W
01
W

02
W

03
W

MN

+

ACCUMULATOR

O
M

O
2

O
1

O
0

...

X

+

Adder

Multiplier

Demultiplexer

Figure 6. Fully connected layer streaming architecture. In this architecture, the input values are
streamed in, and the corresponding weights are fetched from the local BRAM memories for the MAC
operation that takes place in the multiplier and the adder. The result is accumulated with the help of
the accumulator and the demultiplexer. Once the MAC operations are done, the demultiplexer pushes
the result value to the output streaming buffer.

5.1.4. Inter-Layer Packing

Once an output value of a layer is ready, it is streamed to the next layer for processing.
Nevertheless, this limits the throughput between layers to one result value per clock cycle at most.
In order to increase the throughput across the CNN (and consequently decrease the latency), we apply
the pack/unpack technique. In this technique, N output values of a layer (Li) are concatenated
together to form a single wider word, which is streamed within one clock cycle to the next layer (i + 1).
Consequently, the next layer (i + 1) unpacks the concatenated word into its N values and performs the
layer operation (e.g., convolution) in parallel. Theoretically, the inter-layer pipes have no bandwidth
limit and any amount of data could be streamed from a layer to another. However, this is practically

Sensors 2020, 20, 2828 12 of 25

limited by the maximum achievable number of outputs at each clock cycle due to the limited hardware
resources. As mentioned before, the first convolutional layer generates 8 output channels from a single
input channel using 8 different convolutional kernels. If these 8 convolutions are done in parallel, the 8
output values can be concurrently streamed to the next layer within the same clock cycle. Along the
rest of the CNN, the number of channels is fixed to 8 (Figure 1). Therefore, we choose N = 8 so that
the 8 output values can be packed together and transferred to the next layer, which in turn unpacks,
performs layer operation and packs 8 output values. Each of these 8 values belong to a specific, single
output channel of a layer i.e., to a single input channel of the next layer.

5.1.5. Activation Quantization

The output of the convolutional layers and the fully connected layers is normally obtained by
applying an activation function on the result of the multiply and accumulate operations in each layer.
For the representation of an activation output in a particular layer, the same amount of bits used for
the weights in that layer might not necessarily be enough. Therefore, the sufficient number of bits
(LN = LI + LF) has to be determined for the input as well as the output of each activation layer:

1. Convolutional Layer 1 and Pooling Layer 1 data type.
2. Convolutional Layer 2 and Pooling Layer 2 data type.
3. Convolutional Layer 3 data type.
4. Fully connected Layer 1 data type.
5. Fully connected Layer 2 data type.
6. Fully connected Layer 3 data type.

In order to determine the integer part length (LI) for the activation quantization, profiling each
layer’s output range for the whole testset should be performed. This is achieved by using a profiling
function which observes each calculation in every layer and keeps a copy of the maximum and
minimum result. For instance, for each kernel convolution in the first convolutional layer, the maximum
and minimum results of the multiplication and addition operation are saved. This applies for each
input test image as well as other layers. Afterwards, the range needed for each layer (i) in the worst
case is calculated using Equation (8).

Rangei = maxi −mini (8)

where maxi and mini are the maximum and minimum output values of the layer (i), respectively.
Eventually, the number of bits needed for the integer part is determined by applying Equation (9).

LI = log2(Rangei) (9)

Now that (LI) is known, we need to determine (LF). For this purpose, we follow an iterative
process for bitwidth exploration. It should be noted that we follow two different approaches for
parameter quantization and activation quantization. In case of input and parameter quantization,
we only constrain the input, weights and biases (LN already constrained) to certain bitwidths during
training (QAT) and we use the quantization function mentioned in Equation (2). While for the
activations, we explore the needed bitwidth LN by finding the needed LI and LF as mentioned.

5.2. System Integration (SI)

In this subsection, we provide a short description of the system integration process, including the
platform selection, hardware system integration and on-Chip Software.

Sensors 2020, 20, 2828 13 of 25

5.2.1. Platform Selection

Based on the CNN size estimation and the selection guide provided by Xilinx [30],
ZCU102 Evaluation Board was chosen for the implementation of this project. Zynq R© UltraScale
+TM XCZU9EG-2FFVB1156E MPSoC (multiprocessor System-on-Chip) is the core of this general
purpose platform. In this platform, the PS is a multiprocessor System-on-Chip consisting of an ARM R©

flagship Cortex R©-A53 64-bit quad-core processor and a Cortex-R5 dual-core real-time processor
along with high speed DDR4 SODIMM and component memory interfaces. The PL is basically the
Field Programmable Gate Array (FPGA) which features 912 (Block RAM) BRAMs, 2520 DSP48, 274k
(Look-Up Tables) LUTs and 548k (Flip-Flops) kFFs. Figure 7 shows an overview of the board and
its components.

Figure 7. ZCU102 evaluation board [31].

5.2.2. Hardware System Integration and On-Chip Software

Figure 8 shows the architecture of the integrated system on chip. AXI-Lite interface provides the
interconnection between the PS and the PL. The DMA module is integrated in the PL. This module is
responsible for converting the memory mapped input to AXI stream CNN input, as well as converting
the AXI stream CNN output to a memory mapped output. The (PS) is responsible for transferring
the input image to the (PL) through AXI4 High Performance Interface. The software program is a
C++ program that runs on the (PS), providing an interface to DRAM for writing images and reading
inference results.

Sensors 2020, 20, 2828 14 of 25

Quad-Core
Arm Cortex-A53

DDR Memory
Controller

PS

A
X

I-Lite Interfa ce

PL

M
M

2S
S

2M
M

DMA

Hand Pose
Estimation

CNN IP

Figure 8. Hardware system integration; AXI-Lite interface provides the interconnection between the
PS and the PL. DMA module is integrated in the PL. This module is responsible for converting the
memory mapped input to AXI stream CNN input, as well as converting the AXI stream CNN output
to a memory mapped output.

6. Results

In this section, we illustrate the results that we obtained along the design process depicted in
Figure 2. Similarly to the design process, the results are split into two groups: software-related and
hardware-related experiments and results.

6.1. Software-Related Experimental Setup and Results

In the following, we provide the training and testing results for the quantization process of the
chosen CNN.

Training and Testing the Quantized CNN

Instead of trying different bitwidths randomly, we started with 16 bits as an initial value for the
quantization. As long as the calculated error is within the accepted range, a fewer number of bit is
chosen. Otherwise, training is run for more epochs until no more progress is observed. During the
quantization trials, different bitwidths for different layers were also used. After going through this
exploratory process, we found that the CNN that employs 12 bits for the quantization of weights and
biases of the convolutional layers, 6 bits for the weights and biases of the fully connected layers and
8 bits for the input is the most suitable one. After 1000 epochs, the evaluation error turns out to be
17.75 mm. This implies that the quantized CNN is only 3% less accurate than its original full-precision
ancestor. As a result, Table 2 illustrates a comparison between the total size needed by the original
full-precision CNN and the quantized CNN.

Sensors 2020, 20, 2828 15 of 25

Table 2. Quantized vs. full-precision CNN volume.

Layer Total No. Parameters Full-Precision Size Quantized Size

Convolutional 1 208 6.5 Kb 2.4 Kb
Pooling 1 - - -
Convolutional 2 208 6.5 Kb 2.4 Kb
Pooling 2 - - -
Convolutional 3 80 2.5 Kb 0.9 Kb
Fully Connected 1 1,180,672 36 Mb 6.8 Mb
Fully Connected 2 1,049,600 32 Mb 6.0 Mb
Fully Connected 3 95,325 2.9 Mb 559 Kb

Total 2,326,093 71 Mb 13.3 Mb

6.2. Hardware-Related Experimental Setup and Results

In this subsection, we provide the run-time delay and energy efficiency analysis of the end-to-end
hand pose estimation application after deployment on FPGA as compared to its GPU-based counterpart.
For the GPU implementations, we use the NVIDIA GeForce GTX 1070. Furthermore, we illustrate
the run-time and energy measurements for different GPU implementations which correspond to
different batch sizes, and we highlight the most interesting cases among all the provided experiments.
Additionally, we demonstrate the run-time delay and energy efficiency analysis as compared with
Raspberry Pi 3B+ and NVIDIA Jetson Xavier as embedded platforms. Finally, we summarize the
resource utilization analysis on FPGA.

6.2.1. Comparison with NVIDIA GeForce GTX 1070 GPU

Since the original hand pose estimation CNN is trained and deployed on the powerful NVIDIA
GeForce GTX 1070 GPU, it is beneficial to highlight the improvement in inference run-time and energy
efficiency of our proposed solution.

• Run-Time Delay Analysis

Table 3 presents the different run-time delays for our FPGA implementation as compared to
different GPU implementations. In all cases, the average run-time delay per image ∆Timage is obtained
by averaging the total computation time over a large number of input images. It is notable that
the FPGA outweighs the GPU in sense of speed for this application in case of a single input image
(i.e., Batch size = 1), while the GPU shows less run-time delay for larger batch sizes. An improvement
of 4.2 times has been achieved by moving from GPU implementation, in which the average run-time
delay per image is 7.01 ms, to the FPGA implementation, in which the average run-time delay per
image is decreased to 1.669 ms. For batch sizes greater than 1, the GPU shows smaller run-time
delays (hence are faster) as compared with our single input FPGA implementation. However, we will
comment on this fact later in the energy efficiency analysis part of the results.

• Energy Efficiency

When it comes to portability, power consumption plays a decisive role. For the sake of comparison,
we only consider the dynamic energy consumed for image inference: Eimage = (Ptotal − Pidle) ∗ ∆Timage,
where Ptotal is the total power consumed during computation, Pidle is the power consumption in idle
mode i.e., without inference and ∆Timage is the image run-time. As can be seen in Table 3, the inference
using the GPU-based implementation consumes 385.41 mJ as compared to the FPGA-based CNN
which consumes only 0.6676 mJ. This implies an improvement of 577.3 times in energy efficiency.

Although the GPU-based implementations achieve faster inference for batch size > 1, the results
show that the FPGA is still a valid choice as compared to the GPU for two reasons. First of all,
the energy consumption on FPGA is less as compared to all GPU-based implementations shown in
Table 3. Secondly, we are not aware of any application, especially real-time, that is tolerant to the

Sensors 2020, 20, 2828 16 of 25

delay needed for buffering a big batch of images. In fact, this mode of operation is more suitable for
training in batches, which makes GPUs a faster choice for training process. In Table 3, we emphasize
on 4 implementations that have special considerations. In addition to the first 2 lines which correspond
to batch size = 1, the GPU implementations that correspond to a batch size of 128 and 256 are the most
energy efficient and fastest implementations, respectively.

Table 3. FPGA vs. GPU batch performance analysis.

Platform Batch Size Run-Time [ms] Energy [mJ]

FPGA (ours) 1 1.669 0.6676

GPU

1 7.01 385.41
32 0.53 30.55
64 0.35 21.86

128 0.30 20.20
256 0.29 21.99
512 0.30 22.10
1024 0.31 21.80
2048 0.30 35.80
4096 0.30 35.86
8192 0.30 40.49

Figure 9 illustrates a visual comparison between FPGA and GPU performance for these
4 important measurements.

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

Run-Time per Image [ms]

E
n

er
g

y
p

er
 I

m
ag

e
[m

J]

GPU 1

FPGA 1

GPU 256

GPU 128

X 4.2

X 577.3

X 33

X 30.3

X 0.18

X 0.17

Figure 9. Performance analysis for different batch sizes; FPGA 1 denotes the FPGA implementation
performance for batch size 1. Similarly, GPU1, GPU128 and GPU256 denote the GPU implementation
performance for batch sizes 1, 128 and 256, respectively. For comparison purposes, we have shown the
factors by which the performance differs for different implementations (the numbers on the arrows).

6.2.2. Comparison with Other Embedded Platforms

In this part, we provide the reader with a comparison of our method to other embedded platforms.
For this purpose, we use the NVIDIA Jetson Xavier which comprises of 512-Core Volta embedded GPU
with Tensor Cores, 8-Core ARM v8.2 64-Bit CPU and 16 GB 256-Bit RAM. Furthermore, we deploy
the CNN on a Broadcom BCM2837B0, Quad core Cortex-A53 (ARMv8) 64-bit SoC CPU running at

Sensors 2020, 20, 2828 17 of 25

1.4 GHz maximum frequency with 1 GB SDRAM on Raspberry Pi 3B+. In addition to the simple CPU
implementation that is expected to be relatively slow, we provide the run-time and energy analysis
for the CPU-based inference depending on ONNX-Runtime framework [32]. We run the inference for
the testset using different batch sizes (1, 16, 32, 64 and 128), and we measure the average run-time per
image as well as the dynamic power and energy needed for this inference.

• Run-Time Delay Analysis

It is observable from Table 4 that, for a batch of size 1, the average inference run-time for one
image is 2.21 ms as measured on NVIDIA Jetson Xavier’s GPU, while it takes 9.54 ms on the same
platform when the CPU is used. Furthermore, it takes 16.04 ms and 151.97 ms when the inference is
run on Raspberry Pi 3B+ with and without ONNX-Runtime respectively. This implies that our FPGA
implementation is 1.3, 5.7, 9.6 and 91.1 times faster than the Jetson Xavier’s embedded GPU, Jetson
Xavier’s embedded CPU, Raspberry Pi 3B+ ONNX-Runtime and Raspberry Pi 3B+ simple embedded
CPU implementations, respectively. Figure 10 presents a graphical comparison between our proposed
solution and the compared embedded implementations.

1 10 100 1000
0.1

1

10

100

1000

Run-Time [ms]

E
n

er
g

y
p

er
 I

m
ag

e
[m

J]

FPGA

RPi3B+
ONNX

RPi3B+

JX
GPU

x91.1

x591.9

x58.9

x13.6

x1.3
x9.6

JX
CPUx97.2

x5.7

Figure 10. Performance analysis for different embedded platforms; FPGA, JX GPU, JX CPU,
RPI3B+ and RPi3B+ ONNX denote the performance of our Xilinx UltraScale+ FPGA, Jetson Xavier
embedded GPU, Jetson Xavier embedded CPU, Raspberry Pi 3B+ simple CPU and Raspberry Pi 3B+
ONNX-Runtime-based CPU implementations, respectively. Similarly to Figure 9, the numbers on the
arrows illustrate the factors by which the performance differs for different implementations

Instead of plotting the absolute values in Table 4, we take our FPGA implementation latency
as a point of reference, and we plot the run-time latency for the different platforms and batch sizes
relatively to it in Figure 11. Except for the GPU implementations on Jetson Xavier using batch sizes > 1,
which are 1.7× to 2.5× faster, our FPGA implementation outweighs all the other embedded platforms
for the given batch sizes. It is notable that the performance of ONNX Runtime on Raspberry Pi 3B+ is
nearly the same for the batch sizes 16 to 128. In fact, The inference on Xavier CPU for the batch sizes 16
and 32 (16.1× and 8.6×, respectively) took longer than it does for the batch size 1 (5.7×). The slowest
among all these 21 implementations is the Raspberry Pi 3B+ for batch size = 1, which is 91.1× slower
than the reference FPGA latency.

Sensors 2020, 20, 2828 18 of 25

• Energy Efficiency and Hardware Resource Analysis

Table 4 shows that our FPGA implementation is more energy efficient when compared with the
NVIDIA Jetson Xavier and Raspberry Pi 3B+. Specifically, when the batch size is 1, the average energy
demand per image on Jetson Xavier’s GPU and CPU is 9.06 mJ and 64,872 mJ, respectively. Moreover,
the average energy consumption for inference on Raspberry Pi 3B+ is 39.30 mJ using ONNX-Runtime
while it rises to 395.12 mJ for the simple ARM7 CPU implementation. In other words, our FPGA
implementation is 13.6 and 97.2 times more energy efficient than the Jetson Xavier GPU and CPU
implementations, respectively. Furthermore, if we compare the Raspberry Pi 3B+ implementation with
ours, we observe that the former consumes 58.9 times more energy when running with ONNX-Runtime,
while it consumes 591.9 times more energy when running on the CPU without ONNX-Runtime.

For larger batch sizes, Figure 11 shows the energy consumption for each of the aforementioned
embedded platforms. The implementation on Jetson Xavier GPU with batch size of 1 was the closest
to our FPGA in terms of energy efficiency, although it is 14× less energy efficient. Furthermore,
ONNX-Runtime implementation on Raspberry Pi shows almost the same energy consumption when
running in batch operation mode. Similarly to the latency behavior, the energy consumption on
Jetson Xavier ARM8 is less for batch size of 1 (97×) as compared to the cases of batch sizes 16 (472×)
and 32 (253×). Nonetheless, the operation in batch size 64 consumes more energy (132×) when
compared to batch size = 1. We observe that the Raspberry Pi ARM7 implementation is the most
energy consuming one, requiring 592×more energy than our UltraScale+ implementation. However,
it becomes more energy efficient (needs 56× to 77× energy) when running in batch mode.

Table 4. FPGA vs. different embedded platforms performance analysis.

Platform Batch Size Run-Time (ms) Energy (mJ)

FPGA (ours) 1 1.669 0.6676

1 2.21 9.06
16 0.94 22.51

NVIDIA Jetson Xavier (GPU) 32 0.84 20.05
64 0.73 19.64
128 0.70 18.94

1 9.54 64,87
16 26.84 315.36

NVIDIA Jetson Xavier (CPU) 32 14.28 169.20
64 7.51 88.27
128 4.36 48.33

1 16.04 39.30
16 6.01 13.82

RaspberryPi 3B+ (ONNX-Runtime) 32 5.66 13.03
64 5.56 12.67
128 5.53 12.84

1 151.97 395.12
16 27.00 51.30

RaspberryPi 3B+ 32 19.95 45.89
64 15.98 38.36
128 15.45 37.07

Sensors 2020, 20, 2828 19 of 25

FPGA (ours) Xavier GPU Xavier CPU Rpi ONNX Rpi
0x

1x

10x

100x

1.0x

1.3x

5.7x

9.6x

91.1x

0.6x

16.1x

3.6x

16.2x

0.5x

8.6x

3.4x

12.0x

0.4x

4.5x

3.3x

9.6x

0.4x

2.6x
3.3x

9.3x

Relative Latency per Image

B = 1 B = 16 B = 32 B = 64 B = 128

R
el

at
iv

e
L

at
en

cy

FPGA (ours) Xavier GPU Xavier CPU Rpi ONNX Rpi
0x

1x

10x

100x

1000x

1x

14x

97x

59x

592x

34x

472x

21x

77x

30x

253x

20x

69x

29x

132x

19x

57x

28x

72x

19x

56x

Relative Energy Consumption per Image

B = 1 B = 16 B = 32 B = 64 B = 128

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

Figure 11. Relative latency and energy consumption per image for different embedded platforms and
batch sizes; FPGA, Xavier GPU, Xavier CPU, Rpi and Rpi ONNX stand for our Xilinx UltraScale+
FPGA, Jetson Xavier embedded GPU, Jetson Xavier embedded CPU, Raspberry Pi 3B+ simple
CPU and Raspberry Pi 3B+ ONNX-Runtime-based CPU implementations, respectively. The number
above each column represents the relative latency or energy consumption with respect to our FPGA
implementation.

Overall, it is notable that our FPGA implementation is faster and more energy efficient than the
embedded implementations, except for the Jetson Xavier GPU for batch sizes > 1. The area analysis
results after Placement and Routing are given in Table 5.

Table 5. Resource utilization summary on XCZU9EG.

Resources Used Available Util

CLB LUTs 21,432 274,080 8%
CLB Flip Flop 15,104 548,160 3%
Block RAM Tile 772.5 912 85%
DSPs 20 2520 1%

Sensors 2020, 20, 2828 20 of 25

7. Discussion

Although the chosen hand pose estimation pipeline in this work is relatively simple, it provides
a trade-off between complexity and accuracy and it can be easily extended to a more advanced
architecture. Furthermore, this CNN pipeline has been used as a baseline in many works such as
DeepPrior [11], DeepPrior++ [33], DeepModel [25] and DeepHPS [34]. In fact, other hand pose
estimation algorithms with higher joint regression accuracy can be found in the literature. There exist
a number of techniques that are expected to enhance the estimation accuracy such as dilation as well
skip and merge connections. We did not use these techniques in our hardware implementation as we
mainly focused on the hardware optimization of an already existing algorithm. However, we preferred
to enrich the reader with an overview of these two techniques and the related architectural changes.

7.1. Dilation

In dilated convolution, the convolutional kernel is expanded by inserting fixed gaps between its
weights horizontally and vertically. This differs from the standard convolution where the convolutional
kernel is convoluted with a region of adjacent input values. In the special case of the standard
convolution, where dilation is equal to 1, the height and width of the line buffer are given as the kernel
height (KH) and the input width (Win) respectively. However, in general case (i.e., for dilation d ≥ 1),
the height of the line buffer becomes KH + (KH − 1)× (d− 1). Despite this change, the size of the
window buffer does not have to be tampered with, since the amount of input values that are needed to
be convoluted depend only on the kernel size. However, the difference lies in the sampling logic that
picks the desired values from the line buffer to the window buffer. The effect of the dilation on the
layer’s idle time can be obtained by differentiating ∆idle in Equation (6) with respect to the dilation d:

∂∆idle
∂d

= −2
(KH − 1)2

s2 d + 2
(Hin − 1)(KH − 1)

s2
(10)

The quantity ∂∆idle/∂d is positive for all d < (Hin − 1)/(KH − 1). In practical cases, where d ≤ 3
and Hin is a few multiples of KH , the dilation increases the idle time in this particular layer.

7.2. Skip and Merge Connections

Since the hardware architecture in this work is mainly based on the streaming paradigm, skip
connections (as in ResNet [35]) and merge connections (as in DenseNet [36]) should be implemented
on stream level. Therefore, we introduce two fake layers, namely the Branching layer and the Merging
layer. For the skip connection, the branching layer should be inserted at the point where the stream is
split into two or more branches. This layer is mainly responsible for repeating each received input
value a number of times equal to the number of branches. In this case, each instance value is streamed
out from the branching layer in a particular branch. On the other hand, the merging layer is needed
to concatenate the different branches into a unified branch. This layer reads a single value from
each input branch and then, based on the desired functionality, can sum the inputs or multiplex
them consecutively in the output stream. In fact, each branch might have a different computation
complexity, and therefore, it might suffer from a different propagation delay. This can result in merging
a particular value from an incoming branch with a prior or posterior value from another branch in
the merging layer. In other words, the streaming order among all branches must be maintained and
the synchronization among the different branches is required. One way to achieve that would be to
perform a delay analysis for each branch and consequently insert buffers of certain lengths in the faster
branches. For further details, we advise the reader to check the work by Chidananda et al. [37].

8. Conclusions

Real-time, energy efficient 3D hand pose estimation is becoming important in many research
fields, especially human machine interaction. Many researches have proposed various software

Sensors 2020, 20, 2828 21 of 25

implementations for hand pose estimation algorithms based on high-performance GPUs. However,
software environments suffer from several limitations such as run-time latency, power consumption
and difficulty of portability. In this work, we have taken CNN-based hand pose estimation into another
level by providing an efficient hardware implementation for it. The first step in this work was to
provide a trained software model of the CNN using PyTorch. This model is used as a reference in
later steps. Then, the size of this model was reduced by scaling down the number of kernels and
effectively quantizing the network model parameters, which resulted in a significantly compressed
model for a negligible decrease in accuracy. Afterwards, we provided an optimized hardware streaming
architecture for the CNN which was then implemented on Xilinx UltraScale+ MPSoC FPGA. Our results
have shown that the FPGA achieves better performance than its software counterpart, which run on
high-performance GPU for the same batch size. In terms of inference time and power consumption,
we have illustrated that FPGA is a suitable platform for portable Hand Pose Estimators, since this
implementation is 4.2× faster, 5.3× smaller and 577.3× more energy efficient as compared to the GPU
for the same batch size for a slight degradation of 3% in accuracy.

9. Future Work

From software point of view, other CNN topologies can be experimented for the same application
using the same implementation methodology. The usage of deeper CNNs with more cascaded layers
might reduce the lower limits of quantization bitwidths resulting in shorter bitwords and eventually
a smaller network model size with higher performance. This might even allow the design to go
to the extra mile in design space by binarizing the model instead of just quantizing it. Presumably,
other quantization methods might be able to further reduce the size of the same CNN used in this work.
A small delay appears as a bottleneck when the input image or a feature map is streamed to a layer in
raster scan (i.e., line per line) order. Moreover, it is an open question to try other scanning methods and
decide which method is more effective in terms of time and space. Finally, we aim to further improve
the accuracy of hand pose estimation by switching to a deep network architecture that comprises skip
connections, similarly to ResNet, and concatenations, similarly to DenseNet. This architecture is still
pending in the evaluation test phase and we are planning to publish it in an upcoming article.

Author Contributions: Conceptualization, G.R.; Formal analysis, V.R., J.M. and A.E.; Funding acquisition, G.R.;
Investigation, M.R.A.K.; Project administration, C.W. and G.R.; Resources, N.W. and D.S.; Software, M.R.A.K.;
Supervision, V.R., J.M., A.E., C.W., N.W. and D.S.; Writing—original draft, M.R.A.K.; Writing—review & editing,
M.R.A.K., V.R., J.M., A.E., G.R., N.W. and D.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially funded by the Federal Ministry of Education and Research of the Federal
Republic of Germany as part of the research project VIDETE (Grant number 01IW18002), and partially supported
by the InnoProm program of the state Rhineland-Palatinate, Germany.

Acknowledgments: We thank Jonas Ney for assistance with hardware integration and setup. We also thank Atef
Hatahet for his assistance with language review.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Stride Algorithm

Algorithm A1 presents a code snippet for stride operation. The row and column counters (i and j)
track the location of the input value within the input feature map. The operation is allowed to be
performed only when the row and column counters are multiples of the vertical and horizontal
strides respectively. The row and column counters are initialized to the negative values of the kernel
dimensions. This prevents the operation from being executed before the data is available in the
line buffer.

Sensors 2020, 20, 2828 22 of 25

Algorithm A1: Stride-Aware Convolution and Max-Pooling
Data: Input feature map of size (Hin ×Win), Kernel of size (KH × KW), row stride (StirdeR) and

column stride (StirdeC).
Result: Output feature map of size (Hout ×Wout)
row_count← −KH ;
for i = to Hin − 1 do

row_count← row_count + 1;
col_count← −KW ;
for j = 0 to Win − 1 do

col_count← col_count + 1;
input = input_stream.read();
f ill_line_bu f f er(input);
shi f t_window_bu f f er();
if row_count%StrideR = 0 && col_count%StrideC = 0 then

do_operation();
end

end
end

Appendix A.2. Zero Padding Algorithm

Algorithm A2 presents a code snippet for zero padding. The padding decision is based on the
values of the row and column counters (i and j). These counters track the horizontal and vertical
locations of each input value relatively to the corresponding output feature map. That is why the limits
of the counters are the dimensions of the output feature map instead of the input feature map.

Algorithm A2: Zero Padding
Data: Input feature map of size (Hin ×Win), number of rows for top padding (no_top), number

of rows for left padding (no_le f t), number of rows for bottom padding (no_bottom) and
number of rows for right padding (no_right).

Result: Padded output feature map of size (Hout ×Wout)
Hout ← no_top + Hin + no_bottom;
Wout ← no_le f t + Win + no_right;
for i = 0 to Hout − 1 do

for j = 0 to Wout − 1 do
if (i < no_top || j < no_le f t || i ≥ Hout − no_bottom || j ≥Wout − no_right) then

output_stream.write(0);
else

output_stream.write(input_stream.read());
end

end

Appendix A.3. Group Convolution

In case of the first convolutional layer, which produces 8 output channels from a single input
channel in our work, 8 convolutional kernels are used for the single input group (Figure A1a). While
in the second and third convolutional layers, the standard convolution requires 64 kernels to produce
8 output channels (Figure A1b). As mentioned in Section 3.1, depthwise convolution is used to
reduce the needed storage area as well the computation complexity while performing the convolution.
Specifically, the 8 input channels are grouped into 8 groups, each containing one single feature map.

Sensors 2020, 20, 2828 23 of 25

The number of kernels is reduced from 64 to 8 in this case, where each kernel is convoluted with
a single input feature map (Figure A1c). In all cases, the number of kernels needed to perform the
convolution is Cout × Cin/G, where Cout is the number of output channels, Cin is the number of input
channels and G is the number of input groups. The group convolution has no effect on the idle time
∆idle of the layer since it does not effect the buffering scheme in the line buffer.

C
out

W
in

K
W
K
W

K
H

Wout

H
out

Line
Buffer

K
W

K
H

Window
Buffer

Kernels Outputs

C
out

W
in

K
W
K
W

K
H

W
out

H
out

K
W

K
H

Kernels OutputsLine
Buffer

Window
Buffer

C
out

W
in

K
W
K
W

K
H

Wout

H
out

K
W

K
H

Kernels OutputsLine
Buffer

Window
Buffer

Group
Router

Group
Router

Group
Router

C
out

W
in

K
W
K
W

K
H

W
out

H
out

K
W

K
H

Kernels OutputsLine
Buffer

Window
Buffer

Group
Router

(a) (b)

(c) (d)

Figure A1. Group Convolution for 8 output feature maps. This figure shows 4 different examples
to obtain 8 output feature maps. (a) The 2D convolution for a single input feature map. In this case,
the input consists of a single group and 8 kernels. Each kernel is convoluted with the input feature
map to produce an output feature map. (b) The case of 8 input feature maps and a single input group,
where 64 kernels are split into 8 groups and each group is convoluted with the input. The summation is
necessary to obtain the desired number of output feature maps. (c) Depthwise convolution. The input
is split into 8 groups and each output feature map is computed depending form a single input feature
map. (d) Another example of group convolution in which the input is split into 4 groups. In this case,
a total number of 16 kernels are required and each input group is convoluted with a set of 4 kernels.
We ignored the summation in (a,c) since the result of each convolution is a single output feature map.

Sensors 2020, 20, 2828 24 of 25

References

1. Chen, Y.; Tu, Z.; Ge, L.; Zhang, D.; Chen, R.; Yuan, J. So-handnet: Self-organizing network for 3d hand
pose estimation with semi-supervised learning. In Proceedings of the IEEE International Conference on
Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6961–6970.

2. Li, S.; Lee, D. Point-to-pose voting based hand pose estimation using residual permutation equivariant layer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 11927–11936.

3. Zimmermann, C.; Brox, T. Learning to estimate 3d hand pose from single rgb images. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4903–4911.

4. Wang, R.; Paris, S.; Popović, J. 6D hands: Markerless hand-tracking for computer aided design. In Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA,
16–19 October 2011; pp. 549–558.

5. Li, S.; Ma, X.; Liang, H.; Görner, M.; Ruppel, P.; Fang, B.; Sun, F.; Zhang, J. Vision-based teleoperation of
shadow dexterous hand using end-to-end deep neural network. arXiv 2018, arXiv:1809.06268.

6. Isaacs, J.; Foo, S. Hand pose estimation for American sign language recognition. In Proceedings of the
Thirty-Sixth Southeastern Symposium on System Theory, Atlanta, GA, USA, 14–16 March 2004; pp. 132–136.

7. Malik, J.; Elhayek, A.; Ahmed, S.; Shafait, F.; Malik, M.; Stricker, D. 3DAirSig: A Framework for Enabling
In-Air Signatures Using a Multi-Modal Depth Sensor. Sensors 2018, 18, 3872. [CrossRef] [PubMed]

8. Yuan, S.; Ye, Q.; Stenger, B.; Jain, S.; Kim, T.K. Bighand2. 2m benchmark: Hand pose dataset and state of
the art analysis. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2605–2613.

9. Vansteenkiste, E. New FPGA Design Tools and Architectures. Ph.D. Thesis, Ghent University, Gent,
Belgium, 2016.

10. Malik, J.; Elhayek, A.; Stricker, D. Simultaneous Hand Pose and Skeleton Bone-Lengths Estimation from
a Single Depth Image. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao,
China, 10–12 October 2017; pp. 557–565.

11. Oberweger, M.; Wohlhart, P.; Lepetit, V. Hands deep in deep learning for hand pose estimation. arXiv 2015,
arXiv:1502.06807.

12. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv
2018, arXiv:1806.08342.

13. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural
networks with low precision weights and activations. J. Mach. Learn. Res. 2017, 18, 6869–6898.

14. Venieris, S.I.; Kouris, A.; Bouganis, C.S. Toolflows for Mapping Convolutional Neural Networks on FPGAs:
A Survey and Future Directions. arXiv 2018, arXiv:1803.05900.

15. Liu, Z.; Dou, Y.; Jiang, J.; Xu, J. Automatic code generation of convolutional neural networks in FPGA
implementation. In Proceedings of the 2016 International Conference on Field-Programmable Technology
(FPT), Xi’an, China, 7–9 December 2016; pp. 61–68.

16. Abdelouahab, K.; Pelcat, M.; Serot, J.; Bourrasset, C.; Berry, F. Tactics to directly map CNN graphs on
embedded FPGAs. IEEE Embed. Syst. Lett. 2017, 9, 113–116. [CrossRef]

17. Abdelouahab, K.; Bourrasset, C.; Pelcat, M.; Berry, F.; Quinton, J.C.; Serot, J. A Holistic Approach
for Optimizing DSP Block Utilization of a CNN implementation on FPGA. In Proceedings of the 10th
International Conference on Distributed Smart Camera, Paris, France, 12–15 September 2016; pp. 69–75.

18. Wang, Y.; Xu, J.; Han, Y.; Li, H.; Li, X. DeepBurning: Automatic generation of FPGA-based learning
accelerators for the neural network family. In Proceedings of the 53rd Annual Design Automation Conference,
Austin, TX, USA, 5–9 June 2016; p. 110.

19. Venieris, S.I.; Bouganis, C.S. Latency-driven design for FPGA-based convolutional neural networks.
In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications
(FPL), Ghent, Belgium, 4–8 September 2017; pp. 1–8.

20. Venieris, S.I.; Bouganis, C.S. fpgaConvNet: A toolflow for mapping diverse convolutional neural networks
on embedded FPGAs. arXiv 2017, arXiv:1711.08740.

http://dx.doi.org/10.3390/s18113872
http://www.ncbi.nlm.nih.gov/pubmed/30423837
http://dx.doi.org/10.1109/LES.2017.2743247

Sensors 2020, 20, 2828 25 of 25

21. Venieris, S.I.; Bouganis, C.S. fpgaConvNet: A framework for mapping convolutional neural networks on
FPGAs. In Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Washington, DC, USA, 1–3 May 2016; pp. 40–47.

22. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Finn: A framework for
fast, scalable binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

23. Mamalet, F.; Garcia, C. Simplifying convnets for fast learning. In International Conference on Artificial Neural
Networks; Springer: Berlin, Germany, 2012; pp. 58–65.

24. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic Differentiation in PyTorch. In Proceedings of the NIPS Autodiff Workshop, Long Beach,
CA, USA, 9 December 2017.

25. Zhou, X.; Wan, Q.; Zhang, W.; Xue, X.; Wei, Y. Model-based deep hand pose estimation. arXiv 2016,
arXiv:1606.06854.

26. Tompson, J.; Stein, M.; Lecun, Y.; Perlin, K. Real-time continuous pose recovery of human hands using
convolutional networks. ACM Trans. Graph. (ToG) 2014, 33, 169. [CrossRef]

27. Miyashita, D.; Lee, E.H.; Murmann, B. Convolutional neural networks using logarithmic data representation.
arXiv 2016, arXiv:1603.01025.

28. Matai, J.; Richmond, D.; Lee, D.; Kastner, R. Enabling FPGAs for the masses. arXiv 2014, arXiv:1408.5870.
29. Vallina, F.M. Implementing Memory Structures for Video Processing in the Vivado HLS Tool; XAPP793 (v1. 0),

20 September; Xilinx, Inc.: Santa Clara, CA, USA, 2012.
30. Xilinx. Vivado Design Suite User Guide: High-Level Synthesis (UG902); Xilinx, Inc.: Santa Clara, CA, USA, 2019.
31. Xilinx. ZCU102 Evaluation Board (UG1182); Xilinx, Inc.: Santa Clara, CA, USA, 2018.
32. ONNX Runtime. Available online: https://github.com/microsoft/onnxruntime (accessed on 7 May 2020).
33. Oberweger, M.; Lepetit, V. Deepprior++: Improving fast and accurate 3d hand pose estimation. In Proceedings

of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 585–594.

34. Malik, J.; Elhayek, A.; Nunnari, F.; Varanasi, K.; Tamaddon, K.; Heloir, A.; Stricker, D. Deephps: End-to-end
estimation of 3d hand pose and shape by learning from synthetic depth. In Proceedings of the 2018
International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 110–119.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

37. Chidananda, P.; Sinha, A.; Rao, A.; Lee, D.; Rabinovich, A. Efficient 2.5 D Hand Pose Estimation via Auxiliary
Multi-Task Training for Embedded Devices. arXiv 2019, arXiv:1909.05897.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2629500
https://github.com/microsoft/onnxruntime
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Overview of The Proposed Approach
	CNN-Based Hand Pose Estimation Algorithm
	Design Process Overview

	Software Design Process
	Full-Precision CNN Training and Testing
	Network Training
	Network Testing

	Quantization-Aware Training (QAT)
	Linear Quantization Function

	Hardware Design Process
	Hardware Streaming Architecture Design (HSA)
	Convolutional and Pooling Layer Architecture
	Zero Padding Layer Architecture
	Fully Connected Layer Architecture
	Inter-Layer Packing
	Activation Quantization

	System Integration (SI)
	Platform Selection
	Hardware System Integration and On-Chip Software

	Results
	Software-Related Experimental Setup and Results
	Hardware-Related Experimental Setup and Results
	Comparison with NVIDIA GeForce GTX 1070 GPU
	Comparison with Other Embedded Platforms

	Discussion
	Dilation
	Skip and Merge Connections

	Conclusions
	Future Work
	
	Stride Algorithm
	Zero Padding Algorithm
	Group Convolution

	References

