Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform
Abstract
:1. Introduction
- Revealing clearer, smoother, and more intuitive spectra, which discover more physically significant harmonics;
- enabling a more in-depth analysis of abnormal electricity demand at different timescales; and
- obtaining an improved lossless spectral compression method.
2. Materials and Methods
2.1. Dataset
2.2. Conventional Techniques for Spectral Analysis
2.3. The Hilbert Transform for Spectral Analysis
2.4. Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis
- It is symmetric with respect to a null local average value; and
- It has the same number of zero-crossing and extrema.
- Consider original data as the first residue:
- Make
- Obtaining the -th IMF:
- Consider the -th residue as the first trial for the -th proto-IMF:
- Make
- Consider the -th trial for the -th proto-IMF as the ongoing sequence:
- Obtain upper local extrema of
- Obtain upper envelope (joining upper extrema with a cubic spline):
- Obtain lower local extrema and lower envelope:
- Obtain mean value of upper and lower envelopes:
- Obtain the -th trial for the -th proto-IMF subtracting the mean value from the original data:
- Repeat inner steps 3 to 7 (increasing ) until the inner loop stop criterion is fulfilled, which occurs in the -th inner iteration
- Consider the last proto-IMF as the -th IMF:
- Inner loop stop criterion: During 𝑆 consecutives iterations the number of upper extrema (), lower extrema and zero-crossing ) of the ongoing sequence satisfy the equation , where 𝑆 is a predefined constant (usually )
- Obtain the -th residue subtracting -th IMF from the first trial of the ongoing sequence:
- Repeat outer steps 3 and 4 (increasing ) until the outer loop stop criterion is fulfilled, which occurs in the -th outer iteration
- Outer loop stop criterion: Residue is a monotonic function; or IMF or residue are smaller than a predetermined value
- Consider the last residue as the overall residue: .
3. Results
3.1. Spectral Analysis of Electricity Demand
3.1.1. Fourier Transform of Electricity Demand
3.1.2. Short-Time Fourier Transform of Electricity Demand
3.1.3. Wavelet Transform of Electricity Demand
3.1.4. Marginal Wavelet Transform of Electricity Demand
3.1.5. Hilbert Spectrum of Electricity Demand
3.1.6. Hilbert–Huang Spectrum of Electricity Demand
3.2. Spectral Analysis of the Intrinsic Mode Functions
3.3. Statistical Analysis of the Intrinsic Mode Functions
4. Discussion
4.1. Reading HHT Spectrum
4.2. Detecting Abnormal Energy Demand Behavior
4.3. Electricity Demand Sequence Compression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARIMA | Autoregressive Integrated Moving Average |
DFT | Discrete Fourier Transform |
DHHS | Discrete Hilbert–Huang Spectrum |
EMD | Empirical Mode Decomposition |
ENTSO-E | European Network of Transmission System Operators for Electricity |
FD | Fourier Decomposition |
FFT | Fast Fourier Transform |
FT | Fourier Transform |
HHS | Hilbert–Huang Spectrum |
HHT | Hilbert–Huang Transform |
HS | Hilbert Spectrum |
HT | Hilbert Transform |
IMF | Intrinsic Mode Functions |
MHHS | Marginal Hilbert–Huang Spectrum |
MHLV | Monthly Hourly Load Values |
MHS | Marginal Hilbert Spectrum |
MWT | Marginal Wavelet Transform |
Probability Density Function | |
RMSE | Root Mean Square Error |
WT | Wavelet Transform |
References
- Morello, R.; Mukhopadhyay, S.C.; Liu, Z.; Slomovitz, D.; Samantaray, S.R. Advances on sensing technologies for smart cities and power grids: A review. IEEE Sens. J. 2017, 17, 7596–7610. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302–318. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 8. [Google Scholar] [CrossRef]
- Shao, S.; Guo, S.; Qiu, X. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids. Sensors 2017, 17, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; McArthur, S.D.J.; Strachan, S.M.; Kirkwood, J.D.; Paisley, B. A data analytic approach to automatic fault diagnosis and prognosis for distribution automation. IEEE Trans. Smart Grid 2018, 9, 6265–6273. [Google Scholar] [CrossRef] [Green Version]
- Ayar, M.; Trevizan, R.D.; Bretas, A.S.; Latchman, H.; Obuz, S. A robust decentralized control framework for enhancing smart grid transient stability. In Proceedings of the 2017 IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 16−20 July 2017; pp. 1–5. [Google Scholar]
- Huo, Y.; Prasad, G.; Lampe, L.; Leung, V.C.M. Cable Health Monitoring in Distribution Networks using Power Line Communications. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm 2018), Aalborg, Denmark, 29−31 Octomber 2018. [Google Scholar]
- Viciana, E.; Alcayde, A.; Montoya, F.; Baños, R.; Arrabal-Campos, F.; Manzano-Agugliaro, F. An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions. Sensors 2019, 19, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babakmehr, M.; Simões, M.G.; Wakin, M.B.; Harirchi, F. Compressive Sensing-Based Topology Identification for Smart Grids. IEEE Trans. Ind. Inform. 2016, 12, 532–543. [Google Scholar] [CrossRef]
- Ak, R.; Fink, O.; Zio, E. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1734–1747. [Google Scholar] [CrossRef]
- Guerrero, J.I.; Monedero, I.; Biscarri, F.; Biscarri, J.; Millan, R.; Leon, C. Non-Technical Losses Reduction by Improving the Inspections Accuracy in a Power Utility. IEEE Trans. Power Syst. 2018, 33, 1209–1218. [Google Scholar] [CrossRef]
- Sánchez-Durán, R.; Barbancho, J.; Luque, J. Solar Energy Production for a Decarbonization Scenario in Spain. Sustainability 2019, 11, 7112. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Durán, R.; Luque, J.; Barbancho, J. Long-Term Demand Forecasting in a Scenario of Energy Transition. Energies 2019, 12, 3095. [Google Scholar] [CrossRef] [Green Version]
- Golmohamadi, H.; Keypour, R. Stochastic optimization for retailers with distributed wind generation considering demand response. J. Mod. Power Syst. Clean Energy 2018, 6, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.I.; García, A.; Personal, E.; Luque, J.; León, C. Heterogeneous data source integration for smart grid ecosystems based on metadata mining. Expert Syst. Appl. 2017, 79, 254–268. [Google Scholar] [CrossRef]
- Romero-Ternero, Mc.; Oviedo-Olmedo, D.; Carrasco, A.; Luque, J. A Distributed Approach for Estimating Battery State-Of-Charge in Solar Farms. Sensors 2019, 19, 4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Xie, J.; Li, H.; Sun, Q.; Si, Z.; Zhang, J.; Guo, J. The role of data analysis in the development of intelligent energy networks. IEEE Netw. 2017, 31, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Xu, C.; Zhang, Z.; Li, X. Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent Neural Network. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems(CISS 2017), Baltimore, MD, USA, 22−24 March 2017; pp. 1–6. [Google Scholar]
- Li, R.; Li, F.; Smith, N.D. Multi-Resolution Load Profile Clustering for Smart Metering Data. IEEE Trans. Power Syst. 2016, 31, 4473–4482. [Google Scholar] [CrossRef]
- Zoha, A.; Gluhak, A.; Imran, M.; Rajasegarar, S. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey. Sensors 2012, 12, 16838–16866. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Hu, Y.-C. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing. Sensors 2018, 18, 1365. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Tam, K. A frequency domain approach to characterize and analyze load profiles. IEEE Trans. Power Syst. 2011, 27, 857–865. [Google Scholar] [CrossRef]
- Issi, F.; Kaplan, O. The Determination of Load Profiles and Power Consumptions of Home Appliances. Energies 2018, 11, 607. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, A.; Furusato, R.; Yoshida, Y. Determining the relationship between a household’s lifestyle and its electricity consumption in Japan by analyzing measured electric load profiles. Energy Build. 2016, 119, 200–210. [Google Scholar] [CrossRef]
- Zhong, S.; Tam, K.S. Hierarchical Classification of Load Profiles Based on Their Characteristic Attributes in Frequency Domain. IEEE Trans. Power Syst. 2015, 30, 2434–2441. [Google Scholar] [CrossRef]
- Li, R.; Li, F.; Smith, N.D. Load Characterization and Low-Order Approximation for Smart Metering Data in the Spectral Domain. IEEE Trans. Ind. Inform. 2017, 13, 976–984. [Google Scholar] [CrossRef]
- Xing, Z.; Qu, J.; Chai, Y.; Li, Y.; Tang, Q. Bearing fault diagnosis based on hilbert marginal spectrum and supervised locally linear embedding. In Proceedings of the 2016 Chinese Intelligent Systems Conference, Xiamen, China, 22−23 October 2016; Volume 404, pp. 221–231. [Google Scholar]
- Wang, H.; Ji, Y. A Revised Hilbert–Huang Transform and Its Application to Fault Diagnosis in a Rotor System. Sensors 2018, 18, 4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, N.E.; Wu, M.L.; Qu, W.; Long, S.R.; Shen, S.S.P. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Model. Bus. Ind. 2003, 19, 245–268. [Google Scholar] [CrossRef]
- Ghelardoni, L.; Ghio, A.; Anguita, D. Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid 2013, 4, 549–556. [Google Scholar] [CrossRef]
- Guo, M.F.; Yang, N.C.; Chen, W.F. Deep-Learning-Based Fault Classification Using Hilbert-Huang Transform and Convolutional Neural Network in Power Distribution Systems. IEEE Sens. J. 2019, 19, 6905–6913. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 2018, 13, e0194889. [Google Scholar] [CrossRef] [Green Version]
- Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications(ICMLA 2018), Orlando, FL, USA, 17−20 December 2018; pp. 1394–1401. [Google Scholar]
- Grzesica, D.; Wiȩcek, P. Advanced Forecasting Methods Based on Spectral Analysis. Procedia Eng. 2016, 161, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Monthly Hourly Load Values. Available online: https://www.entsoe.eu/data/power-stats/hourly_load/ (accessed on 23 May 2019).
- ENTSO-E. Available online: https://www.entsoe.eu/ (accessed on 19 January 2020).
- Real-Time Demand and Generation. Red Eléctrica de España. Available online: https://www.ree.es/en/activities/realtime-demand-and-generation (accessed on 19 January 2020).
- Podder, P.; Zaman Khan, T.; Haque Khan, M.; Muktadir Rahman, M. Comparative Performance Analysis of Hamming, Hanning and Blackman Window. Int. J. Comput. Appl. 2014, 96, 1–7. [Google Scholar] [CrossRef]
- Hahn, S.L. Hilbert Transforms in Signal Processing; Artech House: Boston, MA, USA, 1996; Volume 2. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Snin, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, S.S.P. Hilbert–Huang Transform and Its Applications; Interdisciplinary Mathematical Sciences; World Scientific: Singapore, 2014; Volume 16. [Google Scholar]
- Donnelly, D. The Fast Fourier and Hilbert-Huang Transforms: A Comparison. In Proceedings of the Multiconference on “Computational Engineering in Systems Applications”, Beijing, China, 4−6 October 2007; pp. 84–88. [Google Scholar]
- Puliafito, V.; Vergura, S.; Carpentieri, M. Fourier, Wavelet, and Hilbert-Huang Transforms for Studying Electrical Users in the Time and Frequency Domain. Energies 2017, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, L.; Li, B.; Jin, Z.; Wang, H.; Lin, R. The Comparative Analysis of Fourier Transformation and Hilbert Huang Transformation Based on Dynamic EEG Data. In Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017), Dalian, China, 13−14 May 2017; pp. 1439–1447. [Google Scholar]
- Ayenu-Prah, A.Y.; Attoh-Okine, N.O. Comparative study of hilbert-huang transform, fourier transform and wavelet transform in pavement profile analysis. Veh. Syst. Dyn. 2009, 47, 437–456. [Google Scholar] [CrossRef]
- Rossi, B.; Chren, S.; Buhnova, B.; Pitner, T. Anomaly detection in Smart Grid data: An experience report. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9−12 October 2016; pp. 2313–2318. [Google Scholar]
- Karimipour, H.; Geris, S.; Dehghantanha, A.; Leung, H. Intelligent Anomaly Detection for Large-scale Smart Grids. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE 2019), Edmonton, AB, Canada, 5−8 May 2019. [Google Scholar]
- Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.M.; Bitsuamlak, G. An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 2017, 144, 191–206. [Google Scholar] [CrossRef]
- Wrinch, M.; El-Fouly, T.H.M.; Wong, S. Anomaly detection of building systems using energy demand frequency domain analysis. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22−26 July 2012. [Google Scholar]
- Ghanbari, M.; Kinsner, W.; Ferens, K. Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network. In Proceedings of the 2016 IEEE Electrical Power and Energy Conference(EPEC 2016), Ottawa, ON, Canada, 12−14 October 2016. [Google Scholar]
- Zhong, S. Electricity Load Modeling in Frequency Domain. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017. [Google Scholar]
- Jiang, Z.; Lin, R.; Yang, F.; Wu, B. A fused load curve clustering algorithm based on wavelet transform. IEEE Trans. Ind. Inform. 2018, 14, 1856–1865. [Google Scholar] [CrossRef]
Periodicity | Theoretical | Fourier | Wavelet | Hilbert-Huang |
---|---|---|---|---|
12 h | 730 | 730 | 726 | 730 |
24 h | 365 | 365 | 367 | 365 |
2 days | 182.5 | 183 | ||
4 days | 91.25 | 106 | 91 | |
1 week | 52.14 | 52.00 | 52.00 | 52.00 |
1 month | 12 | 9.2 | 12 | |
2 months | 6 | 6 | ||
12 weeks | 4.35 | 4.60 | 4.35 | |
6 months | 2 | 2 | 2 | 2 |
12 months | 1 | 1 | 1 | |
40 months | 0.30 | 0.40 | 0.30 |
Feature | Fourier | Wavelet | Hilbert-Huang |
---|---|---|---|
Linearity required | Yes | Yes | No |
Stationarity required | Yes | No | No |
Frequency analysis | Yes | Yes; Marginal WT | Yes; Marginal HHT |
Time –frequency analysis | Yes; STFT | Yes | Yes |
Time–frequency resolution | Constant | Variable | Arbitrarily small |
Spectrum smoothness | Low | Medium | High |
Frequencies discovering | Medium | High | Very high |
Non-linear modes discovering | No | No | Yes |
Compression ratio | Medium | High | Low |
Lossless compression ratio | Low | Low | High |
Processing requirements | Low | Medium | High |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luque, J.; Anguita, D.; Pérez, F.; Denda, R. Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform. Sensors 2020, 20, 2912. https://doi.org/10.3390/s20102912
Luque J, Anguita D, Pérez F, Denda R. Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform. Sensors. 2020; 20(10):2912. https://doi.org/10.3390/s20102912
Chicago/Turabian StyleLuque, Joaquin, Davide Anguita, Francisco Pérez, and Robert Denda. 2020. "Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform" Sensors 20, no. 10: 2912. https://doi.org/10.3390/s20102912
APA StyleLuque, J., Anguita, D., Pérez, F., & Denda, R. (2020). Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform. Sensors, 20(10), 2912. https://doi.org/10.3390/s20102912