Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition
Abstract
:1. Introduction
2. Overview of Image Binarization Algorithms
3. Proposed Method
4. Discussion of the Results
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADAS | Advanced Driver-Assistance System |
BHT | Balanced Histogram Thresholding |
DIBCO | Document Image Binarization Competition |
DSLR | Digital Single Lens Reflex |
DRD | Distance Reciprocal Distortion |
FAIR | Fast Algorithm for document Image Restoration |
GPU | Graphics Processing Unit |
GT | Ground Truth |
H-DIBCO | Handwritten Document Image Binarization Competition |
ICDAR | International Conference on Document Analysis and Recognition |
ICFHR | International Conference on Frontiers in Handwriting Recognition |
OCR | Optical Character Recognition |
QR | Quick Response |
SSD | Solid-State Drive |
SSP | Structural Symmetric Pixels |
SVM | Support Vector Machines |
References
- Okarma, K.; Lech, P. Fast statistical image binarization of color images for the recognition of the QR codes. Elektron. Ir Elektrotech. 2015, 21, 58–61. [Google Scholar] [CrossRef]
- Chen, R.; Yu, Y.; Xu, X.; Wang, L.; Zhao, H.; Tan, H.Z. Adaptive Binarization of QR Code Images for Fast Automatic Sorting in Warehouse Systems. Sensors 2019, 19, 5466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guizzo, E. Superfast Scanner Lets You Digitize Book by Flipping Pages. Available online: https://spectrum.ieee.org/automaton/robotics/robotics-software/book-flipping-scanning (accessed on 20 May 2020).
- Pratikakis, I.; Zagoris, K.; Karagiannis, X.; Tsochatzidis, L.; Mondal, T.; Marthot-Santaniello, I. ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019). In Proceedings of the 15th IAPR International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 1547–1556. [Google Scholar] [CrossRef]
- Pratikakis, I.; Zagori, K.; Kaddas, P.; Gatos, B. ICFHR 2018 Competition on Handwritten Document Image Binarization (H-DIBCO 2018). In Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagala Falls, NY, USA, 5–8 August 2018; pp. 489–493. [Google Scholar] [CrossRef]
- Chaki, N.; Shaikh, S.H.; Saeed, K. Exploring Image Binarization Techniques. In Studies in Computational Intelligence; Springer: New Delhi, India, 2014; Volume 560. [Google Scholar] [CrossRef]
- Lins, R.D.; Kavallieratou, E.; Smith, E.B.; Bernardino, R.B.; de Jesus, D.M. ICDAR 2019 Time-Quality Binarization Competition. In Proceedings of the 15th IAPR International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 1539–1546. [Google Scholar] [CrossRef]
- Niblack, W. An Introduction to Digital Image Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Wolf, C.; Jolion, J.M. Extraction and recognition of artificial text in multimedia documents. Form. Pattern Anal. Appl. 2004, 6, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Lins, R.; e Silva, G.P.; Gomes e Silva, A.R. Assessing and Improving the Quality of Document Images Acquired with Portable Digital Cameras. In Proceedings of the 9th International Conference on Document Analysis and Recognition (ICDAR), Parana, Brazil, 23–26 September 2007; Volume 2, pp. 569–573. [Google Scholar] [CrossRef]
- Alqudah, M.K.; Bin Nasrudin, M.F.; Bataineh, B.; Alqudah, M.; Alkhatatneh, A. Investigation of binarization techniques for unevenly illuminated document images acquired via handheld cameras. In Proceedings of the International Conference on Computer, Communications, and Control Technology (I4CT), Kuching, Malaysia, 21–23 April 2015; pp. 524–529. [Google Scholar] [CrossRef]
- Lins, R.D.; Bernardino, R.B.; de Jesus, D.M.; Oliveira, J.M. Binarizing Document Images Acquired with Portable Cameras. In Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; pp. 45–50. [Google Scholar] [CrossRef]
- Pereira, G.; Lins, R.D. PhotoDoc: A Toolbox for Processing Document Images Acquired Using Portable Digital Cameras. In Proceedings of the 2nd International Workshop on Camera-Based Document Analysis and Recognition (CBDAR), Curitiba, Brazil, 22 September 2007; pp. 107–115. [Google Scholar]
- Liang, J.; Doermann, D.; Li, H. Camera-based analysis of text and documents: A survey. Int. J. Doc. Anal. Recognit. 2005, 7, 84–104. [Google Scholar] [CrossRef]
- Ntirogiannis, K.; Gatos, B.; Pratikakis, I. Performance evaluation methodology for historical document image binarization. IEEE Trans. Image Process. 2013, 22, 595–609. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Lu, H.; Kot, A.; Shi, Y. Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Lett. 2004, 11, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Michalak, H.; Okarma, K. Improvement of Image Binarization Methods Using Image Preprocessing with Local Entropy Filtering for Alphanumerical Character Recognition Purposes. Entropy 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Michalak, H.; Okarma, K. Fast Binarization of Unevenly Illuminated Document Images Based on Background Estimation for Optical Character Recognition Purposes. J. Univ. Comput. Sci. 2019, 25, 627–646. [Google Scholar]
- Michalak, H.; Okarma, K. Adaptive Image Binarization Based on Multi-layered Stack of Regions. In Computer Analysis of Images and Patterns; Vento, M., Percannella, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11679, pp. 281–293. [Google Scholar] [CrossRef]
- dos Anjos, A.; Shahbazkia, H.R. Bi-Level Image Thresholding-A Fast Method. In Proceedings of the 1st International Conference on Biomedical Electronics and Devices (BIOSIGNALS), Funchal, Madeira, Portugal, 28–31 January 2008; pp. 70–76. [Google Scholar]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Cho, S.; Haralick, R.; Yi, S. Improvement of Kittler and Illingworth’s minimum error thresholding. Pattern Recognit. 1989, 22, 609–617. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.; Sahoo, P.; Wong, A. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Gr. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Lech, P.; Okarma, K.; Wojnar, D. Binarization of document images using the modified local-global Otsu and Kapur algorithms. Przegląd Elektrotech. 2015, 91, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Ridler, T.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- Xue, J.H.; Zhang, Y.J. Ridler and Calvard’s, Kittler and Illingworth’s and Otsu’s methods for image thresholding. Pattern Recognit. Lett. 2012, 33, 793–797. [Google Scholar] [CrossRef]
- Rosin, P.L. Unimodal thresholding. Pattern Recognit. 2001, 34, 2083–2096. [Google Scholar] [CrossRef]
- Coudray, N.; Buessler, J.L.; Urban, J.P. Robust threshold estimation for images with unimodal histograms. Pattern Recognit. Lett. 2010, 31, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, R.F.; Cheriet, M. AdOtsu: An adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recognit. 2012, 45, 2419–2431. [Google Scholar] [CrossRef]
- Chou, C.H.; Lin, W.H.; Chang, F. A binarization method with learning-built rules for document images produced by cameras. Pattern Recognit. 2010, 43, 1518–1530. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Xu, J.; Xiong, Z.; Wang, J.; Liu, M. Degraded historical document image binarization using local features and support vector machine (SVM). Optik 2018, 164, 218–223. [Google Scholar] [CrossRef]
- Michalak, H.; Okarma, K. Region based adaptive binarization for optical character recognition purposes. In Proceedings of the International Interdisciplinary PhD Workshop (IIPhDW), Świnoujście, Poland, 9–12 May 2018; pp. 361–366. [Google Scholar] [CrossRef]
- Michalak, H.; Okarma, K. Fast adaptive image binarization using the region based approach. In Artificial Intelligence and Algorithms in Intelligent Systems; Silhavy, R., Ed.; Springer: New York, NY, USA, 2019; Volume 764, pp. 79–90. [Google Scholar] [CrossRef]
- Pun, T. A new method for grey-level picture thresholding using the entropy of the histogram. Signal Process. 1980, 2, 223–237. [Google Scholar] [CrossRef]
- Pun, T. Entropic thresholding, a new approach. Comput. Gr. Image Process. 1981, 16, 210–239. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Hou, X. A Tsallis-entropy image thresholding method based on two-dimensional histogram obique segmentation. In Proceedings of the 2009 WASE International Conference on Information Engineering, Taiyuan, Chanxi, China, 10–11 July 2009; Volume 1, pp. 164–168. [Google Scholar] [CrossRef]
- Le, T.H.N.; Bui, T.D.; Suen, C.Y. Ternary entropy-based binarization of degraded document images using morphological operators. In Proceedings of the 11th IAPR International Conference on Document Analysis and Recognition (ICDAR), Beijing, China, 18–21 September 2011; pp. 114–118. [Google Scholar] [CrossRef]
- Fan, J.; Wang, R.; Zhang, L.; Xing, D.; Gan, F. Image sequence segmentation based on 2D temporal entropic thresholding. Pattern Recognit. Lett. 1996, 17, 1101–1107. [Google Scholar] [CrossRef]
- Abutaleb, A.S. Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Gr. Image Process. 1989, 47, 22–32. [Google Scholar] [CrossRef]
- Tang, K.; Yuan, X.; Sun, T.; Yang, J.; Gao, S. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowl.-Based Syst. 2011, 24, 1131–1138. [Google Scholar] [CrossRef]
- Li, J.; Tang, W.; Wang, J.; Zhang, X. A multilevel color image thresholding scheme based on minimum cross entropy and alternating direction method of multipliers. Optik 2019, 183, 30–37. [Google Scholar] [CrossRef]
- Bernsen, J. Dynamic thresholding of grey-level images. In Proceedings of the 8th International Conference on Pattern Recognition (ICPR), Paris, France, 27–31 October 1986; pp. 1251–1255. [Google Scholar]
- Yang, L.; Feng, Q. The Improvement of Bernsen Binarization Algorithm for QR Code Image. In Proceedings of the 5th International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 23–25 November 2018; pp. 931–934. [Google Scholar] [CrossRef]
- Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Gr. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Shafait, F.; Keysers, D.; Breuel, T.M. Efficient implementation of local adaptive thresholding techniques using integral images. In Proceedings of the Document Recognition and Retrieval XV, San Jose, CA, USA, 27–31 January 2008; Volume 6815. [Google Scholar] [CrossRef]
- Khurshid, K.; Siddiqi, I.; Faure, C.; Vincent, N. Comparison of Niblack inspired binarization methods for ancient documents. In Document Recognition and Retrieval XVI; SPIE: Bellingham, WA, USA, 2009; Volume 7247, pp. 7247–7249. [Google Scholar] [CrossRef]
- Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.L.; Tan, Y.P. Adaptive binarization method for document image analysis. In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 27–30 June 2004; Volume 1, pp. 339–342. [Google Scholar] [CrossRef]
- Lazzara, G.; Géraud, T. Efficient multiscale Sauvola’s binarization. Int. J. Doc. Anal. Recognit. 2014, 17, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Gatos, B.; Pratikakis, I.; Perantonis, S. Adaptive degraded document image binarization. Pattern Recognit. 2006, 39, 317–327. [Google Scholar] [CrossRef]
- Singh, T.R.; Roy, S.; Singh, O.I.; Sinam, T.; Singh, K.M. A New Local Adaptive Thresholding Technique in Binarization. IJCSI Int. J. Comput. Sci. Issues 2011, 8, 271–277. [Google Scholar]
- Hadjadj, Z.; Meziane, A.; Cherfa, Y.; Cheriet, M.; Setitra, I. ISauvola: Improved Sauvola’s Algorithm for Document Image Binarization. In Image Analysis and Recognition; Campilho, A., Karray, F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9730, pp. 737–745. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y. An Improved Sauvola Approach on QR Code Image Binarization. In Proceedings of the 11th International Conference on Advanced Infocomm Technology (ICAIT), Jinan, China, 18–20 October 2019; pp. 6–10. [Google Scholar] [CrossRef]
- Azani Mustafa, W.; Kader, M.M.M.A. Binarization of Document Image Using Optimum Threshold Modification. J. Phys. Conf. Ser. 2018, 1019, 012022. [Google Scholar] [CrossRef] [Green Version]
- Kulyukin, V.; Kutiyanawala, A.; Zaman, T. Eyes-free barcode detection on smartphones with Niblack’s binarization and Support Vector Machines. In Proceedings of the 16th International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’2012), Las Vegas, NV, USA, 16–19 July 2012; Volume 1, pp. 284–290. [Google Scholar]
- Samorodova, O.A.; Samorodov, A.V. Fast implementation of the Niblack binarization algorithm for microscope image segmentation. Pattern Recognit. Image Anal. 2016, 26, 548–551. [Google Scholar] [CrossRef]
- Bataineh, B.; Abdullah, S.N.H.S.; Omar, K. An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows. Pattern Recognit. Lett. 2011, 32, 1805–1813. [Google Scholar] [CrossRef]
- Mysore, S.; Gupta, M.K.; Belhe, S. Complex and degraded color document image binarization. In Proceedings of the 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 11–12 February 2016; pp. 157–162. [Google Scholar] [CrossRef]
- Leedham, G.; Yan, C.; Takru, K.; Tan, J.H.N.; Mian, L. Comparison of some thresholding algorithms for text/background segmentation in difficult document images. In Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, UK, 6 August 2003; pp. 859–864. [Google Scholar] [CrossRef]
- Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–165. [Google Scholar] [CrossRef]
- Shrivastava, A.; Srivastava, D.K. A review on pixel-based binarization of gray images. In ICICT 2015; Springer: Singapore, 2016; Volume 439, pp. 357–364. [Google Scholar] [CrossRef]
- Saxena, L.P. Niblack’s binarization method and its modifications to real-time applications: A review. Artif. Intell. Rev. 2017, 1–33. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Kader, M.M.M.A. Binarization of document images: A comprehensive review. J. Phys. Conf. Series 2018, 1019, 012023. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, A.; Omar, K.; Nasrudin, M.F. Degraded historical document binarization: A review on issues, challenges, techniques, and future directions. J. Imaging 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Lu, S.; Tan, C.L. Robust document image binarization technique for degraded document images. IEEE Trans. Image Process. 2013, 22, 1408–1417. [Google Scholar] [CrossRef]
- Bag, S.; Bhowmick, P. Adaptive-interpolative binarization with stroke preservation for restoration of faint characters in degraded documents. J. Vis. Commun. Image Represent. 2015, 31, 266–281. [Google Scholar] [CrossRef]
- Howe, N.R. A Laplacian energy for document binarization. In Proceedings of the 11th IAPR International Conference on Document Analysis and Recognition (ICDAR), Beijing, China, 18–21 September 2011; pp. 6–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Su, B.; Tan, C.L. Document image binarization using background estimation and stroke edges. Int. J. Doc. Anal. Recognit. 2010, 13, 303–314. [Google Scholar] [CrossRef]
- Erol, B.; Antúnez, E.R.; Hull, J.J. HOTPAPER: Multimedia interaction with paper using mobile phones. In Proceedings of the 16th International Conference on Multimedia 2008, Vancouver, BC, Canada, 26–31 October 2008; pp. 399–408. [Google Scholar] [CrossRef]
- Okamoto, A.; Yoshida, H.; Tanaka, N. A binarization method for degraded document images with morphological operations. In Proceedings of the 13th IAPR International Conference on Machine Vision Applications (MVA), Kyoto, Japan, 20–23 May 2013; pp. 294–297. [Google Scholar]
- Khitas, M.; Ziet, L.; Bouguezel, S. Improved degraded document image binarization using median filter for background estimation. Elektron. Ir Elektrotech. 2018, 24, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Li, S.; Sun, J. A new binarization method for non-uniform illuminated document images. Pattern Recognit. 2013, 46, 1670–1690. [Google Scholar] [CrossRef]
- Mitianoudis, N.; Papamarkos, N. Document image binarization using local features and Gaussian mixture modeling. Image Vis. Comput. 2015, 38, 33–51. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Broken and degraded document images binarization. Neurocomputing 2017, 237, 272–280. [Google Scholar] [CrossRef]
- Lelore, T.; Bouchara, F. Super-resolved binarization of text based on the FAIR algorithm. In Proceedings of the 11th IAPR International Conference on Document Analysis and Recognition (ICDAR), Beijing, China, 18–21 September 2011; pp. 839–843. [Google Scholar] [CrossRef]
- Yazid, H.; Arof, H. Gradient based adaptive thresholding. J. Vis. Commun. Image Represent. 2013, 24, 926–936. [Google Scholar] [CrossRef]
- Feng, S. A novel variational model for noise robust document image binarization. Neurocomputing 2019, 325, 288–302. [Google Scholar] [CrossRef]
- Almeida, M.; Lins, R.D.; Bernardino, R.; Jesus, D.; Lima, B. A New Binarization Algorithm for Historical Documents. J. Imaging 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Tensmeyer, C.; Martinez, T. Document image binarization with fully convolutional neural networks. In Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; pp. 99–104. [Google Scholar] [CrossRef] [Green Version]
- Vo, Q.N.; Kim, S.H.; Yang, H.J.; Lee, G. Binarization of degraded document images based on hierarchical deep supervised network. Pattern Recognit. 2018, 74, 568–586. [Google Scholar] [CrossRef]
- Bogiatzis, A.; Papadopoulos, B. Producing fuzzy inclusion and entropy measures and their application on global image thresholding. Evol. Syst. 2018, 9, 331–353. [Google Scholar] [CrossRef]
- Bogiatzis, A.; Papadopoulos, B. Global Image Thresholding Adaptive Neuro-Fuzzy Inference System Trained with Fuzzy Inclusion and Entropy Measures. Symmetry 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.; Shi, C.; He, K.; Wang, C.; Xiao, B. Document Image Binarization Using Structural Symmetry of Strokes. In Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 411–416. [Google Scholar] [CrossRef]
- Jia, F.; Shi, C.; He, K.; Wang, C.; Xiao, B. Degraded document image binarization using structural symmetry of strokes. Pattern Recognit. 2018, 74, 225–240. [Google Scholar] [CrossRef]
- Lins, R.D.; Bernardino, R.B.; de Jesus, D.M. A Quality and Time Assessment of Binarization Algorithms. In Proceedings of the 15th IAPR International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 1444–1450. [Google Scholar] [CrossRef]
- Yoon, Y.; Ban, K.D.; Yoon, H.; Lee, J.; Kim, J. Best combination of binarization methods for license plate character segmentation. ETRI J. 2013, 35, 491–500. [Google Scholar] [CrossRef]
- Smith, R. An Overview of the Tesseract OCR Engine. In Proceedings of the 9th International Conference on Document Analysis and Recognition (ICDAR), Parana, Brazil, 23–26 September 2007; Volume 2, pp. 629–633. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Wu, Z.; Lu, Z.; Brown, M.S. Binarizationshop: A user assisted software suite for converting old documents to black-and-white. In Proceedings of the Annual Joint Conference on Digital Libraries, Gold Coast, Queensland, Australia, 21–25 June 2010; pp. 255–258. [Google Scholar] [CrossRef]
- Wellner, P.D. Adaptive Thresholding for the DigitalDesk; Technical Report EPC 1993-110; Rank Xerox Ltd.: Cambridge, UK, July 1993. [Google Scholar]
# | Binarization Method | OCR Measure | Overall Rank | |||||
---|---|---|---|---|---|---|---|---|
F-Measure | Rank | Levenshtein Distance | Rank | Accuracy | Rank | |||
1 | Otsu [24] | 0.6808 | 60 | 1469.88 | 60 | 0.5179 | 60 | 60 |
2 | Chou [32] | 0.8032 | 57 | 944.68 | 58 | 0.6575 | 57 | 57 |
3 | Kittler [22] | 0.6173 | 61 | 1889.86 | 61 | 0.3911 | 61 | 61 |
4 | Niblack [8] | 0.8838 | 48 | 243.39 | 47 | 0.7906 | 48 | 48 |
5 | Sauvola [49] | 0.9428 | 27 | 96.79 | 35 | 0.8955 | 27 | 28 |
6 | Wolf [9] | 0.9342 | 33 | 142.43 | 41 | 0.8800 | 30 | 36 |
7 | Bradley (mean) [46] | 0.9019 | 43 | 245.98 | 48 | 0.8217 | 43 | 45 |
8 | Bradley (Gaussian) [46] | 0.8490 | 51 | 557.98 | 54 | 0.7319 | 52 | 51 |
9 | Feng [50] | 0.7438 | 59 | 950.16 | 59 | 0.5908 | 59 | 59 |
10 | Bernsen [44] | 0.7673 | 58 | 724.68 | 57 | 0.6104 | 58 | 58 |
11 | Meanthresh | 0.8203 | 55 | 464.19 | 52 | 0.6885 | 55 | 54 |
12 | NICK [48] | 0.9551 | 24 | 43.20 | 25 | 0.9144 | 25 | 25 |
13 | Wellner [91] | 0.9134 | 40 | 275.10 | 50 | 0.8450 | 40 | 42 |
14 | Region (1 layer) [20] | 0.8858 | 46 | 174.98 | 42 | 0.7956 | 45 | 44 |
15 | Region (2 layers) [20] | 0.9236 | 38 | 105.19 | 36 | 0.8588 | 38 | 38 |
16 | Region (4 layers) [20] | 0.9344 | 31 | 92.14 | 31 | 0.8774 | 32 | 30 |
17 | Region (6 layers) [20] | 0.9359 | 30 | 93.24 | 32 | 0.8798 | 31 | 29 |
18 | Region (8 layers) [20] | 0.9341 | 34 | 88.88 | 29 | 0.8769 | 35 | 33 |
19 | Region (12 layers) [20] | 0.9343 | 32 | 93.33 | 33 | 0.8771 | 34 | 34 |
20 | Region (16 layers) [20] | 0.9339 | 35 | 90.65 | 30 | 0.8767 | 36 | 35 |
21 | Region (16 layers + MC) [20] | 0.9079 | 42 | 117.16 | 39 | 0.8315 | 42 | 41 |
22 | Resampling [19] | 0.9557 | 22 | 37.13 | 24 | 0.9156 | 23 | 23 |
23 | Entropy + Otsu [18] | 0.8418 | 53 | 618.51 | 56 | 0.7291 | 55 | 54 |
24 | Entropy + Niblack [18] | 0.8086 | 56 | 491.88 | 53 | 0.6758 | 56 | 56 |
25 | Entropy + Bradley(Mean) [18] | 0.9115 | 41 | 94.08 | 34 | 0.8405 | 41 | 39 |
26 | Entropy + Bradley(Gauss) [18] | 0.8908 | 44 | 188.71 | 43 | 0.8057 | 44 | 43 |
27 | Entropy + Meanthresh [18] | 0.9404 | 16 | 46.93 | 14 | 0.8899 | 17 | 15 |
28 | SSP [85,86] | 0.9402 | 28 | 111.99 | 27 | 0.8915 | 29 | 27 |
29 | Gatos [52] | 0.6808 | 49 | 1469.88 | 49 | 0.5179 | 49 | 50 |
30 | Su [67] | 0.9332 | 36 | 62.21 | 28 | 0.9772 | 33 | 32 |
31 | Singh [53] | 0.8945 | 25 | 245.57 | 23 | 0.8046 | 24 | 24 |
32 | Bataineh [59] | 0.3905 | 52 | 2578.68 | 51 | 0.1860 | 54 | 51 |
33 | WAN [56] | 0.9504 | 50 | 45.39 | 44 | 0.9080 | 50 | 49 |
34 | ISauvola [54] | 0.9459 | 26 | 80.53 | 26 | 0.8955 | 26 | 26 |
35 | OR (#20,#22,#23) | 0.9294 | 37 | 110.91 | 37 | 0.8698 | 37 | 37 |
36 | AND (#20,#22,#23) | 0.8408 | 54 | 615.75 | 55 | 0.7337 | 51 | 53 |
37 | Voting (#20,#22,#23) | 0.9576 | 18 | 30.44 | 17 | 0.9192 | 18 | 19 |
38 | Voting (#5,#12,#22) | 0.9585 | 16 | 31.35 | 22 | 0.9207 | 16 | 20 |
39 | Voting (#4,#7,#11) | 0.8863 | 45 | 236.19 | 45 | 0.7950 | 46 | 46 |
40 | Voting (#4,#11,#22) | 0.8844 | 47 | 238.95 | 46 | 0.7915 | 47 | 47 |
41 | Voting (#7,#20,#23) | 0.9206 | 39 | 141.19 | 40 | 0.8544 | 39 | 40 |
42 | Voting (#7,#12,#20,#22,#23) | 0.9568 | 20 | 29.05 | 12 | 0.9177 | 20 | 18 |
43 | Voting (#12,#20,#23) | 0.9617 | 8 | 26.82 | 8 | 0.9263 | 8 | 7 |
44 | Voting (#12,#22,#27) | 0.9586 | 15 | 30.88 | 19 | 0.9208 | 15 | 17 |
45 | Voting (#12,#18,#20,#22,#27) | 0.9576 | 19 | 31.04 | 21 | 0.9188 | 19 | 21 |
46 | Voting (#5,#6,#12,#18,#20,#22,#27) | 0.9617 | 7 | 27.11 | 9 | 0.9264 | 7 | 6 |
47 | Voting (#16,#22,#23) | 0.9556 | 23 | 30.93 | 20 | 0.9156 | 22 | 22 |
48 | Voting (#12,#16,#23) | 0.9605 | 10 | 27.95 | 10 | 0.9243 | 10 | 11 |
49 | Voting (#7,#12,#16,#22,#23) | 0.9580 | 17 | 29.52 | 13 | 0.9200 | 17 | 16 |
50 | Voting (#20, #23, #34) | 0.9630 | 3 | 26.39 | 7 | 0.9289 | 3 | 3 |
51 | Voting (#20, #27, #31) | 0.9602 | 12 | 23.31 | 5 | 0.9289 | 3 | 4 |
52 | Voting (#20, #23, #28) | 0.9623 | 6 | 25.52 | 6 | 0.9238 | 12 | 7 |
53 | Voting (#22, #27, #34) | 0.9597 | 13 | 22.43 | 3 | 0.9277 | 6 | 5 |
54 | Voting (#22, #23, #31) | 0.9560 | 21 | 28.60 | 11 | 0.9229 | 14 | 15 |
55 | Voting (#22, #27, #28) | 0.9630 | 4 | 23.11 | 4 | 0.9168 | 21 | 10 |
56 | Voting (#28, #31, #34) | 0.9597 | 14 | 30.82 | 18 | 0.9232 | 13 | 14 |
57 | Voting (#20, #31, #34) | 0.9603 | 11 | 30.44 | 16 | 0.9243 | 11 | 13 |
58 | Voting (#12, #28, #34) | 0.9660 | 1 | 20.44 | 2 | 0.9346 | 1 | 1 |
59 | Voting (#22, #31, #34) | 0.9611 | 9 | 30.02 | 15 | 0.9258 | 9 | 12 |
60 | Voting (#4, #7, #28, #31, #34) | 0.9626 | 5 | 29.88 | 14 | 0.9285 | 5 | 7 |
61 | Voting (#12, #20, #22, #23, #28, #31, #34) | 0.9653 | 2 | 18.51 | 1 | 0.9333 | 2 | 2 |
# | Binarization Method | OCR Measure | Overall Rank | |||||
---|---|---|---|---|---|---|---|---|
F-Measure | Rank | Levenshtein Distance | Rank | Accuracy | Rank | |||
1 | Otsu [24] | 0.6306 | 60 | 1618.53 | 60 | 0.4368 | 60 | 60 |
2 | Chou [32] | 0.7351 | 54 | 1097.47 | 57 | 0.5495 | 55 | 56 |
3 | Kittler [22] | 0.5799 | 61 | 2027.23 | 61 | 0.3234 | 61 | 61 |
4 | Niblack [8] | 0.7395 | 52 | 455.53 | 45 | 0.5787 | 51 | 50 |
5 | Sauvola [49] | 0.8672 | 27 | 267.34 | 34 | 0.7655 | 28 | 29 |
6 | Wolf [9] | 0.8512 | 30 | 312.68 | 39 | 0.7433 | 30 | 31 |
7 | Bradley (mean) [46] | 0.8008 | 41 | 549.89 | 49 | 0.6554 | 41 | 43 |
8 | Bradley (Gaussian) [46] | 0.7554 | 47 | 856.21 | 55 | 0.5819 | 50 | 51 |
9 | Feng [50] | 0.6607 | 58 | 1041.55 | 56 | 0.4683 | 57 | 57 |
10 | Bernsen [44] | 0.6640 | 57 | 1194.11 | 58 | 0.4533 | 59 | 58 |
11 | Meanthresh | 0.7039 | 56 | 663.48 | 51 | 0.5212 | 56 | 55 |
12 | NICK [48] | 0.8589 | 29 | 208.87 | 26 | 0.7593 | 29 | 28 |
13 | Wellner [91] | 0.8268 | 32 | 470.24 | 46 | 0.6985 | 32 | 38 |
14 | Region (1 layer) [20] | 0.7136 | 55 | 455.26 | 44 | 0.5515 | 54 | 52 |
15 | Region (2 layers) [20] | 0.7852 | 43 | 286.34 | 37 | 0.6499 | 42 | 41 |
16 | Region (4 layers) [20] | 0.8059 | 38 | 249.19 | 33 | 0.6790 | 38 | 37 |
17 | Region (6 layers) [20] | 0.8095 | 37 | 249.01 | 32 | 0.6841 | 37 | 35 |
18 | Region (8 layers) [20] | 0.8151 | 35 | 239.34 | 29 | 0.6919 | 35 | 31 |
19 | Region (12 layers) [20] | 0.8141 | 36 | 241.31 | 30 | 0.6908 | 36 | 33 |
20 | Region (16 layers) [20] | 0.8160 | 34 | 242.50 | 31 | 0.6932 | 33 | 30 |
21 | Region (16 layers + MC) [20] | 0.7819 | 44 | 305.28 | 38 | 0.6429 | 43 | 42 |
22 | Resampling [19] | 0.8655 | 28 | 159.55 | 18 | 0.7677 | 27 | 26 |
23 | Entropy + Otsu [18] | 0.7734 | 46 | 786.19 | 54 | 0.6161 | 46 | 49 |
24 | Entropy + Niblack [18] | 0.6372 | 59 | 1211.35 | 59 | 0.4600 | 58 | 59 |
25 | Entropy + Bradley(Mean) [18] | 0.8212 | 33 | 363.03 | 41 | 0.6929 | 34 | 36 |
26 | Entropy + Bradley(Gauss) [18] | 0.7869 | 42 | 525.62 | 48 | 0.6398 | 44 | 44 |
27 | Entropy + Meanthresh [18] | 0.8790 | 21 | 149.66 | 15 | 0.7879 | 22 | 21 |
28 | SSP [85,86] | 0.8766 | 26 | 235.88 | 28 | 0.7802 | 26 | 27 |
29 | Gatos [52] | 0.7544 | 48 | 477.35 | 47 | 0.5936 | 47 | 46 |
30 | Su [67] | 0.8053 | 39 | 283.09 | 35 | 0.6763 | 39 | 39 |
31 | Singh [53] | 0.8779 | 23 | 185.99 | 24 | 0.7822 | 25 | 25 |
32 | Bataineh [59] | 0.8779 | 53 | 185.99 | 50 | 0.7822 | 53 | 54 |
33 | WAN [56] | 0.7461 | 50 | 742.53 | 52 | 0.5757 | 52 | 53 |
34 | ISauvola [54] | 0.8835 | 14 | 216.48 | 27 | 0.7890 | 20 | 23 |
35 | OR (#20,#22,#23) | 0.8049 | 40 | 285.87 | 36 | 0.6759 | 40 | 40 |
36 | AND (#20,#22,#23) | 0.7787 | 45 | 765.26 | 53 | 0.6269 | 45 | 47 |
37 | Voting (#20,#22,#23) | 0.8799 | 18 | 136.13 | 9 | 0.7899 | 18 | 14 |
38 | Voting (#5,#12,#22) | 0.8767 | 25 | 150.70 | 16 | 0.7854 | 24 | 24 |
39 | Voting (#4,#7,#11) | 0.7467 | 49 | 437.98 | 42 | 0.5887 | 48 | 45 |
40 | Voting (#4,#11,#22) | 0.7442 | 51 | 442.27 | 43 | 0.5840 | 49 | 47 |
41 | Voting (#7,#20,#23) | 0.8310 | 31 | 359.44 | 40 | 0.7067 | 31 | 33 |
42 | Voting (#7,#12,#20,#22,#23) | 0.8847 | 13 | 134.78 | 8 | 0.7977 | 11 | 8 |
43 | Voting (#12,#20,#23) | 0.8810 | 17 | 138.27 | 11 | 0.7924 | 15 | 12 |
44 | Voting (#12,#22,#27) | 0.8792 | 20 | 145.94 | 13 | 0.7888 | 21 | 20 |
45 | Voting (#12,#18,#20,#22,#27) | 0.8788 | 22 | 130.88 | 7 | 0.7892 | 19 | 18 |
46 | Voting (#5,#6,#12,#18,#20,#22,#27) | 0.8900 | 8 | 124.80 | 4 | 0.8064 | 7 | 5 |
47 | Voting (#16,#22,#23) | 0.8798 | 19 | 138.04 | 10 | 0.7902 | 17 | 16 |
48 | Voting (#12,#16,#23) | 0.8778 | 24 | 139.63 | 12 | 0.7868 | 23 | 22 |
49 | Voting (#7,#12,#16,#22,#23) | 0.8835 | 15 | 129.94 | 6 | 0.7953 | 13 | 10 |
50 | Voting (#20, #23, #34) | 0.8966 | 6 | 164.73 | 19 | 0.8112 | 6 | 7 |
51 | Voting (#20, #27, #31) | 0.8993 | 2 | 118.30 | 3 | 0.8185 | 2 | 1 |
52 | Voting (#20, #23, #28) | 0.8882 | 10 | 148.10 | 14 | 0.8002 | 9 | 9 |
53 | Voting (#22, #27, #34) | 0.8966 | 5 | 116.29 | 2 | 0.8141 | 5 | 4 |
54 | Voting (#22, #23, #31) | 0.8825 | 16 | 173.11 | 20 | 0.7905 | 16 | 19 |
55 | Voting (#22, #27, #28) | 0.8983 | 3 | 114.48 | 1 | 0.8178 | 3 | 1 |
56 | Voting (#28, #31, #34) | 0.8894 | 9 | 189.82 | 25 | 0.7991 | 10 | 13 |
57 | Voting (#20, #31, #34) | 0.8877 | 11 | 182.86 | 22 | 0.7971 | 12 | 14 |
58 | Voting (#12, #28, #34) | 0.8982 | 4 | 153.56 | 17 | 0.8163 | 4 | 6 |
59 | Voting (#22, #31, #34) | 0.8852 | 12 | 181.83 | 21 | 0.7932 | 14 | 17 |
60 | Voting (#4, #7, #28, #31, #34) | 0.8916 | 7 | 185.45 | 23 | 0.8025 | 8 | 11 |
61 | Voting (#12, #20, #22, #23, #28, #31, #34) | 0.9014 | 1 | 129.62 | 5 | 0.8209 | 1 | 1 |
# | Binarization Method | OCR Measure | Overall Rank | |||||
---|---|---|---|---|---|---|---|---|
F-Measure | Rank | Levenshtein Distance | Rank | Accuracy | Rank | |||
1 | Otsu [24] | 0.5622 | 60 | 2414.45 | 59 | 0.2231 | 60 | 59 |
2 | Chou [32] | 0.6013 | 56 | 1884.73 | 54 | 0.3316 | 56 | 56 |
3 | Kittler [22] | 0.5641 | 59 | 2487.22 | 60 | 0.2019 | 61 | 60 |
4 | Niblack [8] | 0.6639 | 43 | 953.84 | 36 | 0.4531 | 44 | 42 |
5 | Sauvola [49] | 0.7001 | 35 | 1136.26 | 44 | 0.4938 | 36 | 39 |
6 | Wolf [9] | 0.7068 | 32 | 1009.59 | 40 | 0.5083 | 34 | 36 |
7 | Bradley (mean) [46] | 0.6074 | 53 | 1786.23 | 52 | 0.3633 | 54 | 53 |
8 | Bradley (Gaussian) [46] | 0.5745 | 57 | 2151.78 | 58 | 0.2909 | 58 | 58 |
9 | Feng [50] | 0.6050 | 54 | 1943.19 | 55 | 0.3894 | 52 | 54 |
10 | Bernsen [44] | 0.5020 | 61 | 2969.76 | 61 | 0.2263 | 59 | 61 |
11 | Meanthresh | 0.6576 | 46 | 1075.15 | 42 | 0.4366 | 47 | 44 |
12 | NICK [48] | 0.7226 | 22 | 872.76 | 28 | 0.5362 | 21 | 21 |
13 | Wellner [91] | 0.6796 | 38 | 1214.53 | 46 | 0.4638 | 40 | 43 |
14 | Region (1 layer) [20] | 0.6183 | 51 | 1057.44 | 41 | 0.4038 | 50 | 47 |
15 | Region (2 layers) [20] | 0.6749 | 39 | 800.10 | 24 | 0.4780 | 38 | 34 |
16 | Region (4 layers) [20] | 0.6995 | 36 | 735.78 | 22 | 0.5098 | 33 | 30 |
17 | Region (6 layers) [20] | 0.7069 | 31 | 727.24 | 21 | 0.5198 | 28 | 25 |
18 | Region (8 layers) [20] | 0.7079 | 30 | 721.76 | 19 | 0.5210 | 27 | 24 |
19 | Region (12 layers) [20] | 0.7065 | 33 | 724.13 | 20 | 0.5195 | 29 | 28 |
20 | Region (16 layers) [20] | 0.7094 | 29 | 720.84 | 18 | 0.5237 | 24 | 21 |
21 | Region (16 layers + MC) [20] | 0.6661 | 41 | 824.98 | 26 | 0.4641 | 39 | 36 |
22 | Resampling [19] | 0.7331 | 18 | 690.13 | 16 | 0.5556 | 17 | 17 |
23 | Entropy + Otsu [18] | 0.6422 | 49 | 1420.09 | 49 | 0.4247 | 49 | 50 |
24 | Entropy + Niblack [18] | 0.6615 | 45 | 1962.02 | 56 | 0.4586 | 41 | 47 |
25 | Entropy + Bradley(Mean) [18] | 0.6247 | 50 | 1608.03 | 50 | 0.3917 | 51 | 51 |
26 | Entropy + Bradley(Gauss) [18] | 0.6142 | 52 | 1699.44 | 51 | 0.3740 | 53 | 52 |
27 | Entropy + Meanthresh [18] | 0.7558 | 8 | 573.63 | 9 | 0.5889 | 8 | 8 |
28 | SSP [85,86] | 0.7171 | 25 | 884.47 | 31 | 0.5225 | 25 | 27 |
29 | Gatos [52] | 0.6559 | 47 | 1178.52 | 45 | 0.4373 | 46 | 46 |
30 | Su [67] | 0.7020 | 34 | 814.40 | 25 | 0.5122 | 32 | 30 |
31 | Singh [53] | 0.7180 | 24 | 644.81 | 35 | 0.5219 | 26 | 29 |
32 | Bataineh [59] | 0.6041 | 55 | 1869.63 | 53 | 0.3609 | 55 | 55 |
33 | WAN [56] | 0.5695 | 58 | 2103.19 | 57 | 0.3109 | 57 | 57 |
34 | ISauvola [54] | 0.7109 | 28 | 1089.10 | 43 | 0.5068 | 35 | 36 |
35 | OR (#20,#22,#23) | 0.6879 | 37 | 883.67 | 30 | 0.4897 | 37 | 35 |
36 | AND (#20,#22,#23) | 0.6493 | 48 | 1390.91 | 48 | 0.4342 | 48 | 49 |
37 | Voting (#20,#22,#23) | 0.7565 | 7 | 558.05 | 6 | 0.5910 | 6 | 6 |
38 | Voting (#5,#12,#22) | 0.7422 | 14 | 675.09 | 14 | 0.5683 | 14 | 14 |
39 | Voting (#4,#7,#11) | 0.6665 | 40 | 937.72 | 33 | 0.4577 | 42 | 39 |
40 | Voting (#4,#11,#22) | 0.6648 | 42 | 965.40 | 37 | 0.4540 | 43 | 41 |
41 | Voting (#7,#20,#23) | 0.6636 | 44 | 1262.76 | 47 | 0.4492 | 45 | 45 |
42 | Voting (#7,#12,#20,#22,#23) | 0.7615 | 4 | 552.84 | 5 | 0.5980 | 4 | 4 |
43 | Voting (#12,#20,#23) | 0.7551 | 9 | 588.52 | 11 | 0.5883 | 9 | 10 |
44 | Voting (#12,#22,#27) | 0.7419 | 15 | 673.88 | 13 | 0.5679 | 15 | 15 |
45 | Voting (#12,#18,#20,#22,#27) | 0.7520 | 11 | 584.39 | 10 | 0.5846 | 11 | 11 |
46 | Voting (#5,#6,#12,#18,#20,#22,#27) | 0.7608 | 5 | 552.19 | 4 | 0.5968 | 5 | 5 |
47 | Voting (#16,#22,#23) | 0.7529 | 10 | 564.89 | 8 | 0.5853 | 10 | 9 |
48 | Voting (#12,#16,#23) | 0.7494 | 13 | 595.03 | 12 | 0.5799 | 12 | 12 |
49 | Voting (#7,#12,#16,#22,#23) | 0.7567 | 6 | 559.50 | 7 | 0.5906 | 7 | 7 |
50 | Voting (#20, #23, #34) | 0.7316 | 19 | 875.44 | 29 | 0.5412 | 19 | 19 |
51 | Voting (#20, #27, #31) | 0.7673 | 2 | 530.68 | 1 | 0.6050 | 2 | 2 |
52 | Voting (#20, #23, #28) | 0.7394 | 16 | 715.07 | 17 | 0.5587 | 16 | 16 |
53 | Voting (#22, #27, #34) | 0.7679 | 1 | 531.49 | 2 | 0.6061 | 1 | 1 |
54 | Voting (#22, #23, #31) | 0.7273 | 20 | 841.39 | 27 | 0.5386 | 20 | 19 |
55 | Voting (#22, #27, #28) | 0.7661 | 3 | 537.62 | 3 | 0.6037 | 3 | 3 |
56 | Voting (#28, #31, #34) | 0.7159 | 27 | 978.32 | 39 | 0.5174 | 31 | 33 |
57 | Voting (#20, #31, #34) | 0.7235 | 21 | 935.28 | 32 | 0.5287 | 22 | 23 |
58 | Voting (#12, #28, #34) | 0.7351 | 17 | 784.12 | 23 | 0.5504 | 18 | 18 |
59 | Voting (#22, #31, #34) | 0.7218 | 23 | 937.92 | 34 | 0.5268 | 23 | 25 |
60 | Voting (#4, #7, #28, #31, #34) | 0.7170 | 26 | 973.15 | 38 | 0.5189 | 30 | 32 |
61 | Voting (#12, #20, #22, #23, #28, #31, #34) | 0.7512 | 12 | 676.03 | 15 | 0.5761 | 13 | 13 |
# | Binarization Method | Final Aggregated Rank | Computation Time (Relative) | |
---|---|---|---|---|
1 | Otsu [24] | 60 | 1.00 | |
2 | Chou [32] | 57 | 5.74 | |
3 | Kittler [22] | 61 | 23.30 | |
4 | Niblack [8] | 46 | 75.11 | |
5 | Sauvola [49] | 33 | 73.73 | |
6 | Wolf [9] | 36 | 76.36 | |
7 | Bradley (mean) [46] | 47 | 19.62 | |
8 | Bradley (Gaussian) [46] | 54 | 241.61 | |
9 | Feng [50] | 58 | 215.20 | |
10 | Bernsen [44] | 59 | 197.14 | |
11 | Meanthresh | 51 | 39.93 | |
12 | NICK [48] | 25 | 70.81 | |
13 | Wellner [91] | 41 | 187.90 | |
14 | Region (1 layer) [20] | 49 | 29.84 | |
15 | Region (2 layers) [20] | 38 | 50.23 | |
16 | Region (4 layers) [20] | 34 | 92.39 | |
17 | Region (6 layers) [20] | 31 | 145.49 | |
18 | Region (8 layers) [20] | 30 | 211.87 | |
19 | Region (12 layers) [20] | 32 | 325.05 | |
20 | Region (16 layers) [20] | 29 | 441.84 | |
21 | Region (16 layers + MC) [20] | 40 | 1232.01 | |
22 | Resampling [19] | 24 | 12.48 | |
23 | Entropy + Otsu [18] | 51 | 664.87 | |
24 | Entropy + Niblack [18] | 56 | 755.11 | |
25 | Entropy + Bradley(Mean) [18] | 42 | 706.57 | |
26 | Entropy + Bradley(Gauss) [18] | 45 | 932.92 | |
27 | Entropy + Meanthresh [18] | 21 | 736.67 | |
28 | SSP [85,86] | 27 | 4542.24 | |
29 | Gatos [52] | 48 | 2413.68 | |
30 | Su [67] | 35 | 6016.56 | |
31 | Singh [53] | 26 | 59.78 | |
32 | Bataineh [59] | 54 | 44.58 | |
33 | WAN [56] | 53 | 400.98 | |
34 | ISauvola [54] | 27 | 113.69 | |
35 | OR (#20,#22,#23) | 37 | 1138.64 | |
36 | AND (#20,#22,#23) | 50 | 1134.25 | |
37 | Voting (#20,#22,#23) | 12 | 1136.87 | |
38 | Voting (#5,#12,#22) | 22 | 159.17 | |
39 | Voting (#4,#7,#11) | 43 | 137.30 | |
40 | Voting (#4,#11,#22) | 44 | 130.64 | |
41 | Voting (#7,#20,#23) | 39 | 1143.63 | |
42 | Voting (#7,#12,#20,#22,#23) | 9 | 1224.28 | |
43 | Voting (#12,#20,#23) | 7 | 1191.77 | |
44 | Voting (#12,#22,#27) | 18 | 817.40 | |
45 | Voting (#12,#18,#20,#22,#27) | 15 | 1455.67 | |
46 | Voting (#5,#6,#12,#18,#20,#22,#27) | 4 | 1600.90 | |
47 | Voting (#16,#22,#23) | 14 | 793.58 | |
48 | Voting (#12,#16,#23) | 13 | 858.17 | |
49 | Voting (#7,#12,#16,#22,#23) | 11 | 892.77 | |
50 | Voting (#20, #23, #34) | 7 | 1249.60 | |
51 | Voting (#20, #27, #31) | 1 | 1247.58 | |
52 | Voting (#20, #23, #28) | 10 | 5662.15 | |
53 | Voting (#22, #27, #34) | 2 | 887.61 | |
54 | Voting (#22, #23, #31) | 19 | 801.04 | |
55 | Voting (#22, #27, #28) | 3 | 5286.12 | |
56 | Voting (#28, #31, #34) | 23 | 4584.69 | |
57 | Voting (#20, #31, #34) | 15 | 745.37 | |
58 | Voting (#12, #28, #34) | 6 | 4572.60 | |
59 | Voting (#22, #31, #34) | 20 | 190.31 | |
60 | Voting (#4, #7, #28, #31, #34) | 15 | 4656.10 | |
61 | Voting (#12, #20, #22, #23, #28, #31, #34) | 4 | 5880.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, H.; Okarma, K. Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition. Sensors 2020, 20, 2914. https://doi.org/10.3390/s20102914
Michalak H, Okarma K. Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition. Sensors. 2020; 20(10):2914. https://doi.org/10.3390/s20102914
Chicago/Turabian StyleMichalak, Hubert, and Krzysztof Okarma. 2020. "Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition" Sensors 20, no. 10: 2914. https://doi.org/10.3390/s20102914
APA StyleMichalak, H., & Okarma, K. (2020). Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition. Sensors, 20(10), 2914. https://doi.org/10.3390/s20102914